
LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●
LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●

LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●
LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●

LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●

40+ Projects using Arduino, Raspberry Pi and ESP32

The Ultimate Compendium
of Sensor Projects

Dogan Ibrahim
SHAREDESIGNLEARN

The Ultimate Compendium
of Sensor Projects

40+ Projects using Arduino,
Raspberry Pi and ESP32

●

Dogan Ibrahim

SHAREDESIGNLEARN

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social
media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

SHAREDESIGNLEARN

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

78 York Street, London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

● All rights reserved. No part of this book may be reproduced in any material form, including

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally

to some other sue of this publication, without the written permission of the copyright holder except in

accordance with the provisions of the Copyright Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licencing Agency Ltd., 90 Tottenham Court Road, London, England W1P

9HE. Applications for the copyright holder's permission to reproduce any part of the publication should be

addressed to the publishers.

● Declaration

The author and publisher have used their best efforts in ensuring the correctness of the information

contained in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or

damage caused by errors or omissions in this book, whether such errors or omissions result from negligence,

accident or any other cause.

● Acknowledgements

The author would like to express his thanks to Ferdinand te Walvaart of Elektor for the valuable suggestions

he made throughout the duration of the preparation of this book. The author would like to thank also to his

wife Nadire for her encouragement, motivation, and for being patient with me while working on this book.

● British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

● ISBN 978-1-907920-78-3

© Copyright 2019: Elektor International Media b.v.

