
books

Python 3 for Science and Engineering A
pplications • Felix

Bittm
ann

Felix Bittmann

Learn to use Python productively in real-life
scenarios at work and in everyday life

Python 3 for Science and
Engineering Applications

Python 3 for Science and
Engineering Applications

●

an Elektor Publication

Felix Bittmann

SHAREDESIGNLEARN

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

78 York Street

London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

© Elektor International Media BV 2020

First published in the United Kingdom 2020

● All rights reserved. No part of this book may be reproduced in any material form, including

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally

to some other use of this publication, without the written permission of the copyright holder except in

accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE.

Applications for the copyright holder’s written permission to reproduce any part of this publication should be

addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the

information contained in this book. They do not assume, and hereby disclaim, any liability to any party for

any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from

negligence, accident or any other cause.

● British Library Cataloguing in Publication Data

Catalogue record for this book is available from the British Library

● ISBN 978-3-89576-399-1

● EBOOK 978-3-89576-400-4

● EPUB 978-3-89576-401-1

Prepress production: DMC ¦ daverid.com

Printed in the Netherlands by Wilco

Elektor is part of EIM, the world’s leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media)
in several languages - relating to electronics design and DIY electronics. www.elektor.com

SHAREDESIGNLEARN

Table of Contents

● 5

Table of Contents

• Introduction . 6

Chapter 1 • Basics . 8

1.1 • Installation and Programming Environment . 8
1.2 • Basic Python . 8
1.3 • Principles of Good Programming . . 18
1.4 • Problem-Solving Skills . 20

Chapter 2 • Working with Numbers . 22

2.1 • Fibonacci . 22
2.2 • Prime Numbers . 26
2.3 • Collatz . 29
2.4 • Pi . 30
2.5 • Countdown . 35
2.6 • Ulam Spiral . 42
2.7 • Total Chaos . 46
2.8 • Three Points . 55
2.9 • Close Together . 64
2.10 • Backtracking . 70
2.11 • Numerical Integration . 74

Chapter 3 • Statistics and Simulations . 79

3.1 • Speedtest . . 79
3.2 • Pi (again) . 80
3.3 • Parallelisation . 84
3.4 • Random Walk . 88
3.5 • Game of Life . 92
3.6 • Modelling Populations . 96
3.7 • Quick Money . 102
3.8 • Many Circles . 106
3.9 • Pig . 114
3.10 • Bootstrapping . 124

Chapter 4 • Text Data and Strings . 132

4.1 • Dictionary . 132
4.2 • LPS . 135
4.3 • LCS . 137
4.4 • Encryption . 141
4.5 • Roman Numerals . 147
4.6 • Match Arithmetic . 149
4.7 • Superpalindromes . 154
4.8 • 2048 . 158
4.9 • The Next Steps . 164

Python 3 for Science and Engineering Applications

● 6

• Introduction

Why Python?

Not without reason Python has become one of the most popular programming languages
in the world. A user-friendly and intuitive syntax, a large and motivated community,
paired with a multitude of modules and program libraries, which allow quick and efficient
implementation of any project ideas inspire beginners and experts alike. Therefore Python
is an ideal first step into programming but also recommended for veterans who would like
to get a foothold in the realm of data sciences.

This book is written for readers who already have basic experience with Python, say after
completing a first tutorial, and now want to learn how to apply Python productively and
with a focus on applications in real-world settings. Therefore, this is not a classical textbook
that processes all aspects of the language linearly but rather starts with very concrete tasks
and puzzles that want to be solved. These are taken from a large number of different fields
to emphasize that Python can be applied in many contexts. In each example, we will first
look at the general ideas or tactics of how to solve the problem and when how these can be
implemented with special Python tricks and tweaks.

Requirements

You should know about the basic usage and commands before starting with the present
book. As long as you are informed about the most common data types (integers, floats,
strings, lists, dictionaries), know how to write a simple function, and can deal with lists,
you will be able to solve all problems posed in this book. If you want to have a quick
refreshment of the most basic aspects of the language, I recommend the course offered by
the University of Waterloo.1

Philosophy

The puzzles presented in this book are aimed at beginners with only a little experience
with general topics of programming. If any mathematical techniques are necessary to
solve a problem they will be introduced with the puzzle itself. The code shown in this
book does not aspire to be the most elegant, shortest, or most performant solution but
rather illustrates basic concepts of programming and how to think like a programmer.
For most puzzles presented there exist highly specialized algorithms that can improve
speed manifold but are often not obvious to beginners and require in many cases a lot
of background information. To solve the problems you will not require any other tools,
software, or packages than the native Python environment (pure Python). This being said,
there exists a multitude of excellent Python packages that drastically increase the number
of functions of Python (for example, NumPy, SciPi or Pygame, just to name few). However,
these often come with extensive documentation and need tutorials to be comprehensible
to the beginner. In general, the easier puzzles are placed at the beginning of a chapter to
introduce new concepts and methods that are then assumed to be known in the following
1	 https://cscircles.cemc.uwaterloo.ca/

https://cscircles.cemc.uwaterloo.ca/

Chapter 1 ● Basics

● 7

puzzles. Therefore it might be a good idea to work on the problems following the order of
the book. However, if you feel confident feel free to skip and play around. If there are any
unknown commands or concepts, it is often the quickest way to hit up a search engine and
look things up online since it only takes seconds and is the easiest way.

Acknowledgments

I am very thankful to all people who helped me with this book, especially Florian Scholze,
Jannik Köster, and Kurt Bittmann. Simon Wolf checked the entire code meticulously and
improved it beyond imagination. Without Tam Hanna, there would be no english version of
this book: I am deeply grateful for this enthusiasm and mentorship. Furthermore, I want
to thank the Python Software Foundation in general for donating this wonderful gift to the
world. Finally, many thanks to all men and women who contribute to free open-source
projects like Wikipedia and Wikimedia Commons, which allow me to include a large number
of high-quality figures in this book.

All code available on: https://github.com/fbittmann/Pythonbook

https://github.com/fbittmann/Pythonbook

Python 3 for Science and Engineering Applications

● 8

Chapter 1 • Basics

1.1 • Installation and Programming Environment

Make sure you have installed the most up to date version of Python from python.org. To run
the code presented in this book you need at least version 3.6. If you run Linux or Mac, the
chances are Python is already pre-installed on your system. To test which version you are
running, open a terminal (Linux or Mac) or the power shell (Windows). Then type python3
to start an interactive session. Then the current version will be displayed.

I recommend using Geany1 as an IDE or editor. This smallish (16 MB) open-source application
is perfect for beginners and advanced users and comes with many functions without being
bulky or too complicated. Furthermore, a large number of themes, schemes, and plugins
allow extending the basic functions easily. Geany is available for Linux, Windows, and Mac.

1.2 • Basic Python

The next few pages serve as a crash course and are recommended for all users who want
to refresh their skills, so feel free to skip ahead if you want to. In contrast to most code
shown in this book we will here refer to an interactive