Prepress Production: D-Vision, Julian van den Berg

First published in the United Kingdom 2019

Printed in the Netherlands by Wilco

● 5

Preface .11

Chapter 1 • Arduino Uno hardware interface and
project development . .13

1.1 Overview . 13

1.2 Arduino Uno board. 13

1.3 Arduino Uno program development . 14

1.4 Project – Flashing two colour LEDs . 15

1.5 Summary . 19

Chapter 2 • Raspberry Pi hardware interface and
project development . .20

2.1 Overview . 20

2.2 The Raspberry Pi 3 board . 20

2.3 Raspberry Pi 3 GPIO pin definitions . 21

2.4 Setting up the Wi-Fi and remote access . 22

2.5 Shutting down or rebooting in GUI mod . 27

2.6 Remote access of the desktop. 27

2.7 Creating and running a Python program. 29

2.8 The GPIO library . 32

2.8.1 Pin numbering . 32

2.8.2 Channel (I/O port pin) configuration . 32

2.9 Raspberry Pi project development cycle . 35

2.10 Project – Flashing two colour LEDs. 36

2.11 Summary . 39

Chapter 3 • ESP32 hardware interface and project development 40

3.1 Overview . 40

3.2 ESP32 DevKitC hardware . 40

3.3 Arduino IDE for the ESP32 DevKitC . 42

3.3.1 Installing the Arduino IDE for the ESP32 DevKitC . 43

3.4 Project – Flashing two colour LEDs . 47

3.5 Summary . 50

Chapter 4 • Basic sensor projects: Arduino - Raspberry Pi - ESP32 51

4.1 Overview . 51

Contents

The Ultimate Compendium of Sensor Projects

● 6

4.2 Light Projects . 51

4.2.1 Project 1 – Changing the LED brightness . 51

4.2.2 Project 2 – Using an RGB LED – Rainbow colours . 62

4.2.3 Project 3 – Magic wand . 67

4.2.4 Project 4 – Silent door alarm . 75

4.2.5 Project 5 – Dark sensor with timed relay – Arduino Uno project 81

4.2.6 Project 6 – Dark sensor with timed relay – Raspberry Pi project 85

4.2.7 Project 7 – Dark sensor with timed relay – ESP32 DevKitC project 93

4.2.8 Project 8 – Turn ON lights when it is dark and the door is opened –
 Arduino Uno project . 96

4.2.9 Project 9 – Secret Key using the photo interrupter (light barrier) module 100

4.2.10 Project 10 – Using the magic light cup module . 108

4.3 Summary . 113

Chapter 5 • Infrared receiver-transmitter projects .114

5.1 Overview . 114

5.2 Project 1 – Receiving and decoding the codes of commercial IR handsets. 114

5.3 Project 2 – Controlling 2 - Colour LEDs with a commercial IR handset 131

5.4 Project 3 – Infrared transmitter - Scanning the TV channels using a
 commercial IR handset. 136

5.5 Project 4 – Two communicating Arduino Uno's using IR 141

5.6 Summary . 145

Chapter 6 • Vibration and shock projects .146

6.1 Overview . 146

6.2 Project 1 – Target shooting detector . 146

6.3 Project 2 – Vibration based toggle switch . 150

6.4 Project 3 – No shock time duration measurement . 153

6.5 Summary . 155

Chapter 7 • Ultrasonic sensor projects .156

7.1 Overview . 156

7.2 Project 1 – Ultrasonic reverse parking with buzzer. 156

7.3 Summary . 167

Chapter 8 • Sound sensor projects .168

● 7

8.1 Overview . 168

8.2 Project 1 – Toggle lights by clapping hands. 168

8.3 Summary . 171

Chapter 9 • Passive piezo buzzer sensor projects .172

9.1 Overview . 172

9.2 Project 1 – Playing melody . 172

9.3 Summary . 179

Chapter 10 • Magnetic sensor projects .180

10.1 Overview . 180

10.2 Project 1 – Measuring magnetic field strength . 180

10.3 Project 2 – Magnetic door alarm . 183

10.4 Project 3 – Magnetic musical instrument. 185

10.5 Summary . 187

Chapter 11 • Flame sensor projects . .188

11.1 Overview . 188

11.2 Project 1 – Flame sensor with buzzer output . 188

11.3 Summary . 191

Chapter 12 • Joystick module projects .192

12.1 Overview . 192

12.2 Project 1 – Using the joystick . 192

12.3 Project 2 – Joystick based musical instrument. 198

12.4 Summary . 200

Chapter 13 • Obstacle sensor projects .201

13.1 Overview . 201

13.2 Project 1 – Aid with car parking. 201

13.3 Project 2 – Metal touch sensor . 204

13.4 Summary . 206

Chapter 14 • Tracking sensor module projects . .207

14.1 Overview . 207

14.2 Project 1 – Line tracking. 207

14.3 Project 2 – Secret code lock . 211

14.4 Summary . 216

The Ultimate Compendium of Sensor Projects

● 8

Chapter 15 • Rotary encoder module projects . .217

15.1 Overview . 217

15.2 Project 1 – Rotary encoder evaluation . 217

15.3 Project 2 – Rotary encoder direction and position . 220

15.4 Summary . 224

Chapter 16 • Heartbeat sensor module projects .225

16.1 Overview . 225

16.2 Project 1 – Displaying heartbeat . 225

16.3 Summary . 227

Chapter 17 • Temperature, humidity, and pressure sensor projects228

17.1 Overview . 228

17.2 Project 1 – Displaying and plotting the ambient temperature on the monitor . . . 228

17.3 Project 2 – Temperature sensor with buzzer . 236

17.4 Project 3 – Displaying the temperature on LCD – Arduino Uno 239

17.5 Project 4 – Saving temperature as CSV file on PC with timestamp –
Arduino Uno . 246

17.6 Project 5 – Displaying the temperature on LCD – ESP32 DevKitC. 252

17.7 Project 6 – Displaying the temperature on LCD – Raspberry Pi 254

17.8 Project 7 – Saving temperature as CSV file on PC with timestamp –
Raspberry Pi . 258

17.9 Project 8 – ON/OFF temperature control – Arduino Uno 260

17.10 Project 9 – ON/OFF temperature control – ESP32 DevKitC 265

17.11 Project 10 – ON/OFF temperature control – Raspberry Pi 266

17.12 Summary . 269

Chapter 18 • Wi-Fi and Bluetooth based projects using sensors –
ESP32 DevKitC .270

18.1 Overview . 270

18.2 Project 1 – Displaying temperature and humidity on a mobile phone
using Wi-Fi . 270

18.3 Project 2 – Remote control from mobile phone using Wi-Fi 279

18.4 Project 3 – Sending temperature and humidity to mobile phone using Bluetooth
classic . 284

Chapter 19 • Wi-Fi and Bluetooth based projects using sensors – Raspberry Pi . .288

19.1 Overview . 288

● 9

19.2 Project 1 – Displaying temperature and humidity on a mobile phone using Wi-Fi. . 288

19.3 Project 2 – Sending the temperature and humidity data to the Cloud
using Wi-Fi . 291

19.4 Project 3 – Bluetooth based remote control from mobile phone 297

Chapter 20 • Wi-Fi and Bluetooth based projects using sensors – Arduino Uno . .307

20.1 Overview . 307

20.2 Project 1 – Controlling a relay from mobile phone using Wi-Fi 307

20.3 Project 2 – Displaying temperature and humidity on a mobile phone
using Wi-Fi . 313

Appendix A - Sensor kit contents (JOY-iT Sensor-Kit X40) 323

Appendix B – Projects and sensor modules used . .324

Appendix C – Sensor modules and projects using them .326

Index .328

Preface

Sensors are devices or components that detect events or changes in their environments
and send information to other electronics, frequently to microcontroller systems. Sensors
are used in everyday life, to measure such things as temperature, humidity, pressure, wind
and rain, touch, light levels, liquid levels, altitude, force, and many more.

Although some sensors have digital outputs, most sensors used in everyday life have analog
outputs, usually in the form of voltages that are proportional to a measured quantity. This
output voltage is normally fed to the input port of a microcontroller for processing. For ex-
ample, the output of an analog temperature sensor is connected to an analog input port (an
analog-to-digital converter) of a microcontroller. The microcontroller reads the temperature
as a digital value and converts it into real physical temperature, which is then displayed or
used to control the temperature of a machine or room.

This book is about using the sensors found in the sensor kit. Altogether, there are 40
sensors distributed with the kit. Some sensors provide analog outputs while others have
digital outputs, and some have both analog and digital outputs. The kit includes sensors to
measure temperature, humidity, atmospheric pressure, light intensity, and sound. There
are also 2 and 3 colour LEDs, tilt switches, magnetic switches, relay, reed switches, piezo
buzzer, button, joystick, obstacle detector, heartbeat sensor, analog-digital converter, volt-
age translator, vibrations switch, etc.

40 Sensors All-in-1 Kit

The book is intended to teach how to use sensors with the popular microcontroller develop-
ment systems: Arduino Uno, ESP32 DevKitC, and Raspberry Pi. Example projects are given
to show how to use the sensors with these microcontrollers. The programs can be modi-
fied for other microcontrollers, such as PIC, STM32, Banana Pi, CubieBoard, Beaglebone,

● 11

Preface

The Ultimate Compendium of Sensor Projects

● 12

etc. All the projects given in the book were built using a standard size breadboard, and
they were fully tested and were all working. The projects are described with the following
sub-headings:

• Project description
• Aim of the project
• Block diagram
• Circuit diagram
• Program listing

The operation of each sensor and each program listing are described in detail so that the
readers will have no difficulty in either constructing or expanding a given project. Some
projects make use of more than one sensor from the kit. It is recommended that readers
follow the projects in the given order since some of the software tools used in some projects
depend on the installation of these tools in an earlier project.

Full program listings of the projects with many comments are available at the Elektor web-
site of the book and readers should be able to copy and use these programs without having
to make modifications.

Arduino Uno and ESP32 DevKitC programs are based on using the Arduino IDE with the C
language. Raspberry Pi projects use the Python programming language. Although the Ar-
duino based projects specify Arduino Uno as the development board, these projects should
also work with other Arduino development boards, such as Arduino Mega, Arduino Nano,
etc.

I hope the readers find the book useful and enjoy experimenting with the various sensors.

Dogan Ibrahim
June 2019

● 13

Chapter 1 • Arduino Uno hardware interface and project development

Chapter 1 • Arduino Uno hardware interface and
project development

1 .1 Overview
In this book, we will use the Arduino Uno board in the Arduino based sensor projects. This
Chapter shows the location of the various components on the Arduino Uno board and also
describes the hardware interface to the external world. A simple project is given in this
Chapter to make the reader familiar with developing programs with the Arduino Uno. The
first program flashes a two colour LED alternately every second.

1 .2 Arduino Uno board
Figure 1.1 shows the Arduino Uno board in close-up with the major components marked.
The pin definitions are as follows (see Figure 1.2).

A0 – A5: Analog input ports

0 – 13: Digital input/output ports

~3,~5,~6,~9,~10,~11: PWM output ports

0,1: UART RX/TX pins. LEDs labelled TX, RX will flash when data
is transmitted or received respectively

GND: Power supply ground pin

5V: Regulated +5V output

3.3V: Regulated +3.3V output

Vin: Voltage input (instead of using Power In or USB). The
voltage must be in the range 7-12V. It is regulated to +5V
internally. This pin can also be used as a voltage output (if
power is supplied using Power In or USB port). The voltage
is a copy of the voltage supplied through Power In or the
USB port.

IORef: Used by external shield boards to know if they should
operate as +3.3V or as +5V devices

Power In: Power supply Barrel Jack pin (6V to 12V)

USB port: Power and data port (connect to computer)

User LED: Onboard LED connected to output port 13 (can be used for
testpurposes)

Notice that when the Arduino Uno is powered by the USB port (e.g. from a computer) the
maximum current capacity is around 400mA for the +5V pin and 150mA for the +3.3V
pin. When powered by an external source, the maximum current for the 5V pin is around
900mA and 150mA for the +3.3V pin. Any current drawn from the +3.3V goes through the
+5V pin. Therefore, you have to take this into account when powering external devices.

The absolute maximum current for any I/O pin is specified as 40mA (it is however recom-
mended not to exceed 20mA). The absolute total current from all the I/O pins is 200mA.

The Ultimate Compendium of Sensor Projects

● 14

Figure 1.1 Arduino Uno board

Figure 1.2 Arduino Uno pin layout

1 .3 Arduino Uno program development
A nice feature of all Arduino boards is that they can all be programmed using the Arduino
IDE. The latest version of Arduino IDE can be downloaded from the following web site. At
the time of writing this book the latest version was 1.8.8:

 https://www.arduino.cc/en/Main/Software

https://www.arduino.cc/en/Main/Software

● 15

Chapter 1 • Arduino Uno hardware interface and project development

The steps to writing and upload a program to your Arduino Uno are as follows:

• Connect your Arduino Uno to the USB port of your computer

• Start the Arduino IDE on your computer

• Click Tools -> Board and select board type as Arduino/Gerduino Uno

• Click Tools -> Port and select the serial port that your Arduino Uno is connected
to

• Write and then save your program

• Click Sketch -> Verify/Compile to compile your program. Make sure there are
no compilation errors

• Click Sketch->Upload to upload the executable code to the program memory
of your Arduino Uno

Two example projects are given in the following sections to make the reader familiar
with the project development cycle using the Arduino Uno. It is assumed that the reader
has some background in basic electronics and also some working knowledge of writing a
high-level language.

1 .4 Project – Flashing two colour LEDs
description: This is perhaps the easiest project you can design using your Arduino Uno. In
this project, a two colour LED with common cathode is connected to the Arduino Uno. The
LED colours are flashed alternately at a rate of one second.

Aim: The aim of this project is to show how to write, compile and upload a program to the
Arduino Uno. The project additionally shows how to use some of the I/O and timing func-
tions of the Arduino.

Sensor Used: Sensor KY-011 is used in this project. This sensor consists of a red and
green colour LED housed in a package with a common cathode terminal. The sensor and its
pins are shown in Figure 1.3. The sensor has 3 pins: red LED pin, green LED pin and GND
pin. The green LED pin is marked with letter S on the board for identification . An
LED is turned ON when logic 1 is applied to its pins. The basic specifications of this sensor
are as follows:

Operating voltage: 2.0V to 2.5V
Operating current: 10mA (depends on the required brightness)
Wavelength: green (571nm), red (644nm)
Luminous intensity (MCD): green (20-40), red (40-80)

The Ultimate Compendium of Sensor Projects

● 16

Figure 1.3 Sensor KY-011

Block diagram: The block diagram of the project is shown in Figure 1.4.

Figure 1.4 Block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 1.5. The green and
red LED pins are connected to port pins 2 and 3 of the Arduino Uno respectively through
current limiting resistors. The GND pin is connected to Arduino Uno GND pin. The value of
the current limiting resistor is calculated as follows:

The high voltage of an output pin is 5V. The forward voltage across an LED is approximately
2.0V (for the red LED this is 1.8V, and for the green LED this is 2.8V). Assuming that the
forward current to the LED will be set to 10mA (reasonable brightness), then, the value of
the current limiting resistor is:

 R = (5V – 2V) / 10mA = 300 ohm, use 330 ohm resistor (you can use smaller
value, e.g. 270 ohms for the green LED)

In Figure 1.5 the LED is operated in current sourcing mode where a high output from the
I/O pin drives the LED. The LED can also be operated in current sinking mode where the
other end of the LED is connected to +5V supply and not to the ground. In current sinking
mode, the LED is turned ON when the I/O pin is at logic low.

● 17

Chapter 1 • Arduino Uno hardware interface and project development

Figure 1.5 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 1.6. Jumper
wires are used to connect the KY-011 to digital port pins 2 and 3 and GND of the Arduino
Uno.

Figure 1.6 The project constructed on a breadboard

The Ultimate Compendium of Sensor Projects

● 18

Program listing: The program is called TWOCOLOUR and the listing is shown in Figure
1.7. At the beginning of the program, port pins 2 and 3 are assigned to the green LED and
red LED pins respectively. Inside the setup routine, port pins 2 and 3 where the LED pins
are connected to are configured as outputs. Inside the main program loop, the two colours
are turned ON and OFF alternately with a one-second delay between each output. Verify/
Compile to make sure that there are no errors and then Upload the program code to your
Arduino Uno. You should see the two colours flashing at a rate of one second.

It is highly recommended by the author to comment the lines in your program and describe
the operation being performed as shown in Figure 1.7. You should also include a heading
and describe what the program does briefly. This makes it easier to understand and main-
tain the program at a later date. It also makes it easier for anyone else to understand the
logic of the program when they read it.

/**
 * FLASHING GREEN AND RED LEDs
 * ===========================
 *
 * In this program the KY-011 sensor is used which has a green and
 * a red LED with a common cathode terminal. The green LED and the
 * red LED are connected to I/O pins 2 and 3 of the Arduino Uno
 * respectively. The program flashes the LEDs alternately at a rate
 * of one second.
 *
 * Author: Dogan Ibrahim
 * Date : April 2019
 * File : TWOCOLOUR
 **/
int GreenLED = 2; // Green LED pin
int RedLED = 3; // Red LED pin
#define ON HIGH
#define OFF LOW

void setup()
{
 pinMode(GreenLED, OUTPUT); // Set as output
 pinMode(RedLED, OUTPUT); // Set as output
}

void loop()
{
 digitalWrite(GreenLED, ON); // Turn ON green
 digitalWrite(RedLED, OFF); // Turn OFF red
 delay(1000); // Wait 1 sec
 digitalWrite(GreenLED, OFF); // Turn OFF green
 digitalWrite(RedLED, ON); // Turn ON red

● 19

Chapter 1 • Arduino Uno hardware interface and project development

 delay(1000); // Wait 1 sec
}

Figure 1.7 Program listing of the project

What we have learned: In this project, we have learned how to use the following Arduino
functions:

int: declares an integer variable
#define: assigns value or text to a string
pinMode (port pin, mode): used to configure an I/O port pin as input or

output
digitalWrite(port pin, value): used to output digital value (logic LOW or HIGH)

to a port pin
delay(n): creates a delay of n milliseconds

1 .5 Summary
In this Chapter, we have seen the various components and the pin definitions of the Arduino
Uno microcontroller. Additionally, a simple project is given to demonstrate how to design
simple projects and also how to compile upload the program code to the program memory
of the Arduino Uno microcontroller.

In the next Chapter, we will be looking at how to use the Raspberry Pi microcontroller in
projects.

The Ultimate Compendium of Sensor Projects

● 20

Chapter 2 • Raspberry Pi hardware interface and
project development

2 .1 Overview
In this book, we will be using a Raspberry Pi 3 Model B in our Raspberry Pi projects. This
Chapter shows the location of the various components on the Raspberry Pi board and also
describes the hardware interface to the external world. Setting up Wi-Fi and remote access
to your Raspberry Pi computer, and becoming familiar with the Python programming envi-
ronment are also described briefly. A simple project is given to familiarize the reader with
the steps of designing a project. In this book, when we write Raspberry Pi 3 we actually
mean Raspberry Pi 3 Model B.

2 .2 The Raspberry Pi 3 board
Figure 2.1 shows the Raspberry Pi 3 board with the major components marked. Some de-
tails on each component are given in this section.

Figure 2.1 Raspberry Pi 3 board

USB ports: Raspberry Pi 3 has 4 USB ports to connect a mouse, key-
board, webcam, etc.

Ethernet and Wi-Fi: Although the Raspberry Pi 3 has built-in Wi-Fi, it can also
directly be connected to a router through an Ethernet cable
connected to this socket.

Audio/Video Jack: A headphone or a speaker can be connected to this 3.5mm
socket. This socket also carries a composite video inter-
face.

CSI: This is the Camera Serial Interface where a compatible
Raspberry Pi camera can be attached here.

HDMI: A suitable monitor can be connected to this port. The port
carries both audio and video signals.

USB power: A +5V 2A power supply should be connected to this USB
socket to provide power to the Raspberry Pi 3.

● 21

Chapter 2 • Raspberry Pi hardware interface and project development

SD card slot: A micro SD card carrying the operating system must be
attached to this slot.

DSI: A suitable display can be connected to this Display Inter-
face connector.

SOC: This is the Broadcom BCM2837 System On Chip (SOC)
which contains the 1.2GHz 64-bit quad-core ARM Cor-
tex-A53 processor.

GPIO: The General Purpose Input-Output port is 40 pins wide.
BCM43438: This chip provides the Wi-Fi and Bluetooth to the Raspber-

ry Pi 3.

2 .3 Raspberry Pi 3 GPIO pin definitions
The Raspberry Pi 3 is connected to external digital electronic circuits and devices using its
GPIO (General Purpose Input Output) port connector. This is a 2.54mm, 40-pin expansion
header, arranged in a 2x20 strip as shown in Figure 2.2.

Figure 2.2 Raspberry Pi 3 GPIO pins

When the GPIO connector is at the far side of the board, the pins at the bottom, starting
from the left of the connector are numbered as 1, 3, 5, 7, and so on, while the ones at the
top are numbered as 2, 4, 6, 8 and so on.

The GPIO provides 26 general purpose bi-directional I/O pins. Some of the pins have mul-
tiple functions. For example, pins 3 and 5 are the GPIO2 and GPIO3 input-output pins
respectively. These pins can also be used as the I2C bus I2C SDA and I2C SCL pins respec-
tively. Similarly, pins 9,10,11,19 can either be used as general purpose input-output, or as
the SPI bus pins. Pins 8 and 10 are reserved for UART serial communication.

Two power outputs are provided: +3.3V and +5.0V. The GPIO pins operate at +3.3V logic
levels (not like many other computer circuits that operate with +5V). A pin can either be
an input or an output. When configured as an output, the pin voltage is either 0V (logic

The Ultimate Compendium of Sensor Projects

● 22

0) or +3.3V (logic 1). Raspberry Pi 3 is normally operated using an external power supply
(e.g. a mains adapter) with +5V output and minimum 2A current capacity. A 3.3V output
pin can supply up to 16mA of current. The total current drawn from all output pins should
not exceed the 51mA limit. Care should be taken when connecting external devices to the
GPIO pins as drawing excessive currents or short-circuiting a pin can easily damage your Pi.
The amount of current that can be supplied by the 5V pin depends on many factors such as
the current required by the Pi itself, current taken by the USB peripherals, camera current,
HDMI port current, and so on.

When configured as an input, a voltage above +1.7V will be taken as logic 1, and a voltage
below +1.7V will be taken as logic 0. Care should be taken not to supply voltages greater
than +3.3V to any I/O pin as large voltages can easily damage your Pi. The Raspberry Pi 3,
like others in the family, has no over-voltage protection circuitry.

2 .4 Setting up the Wi-Fi and remote access
It is very likely that you will want to access your Raspberry Pi 3 remotely from your desk-
top or laptop computer. The easiest option here is to enable Wi-Fi on your Pi computer and
then access it from your computer using the SSH client protocol. This protocol requires a
server and a client. The server is your Pi computer and the client is your desktop or laptop
computer. In this section, we will see how to enable the Wi-Fi on your Pi computer and how
to access it remotely.

Setting up Wi-Fi
To enable the Wi-Fi on your Pi, the steps are as follows:

• Click on the Wi-Fi icon which is a pair of red crosses at the top right-hand side
of the screen

• Select your Wi-Fi router from the displayed list (see Figure 2.3)

Figure 2.3 Select your Wi-Fi from the list

• Enter the password for your Wi-Fi router

● 23

• The WiFi icon should become a typical Wi-Fi image. If you click on the icon now
you should see a green tick next to the selected router as shown in Figure 2.4.

Figure 2.4 Connected to the Wi-Fi successfully

• To see the IP address of your Wi-Fi connection, place the mouse over the Wi-Fi
icon as shown in Figure 2.5. In this example, the IP address was 192.168.1.84

Figure 2.5 IP address of our connection

Remote Access
The program we will be using to access our Raspberry Pi 3 is called Putty with the SSH
protocol. The steps to download and use Putty are as follows:

• Download Putty from the following link (or search Google for "Download Putty")

 http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

• For security reasons, the SSH protocol is disabled by default on a new operat-
ing system. To enable it, click on the Applications menu at the top left of the
screen, click Accessories, and then click Terminal (see Figure 2.6)

Chapter 2 • Raspberry Pi hardware interface and project development

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

The Ultimate Compendium of Sensor Projects

● 24

Figure 2.6 Access the Terminal menu

• You should now be in the Raspberry Pi 3 command prompt. Type:

sudo raspi-config

• to go into the configuration menu and select Interface Options. Go down to P2
SSH and enable SSH as shown in Figure 2.7

Figure 2.7 Enable the SSH server

• Click <Finish> to exit the configuration menu. You should now be back in the
command mode, identified by the prompt:

pi@raspberrypi:~ $

● 25

• Putty is a standalone program and there is no need to install it. Simply double
click to run it. You should see the Putty startup screen as in Figure 2.8.

Figure 2.8 Putty startup screen

• Make sure that the Connection type is SSH and enter the IP address of your
Raspberry Pi 3. Click Open as shown in Figure 2.9.

Figure 2.9 Enter the IP address

• The message shown in Figure 2.10 will be displayed on the PC screen the first
time you access the Raspberry Pi 3. Click Yes to accept this security alert.

Chapter 2 • Raspberry Pi hardware interface and project development

The Ultimate Compendium of Sensor Projects

● 26

Figure 2.10 Click Yes to accept

• You will then be prompted for the username and password. The default values
are:

Username: pi
Password: raspberry

• After a successful login, you should see the Raspberry Pi command prompt as in
Figure 2.11.

Figure 2.11 Successful login

• To change your password, enter the following command:

passwd

• To restart the Raspberry Pi ZW enter the following command:

sudo reboot

• To shut down the Raspberry Pi ZW enter the following command. Never shut down
by pulling the power cable as this may result in the corruption or loss of files:

● 27

sudo shutdown –h now

2 .5 Shutting down or rebooting in GUI mod
You must always shut down your Pi computer properly. To shut down while in the GUI
mode, follow the steps given below:

• Click Applications menu (top left corner)
• Click Shutdown (see Figure 2.12)
• Click Shutdown (or Reboot as required)

Figure 2.12 Shutdown or reboot in GUI mode

2 .6 Remote access of the desktop
If you will be using your Raspberry Pi 3 with local keyboard, mouse, and monitor you can
skip this section. If on the other hand, you want to access your Desktop remotely over the
network, you will find that SSH services cannot be used. The easiest and simplest way to
access your Desktop remotely from a computer is by installing the VNC (Virtual Network
Connection) client and server. The VNC server runs on your Pi and the VNC client runs on
your computer. The steps to install and use the VNC are given below:

• Connect to your Pi computer using SSH as explained earlier. Then enter the fol-
lowing command to install a program called TightVNC server on your Pi comput-
er. You will see many lines of messages. Make sure there are no error messages:

sudo apt-get update
sudo apt-get install tightvncserver

Chapter 2 • Raspberry Pi hardware interface and project development

The Ultimate Compendium of Sensor Projects

● 28

• Run the VNC server on your Pi computer by entering the following command:

vncserver :1

• You will be prompted to enter and verify a password. This will be the password
you will be using to access the Desktop remotely (see Figure 2.13).

Figure 2.13 Enter a password for the VNC server

• The VNC server is now running on your Pi computer. The only command you need
to enter on your Pi computer to start the VNC server is:

vncserver :1

• We must now set up a VNC client on our laptop (or desktop). There are many
VNC clients available, but the recommended one which is compatible with Tight-
VNC is the VNC Viewer, which can be downloaded from the following link. Notice
that this program is not free of charge, but a 30-day free trial version is available.
You should register to get a trial license and then apply this license to the soft-
ware to use free of charge for 30 days:

http://www.realvnc.com

Download the VNC Viewer program into a suitable directory on your computer.

Double click to install it and enter the required license. Start the VNC Viewer
program by double-clicking its icon in your desktop. Enter the IP address of your
Raspberry Pi 3 followed by 1 as shown in Figure 2.14 and click Connect.

http://www.realvnc.com

Chapter 2 • Raspberry Pi hardware interface and project development

● 29

Figure 2.14 Enter the IP address

Enter the password selected previously. You should now see the Raspberry Pi 3 Desktop
displayed on your laptop (or desktop) computer as in Figure 2.15 and you can access all of
the Desktop applications remotely.

Figure 2.15 Raspberry Pi 3 Desktop displayed on the laptop

2 .7 Creating and running a Python program
We will be programming our Raspberry Pi 3 using the Python programming language. It is
worthwhile to look at the creation and running of a simple Python program on our Pi com-
puter. In this section, we will display the message Hello From Raspberry Pi 3 on our PC
screen.

As described below, there are 3 methods that we can create and run Python programs on
our Raspberry Pi 3:

Method 1 – Interactively from Command Prompt
In this method, we will log in to our Raspberry Pi 3 using the SSH and then create and run
our program interactively. This method is excellent for small programs. The steps are as
follows:

The Ultimate Compendium of Sensor Projects

● 30

• Login to the Raspberry Pi 3 using SSH

• At the command prompt enter python. You should see the Python command
mode which is identified by three characters >>>

• Type the program:

print ("Hello From Raspberry Pi 3")

• The required text will be displayed interactively on the screen as shown in Figure
2.16

Figure 2.16 Running a program interactively

Method 2 – Create a Python File in Command Mode
In this method, we will log in to our Raspberry Pi 3 using the SSH as before and then cre-
ate a Python file. A Python file is simply a text file with the extension .py. We can use a
text editor, e.g. the nano text editor to create our file. In this example, a file called hello .
py is created using the nano text editor. Figure 2.17 shows the contents of file hello.py.
This figure also shows how to run the file under Python. Notice that the program is run by
entering the command:

>>> python hello.py

Figure 2.17 Creating and running a Python file

Method 3 – Create a Python File in GUI mode
In this method, we will log in to our Raspberry Pi 3 using the VNC and create and run our
program in GUI mode. The steps are given below:

• Click Applications menu

• Click Programming and select Python 2 or Python 3 (see Figure 2.18)

Chapter 2 • Raspberry Pi hardware interface and project development

● 31

Figure 2.18 Select Python 2 programming

• You should see the Python command mode, identified by characters >>>

• Click File and then click New File and write your program

• Save the file by giving it a name (e.g. hello2)

• Run the program by clicking Run and then Run Module as shown in Figure 2.19

Figure 2.19 Run the program

• A new screen will be shown with the output of the program displayed as in Figure
2.20

Figure 2.20 Output of the program

The Ultimate Compendium of Sensor Projects

● 32

Which Method?
The choice of a method depends upon the size and complexity of a program. Small pro-
grams can be run interactively without creating a program file. Larger programs can be
created as Python files and then they can run either in the command mode or in the GUI
mode. In this book, program files are created for all the Python programs.

2 .8 The GPIO library
The GPIO library is called RPi.GPIO and it should already be installed on your Raspberry
Pi 3. This library must be included at the beginning of your Python programs if you will be
using the GPIO functions. The statement to include this library is:

 import RPi .GPIO as GPIO

If you get an error while trying to import the GPIO library then it is possible that the library
is not installed. Enter the following commands while in the command mode (identified by
the prompt pi@raspberrypi:~ $) to install the GPIO library (characters that should be
entered by you are in bold):

 pi@raspberrypi: ~ $ sudo apt-get update
 pi@raspberrypi: ~ $ sudo apt-get install python-dev
 pi@raspberrypi: ~ $ sudo apt-get install python-rpi .gpio

The GPIO provides a number of useful functions. The available functions are given in the
next sections

2 .8 .1 Pin numbering
There are two ways that we can refer to the GPIO pins. The first is using the BOARD num-
bering, where the pin numbers on the GPIO connector of the Raspberry Pi 3 are used. Enter
the following statement to use the BOARD method:

 GPIO .setmode(GPIO .BOARD)

The second numbering system, also known as the BCM method is the preferred method
and it uses the channel numbers allocated to the pins. This method requires that you know
which channel number refers to which pin on the board. In this book, we will be using this
second method. Enter the following statement to use the BCM method:

 GPIO .setmode(GPIO .BCM)

The GPIO is a 40 pin header, mounted at one side of the board. Appendix A shows the
Raspberry Pi 3 GPIO pin configuration.

2 .8 .2 Channel (I/O port pin) configuration
Input Configuration
You need to configure the channels (or port pins) you are using whether they are input or
output channels. The following statement is used to configure a channel as an input. Here,

Chapter 2 • Raspberry Pi hardware interface and project development

● 33

channel refers to the channel number based on the setmode statement above:

 GPIO .setup(channel, GPIO .IN)

When there is nothing connected to an input pin, the data at this input is not defined. We
can specify additional parameters with the input configuration statement to connect pull-up
or pull-down resistors by software to an input pin. The required statements are:

For pull-down:

 GPIO .setup(channel, GPIO .IN, pull_up_down=GPIO .PUD_DOWN)

For pull-up:

 GPIO .setup(channel, GPIO .IN, pull_up_down=GPIO .PUD_UP)

We can detect an edge change of an input signal at an input pin. Edge change is when
the signal changes from LOW to HIGH (rising edge), or from HIGH to LOW (falling edge).
For example, pressing a push-button switch can cause an edge change at the input of a
pin. The following statements can be used to wait for an edge of the input signal. These
are blocking functions. i.e. the program will wait until the specified edge is detected at the
input signal. For example, if this is a push-button, the program will wait until the button is
pressed:

To wait for a rising edge:

 GPIO .wait_for_edge(channel, GPIO .RISING)

To wait for a falling edge:

 GPIO .wait_for_edge(channel, GPIO .FALLING)

We can also wait until either a rising or a falling edge is detected by using the following
statement:

 GPIO .wait_for_edge(channel, GPIO .BOTH)

We can use event detection function with an input pin. This way, we can execute the event
detection code whenever an event is detected. Events can be rising edge, falling edge, or
change in either edge of the signal. Event detection is usually used in loops where we can
check for the event while executing other code.

For example, to add rising event detection to an input pin:

 GPIO .add_event_detect(channel, GPIO .RISING)

The Ultimate Compendium of Sensor Projects

● 34

We can check whether or not the event occurred by the following statement:

 If GPIO .event_detected(channel):
 ……………………………
 ……………………………

Event detection can be removed by the following statement:

 GPIO .remove_event_detect(channel)

We can also use interrupt facilities (or callbacks) to detect events. Here, the event is han-
dled inside a user function. The main program carries on its usual duties and as soon as
the event occurs the program stops whatever it is doing and jumps to the event handling
function. For example, the following statement can be used to add interrupt based event
handling to our programs on rising edge of an input signal. In this example, the event han-
dling code is the function named MyHandler:

 GPIO .add_event_detect(channel, GPIO .RISING, callback=MyHandler)
 ……………………………………………………………………………
 ……………………………………………………………………………

def MyHandler(channel):
 ………………….
 ………………….

We can add more than one interrupt by using the add_event_callback function. Here the
callback functions are executed sequentially:

 GPIO .add_event_detect(channel, GPIO .RISING)
 GPIO .add_event_callback(channel, MyHandler1)
 GPIO .add_event_callback(channel, MyHandler2)
 ……………………………………………………….
 ……………………………………………………….

def MyHandler1(channel):
 ……………………
 ……………………

def MyHandler2(channel):
 ……………………
 ……………………

When we use mechanical switches in our projects we get what is known as the switch
bouncing problem. This occurs as the contacts of the switch bounce many times until they
settle to their final state. Switch bouncing could generate several pulses before it settles
down. We can avoid switch bouncing problems in hardware or software. GPIO library pro-

Chapter 2 • Raspberry Pi hardware interface and project development

● 35

vides a parameter called bouncetime that can be used to eliminate the switch bouncing
problem. An example use of this parameter is shown below where the switch bounce time
is assumed to be 10ms:

 GPIO .add_event_detect(channel,GPIO=RISING,callback=MyHandler,
bouncetime=10)

We can also use the callback statement to specify the switch bouncing time as@

 GPIO .add_event_callback(channel, MyHandler, bouncetime=10)

To read the state of an input pin we can use the following statement:

 GPIO .input(channel)

Output Configuration
The following statement is used to configure a channel as an output. Here, channel refers
to the port number based on the setmode statement described earlier:

 GPIO .setup(channel, GPIO .OUT)

We can specify a value for an output pin during its setup. For example, we can configure a
channel as output and at the same time set its value to logic HIGH (+3.3V):

 GPIO .setup(channel, GPIO .OUT, initial=GPIO .HIGH)

To send data to an output port pin we can use the following statement:

 GPIO .output(channel, value)

Where value can be 0 (or GPIO.LOW, or False), or 1 (or GPIO.HIGH, or True)

At the end of the program, we should return all the used resources to the operating system.
This is done by including the following statement at the end of our program:

 GPIO .cleanup()

2 .9 Raspberry Pi project development cycle
The project development cycle, in general, includes both hardware and software develop-
ment. In simple projects where there is no external hardware used, we can simply use the
Raspberry Pi board as it is and only software development is then required. Most projects,
however, are more complex and require additional external components, such as LEDs,
motors, displays, keypads, etc. The developer then has the tasks of making sure that the
hardware is set up correctly and is in full working order before any software development
is started. If the hardware is not set up correctly then time will be wasted trying to develop
the software. Hardware development may require additional skills such as the familiarity

The Ultimate Compendium of Sensor Projects

● 36

with interfacing and correctly using various electronic components in microcontroller based
systems.

The project development cycle, especially the software development cycle is an iterative
process where the programmer may have to go back and keep making changes to the code
until the required response is obtained from the system under development. There are
various tools that can be helpful during the development of a project. For example, Flow
Charts, Program Description Language (PDL), UML, State Machines, and many other tools
can be used during the development cycle.

In Raspberry Pi projects in this book, we will be using the Python programming language.
Python is a very powerful interactive programming language that is taught as the first pro-
gramming language in many universities and colleges around the world. Python is available
on the Raspberry Pi computers and it supports a large number of libraries that simplify the
programming task considerably.

In the remainder of this Chapter, we will design a simple project using the KY-011 two col-
our LED board as in the previous Chapter.

2 .10 Project – Flashing two colour LEDs
Description: This is perhaps the easiest project you can design using your Raspberry Pi.
In this project, a two colour LED with common cathode is connected to the Raspberry Pi.
The LED colours are flashed alternately at a rate of one second.

Aim: The aim of this project is to show how to write and run a program on the Raspberry
Pi. The project additionally shows how to use some of the I/O and timing functions of the
Raspberry Pi.

Sensor Used: Sensor KY-011 is used in this project as in the previous Chapter. The sensor
and its pins are shown in Figure 1.3. The sensor has 3 pins: red LED pin, green LED pin, and
GND pin, where the green LED pin is marked with letter S on the board for identifi-
cation . An LED is turned ON when logic 1 is applied to its pins.

Block diagram: The block diagram of the project is shown in Figure 2.21.

Figure 2.21 Block diagram of the project

Chapter 2 • Raspberry Pi hardware interface and project development

● 37

Circuit diagram: The circuit diagram of the project is shown in Figure 2.22. The green and
red LED pins are connected to port pin GPIO 2 (pin 3) and GPIO 3 (pin 5) of the Raspberry
Pi respectively through current limiting resistors. The GND pin is connected to Raspberry Pi
GND pin. The value of the current limiting resistor is calculated as follows:

The output high voltage of a GPIO pin is 3.3V. The voltage across an LED is approximately
2.0V (for red LED this is 1.8V, and for green LED 2.8V). The forward current through the
LED depends upon the type of LED used and the amount of required brightness. Assuming
that we choose 5mA of forward current, the value of the current limiting resistor is (the LED
brightness can be increased by increasing the forward current):

 R = (3.3V – 2V) / 5mA = 260 ohm. We can choose 220-ohm resistors to give
around 6mA forward currents for each LED (for green LED you can use smaller
value, e.g. 150 ohms)

Figure 2.22 Circuit diagram of the project

Construction: The project is constructed on a breadboard as shown in Figure 2.23. Jumper
wires are used to connect the KY-011 to digital port pins 2 and 3 and GND of Raspberry Pi.

Figure 2.23 Project constructed on a breadboard

The Ultimate Compendium of Sensor Projects

● 38

Program listing: The program is called rpitwoled .py and the listing is shown in Figure
2.24. At the beginning of the program, libraries RPi .GPIO and time are imported into the
program. Green and red LED pins are assigned to port GPIO port numbers 2 and 3 respec-
tively. The LEDs are then configured as outputs. The remainder of the program runs in an
endless loop. Inside this loop, the green and the red LEDs are flashed alternately with a
one-second delay between each output.

You can run the program from the command line by entering the following command (char-
acters entered by the user are in bold for clarity):

 pi@raspberrypi:~ $ python rpitwoled .py

#---
TWO COLOUR LED FLASHING
=======================
#
In thiS project the two colour LED KY-011 is used. The
green and red LED pins are conncted to Raspberry Pi port
pins GPIO2 and GPIO3. The LEDs flash alternately with a
rate of one second
#
Author: Dogan Ibrahim
Date : April 2019
File : rpitwoled.py
#--
import RPi.GPIO as GPIO # import Rpi library
import time # import time library
GPIO.setwarnings(False) # disable warnings
GPIO.setmode(GPIO.BCM) # set BCM mode

GreenLED = 2 # green LED
RedLED = 3 # red LED
ON = 1
OFF = 0

GPIO.setup(GreenLED, GPIO.OUT) # Configure as output
GPIO.setup(RedLED, GPIO.OUT) # configure as output

while True: # do forever
 GPIO.output(GreenLED, ON) # green LED ON
 GPIO.output(RedLED, OFF) # red LED OFF
 time.sleep(1) # wait 1 second
 GPIO.output(GreenLED, OFF) # green LED ON
 GPIO.output(RedLED, ON) # red LED ON
 time.sleep(1) # wait 1 secons

Figure 2.24 Program listing of the project

Chapter 2 • Raspberry Pi hardware interface and project development

● 39

Note: You may find it easier to create and run your Python programs from the GUI
desktop interface (IDLE 2) since the correct indentation is automatically placed in your
code as you type the code.

What we have learned: In this project, we have learned how to use the following Rasp-
berry Pi functions:

import: import a library module to the program
GPIO .setmode(mode): set the GPIO pin usage mode in the program
GPIO .setwarnings(mode): disable (False) or enable (True) warning mes-

sages
GPIO .setup(port pin, mode): set the pin mode as either input or output
GPIO .output(port pin, value): send value (0 or 1) to specified port pin
time .sleep(n): create a delay of n seconds

2 .11 Summary
In this chapter we have looked at the pin configuration of the GPIO connector and how to
enable the Wi-Fi module and access the Raspberry Pi remotely from a desktop computer
or a laptop. Additionally, we have looked at the design of a simple KY-011 two colour LED-
based project using the Python programming language.

In the next Chapter, we will be looking at how to install the firmware on the ESP32 micro-
controller and how to use it in projects.

The Ultimate Compendium of Sensor Projects

● 328

Index

A
ADC 85
ADS1115, 86
API key, 294
Arduino Uno pin layout 14

B
BC108, 137
BCM43438 21
BiColor library 55
Bi-phase coding 115
Bluetooth 284, 297, 307, 317
Bluetooth controller 320
Bluetooth MAC address 300
Board manager 43
Boot 41,46

C
Cadmium selenide 82
Cloud 291
Commercial IR handset 116
Config.txt 232
CSV file 246, 258

D
Dallas temperature library 230
Dark sensor 85
Data export 296
Decoding IR 114
DHT-11 271
DHT-22 271
DS18B20 229
Duty Cycle 52

E
Echo 156
ESP-01 308
ESP32 analog channels 93
ESP32 DevKitC 40
ESP32 DevKitC pin layout 42
Excel form 250

F
Flame sensor 188

H
Hall effect 97
Hall sensor 181
HC-06 317
Hciconfig 299
HC-SR04 156
HD44780 241
HDMI 20
Heartbeat sensor 225
Humidity sensor 228

I
I2C 89
IoRef 13
IR filter 201
IR handset 114
IR projects 114
Irsend 139

J
Joystick 192
Joystick coordinates 194

K
Key code 102
KY-001 228
KY-002 146, 150
KY-003 96, 180
KY-004 141
KY-005 136, 141
KY-006 172, 186
KY-009 62
KY-010 100
KY-011 16
KY-012 100, 141, 158, 204
KY-013 239, 255
KY-015 270, 288, 291
KY-016 73
KY-017 73
KY-018 81, 94
KY-019 82, 94, 146, 150, 168
KY-021 75, 96, 180
KY-022 114, 131, 141
KY-017 108
KY-023 192
KY-024 180

● 329

KY-025 184
KY-026 188
KY-028 236
KY-029 131, 297
KY-031 147, 153
KY-032 201
KY-033 207, 211
KY-034 76
KY-035 185
KY-036 204
KY-037 168
KY-039 225
KY-040 217
KY-050 156, 158
KY-051 85, 94
KY-052 260
KY-053 85, 255

L
LCD 239
LDR 82
Light projects 51
Line tracking 207
LM393 236

M
Magic light cup 108
Magic wand 67
Magnetic sensor 180
Matplotlib 234
Metal touch sensor 204
Millis 154
MISO 261
MOSI 261
Musical instrument 185

N
NEC code 116

O
Obstacle sensor 201
One-wire 230
On-off control 260

P
Parallel LCD 240
Parking 156
Photo interrupter 101
Piezzo buzzer 172
Playing melody 172
PowerIn 13
Pressure sensor 228
Pulse distance code 115
Pulse length code 115
Putty 23
PWM 51
Pylirc 126

R
Random 71
Raspberry Pi pin layout 21
Raspi-config 89
RC5 116
RealTerm 249
Reed switch 76
Remote access 23
Remote control 279
RGB LED 62, 69
Rotary encoder 217
Rotary encoder direction 220
Rotary encoder position 220
ROYGBIV 63

S
Scanning TV channels 136
SCLK 261
Secret code 211
Secret key 100
Serial Bluetooth 286
Serial LCD 240
Serial monitor 231
Serial plotter 226, 232
Shaft encoder 218
Sketch 15
Sound projects 168
Speed of sound 157
SPI bus 261
SS 261
SSH 24
Steinhart-Hart coefficients 239

The Ultimate Compendium of Sensor Projects

● 330

T
Target shooting 146
Temperature sensor 228
Thermistor 237
Thingspeak 291
TightVNC 27
Tilt switch 68
Timestamp 258
Tone 174
Tracking sensor 207

U
UDP 271, 290
UDP server 312
Ultransonic projects 156

V
Vibration and shock projects 146
Vncserver 28

W
Wi-Fi 270, 288, 307
Wi-Fi watch 313

LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●
LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●

LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●
LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●

LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ● LEARN ● DESIGN ● SHARE ●

40+ Projects using Arduino, Raspberry Pi and ESP32

The Ultimate Compendium
of Sensor Projects

This book is about developing projects using the sensors kit
with Arduino Uno, ESP32, and Raspberry Pi microcontroller
development systems. All sensors in the sensor kit are used in
various projects in the book. The book explains in simple terms
and with tested and fully working example projects, how to use
the sensors provided in the sensor kit. The projects provided in
the book include the following:

• Changing LED brightness
• RGB LEDs
• Creating rainbow colours
• Magic wand
• Silent door alarm
• Dark sensor with relay
• Secret key
• Magic light cup
• Decoding commercial IR handsets
• Controlling TV channels with IT sensors
• Target shooting detector
• Shock time duration measurement
• Ultrasonic reverse parking
• Toggle lights by clapping hands
• Playing melody
• Measuring magnetic field strength
• Joystick musical instrument
• Line tracking
• Displaying temperature
• Temperature ON/OFF control
• Mobile phone-based Wi-Fi projects
• Mobile phone-based Bluetooth projects
• Sending data to the Cloud

The projects have been organized with increasing levels of
difficulty. Readers are encouraged to tackle the projects in the
order given. A specially prepared sensor kit is available from
Elektor. With the help of this hardware, it should be easy and
fun to build the projects in this book.

Prof. Dr. Dogan
Ibrahim has a BSc. in
Electronic Engineering,
an MSc. in Automatic
Control Engineering,
and a Ph.D. in Digital
Signal Processing.
He worked in many
industrial organisations
before returning to
academia. Prof. Ibrahim
is the author of over 60
technical books and over
200 technical articles
on microcontrollers,
microprocessors, and
related fields. He is a
Chartered Electrical
Engineer and a Fellow
of the Institution of
Engineering Technology.

ISBN 978-1-907920-78-3

SHAREDESIGNLEARN

Elektor International Media BV

www.elektor.com

http://www.elektor.com

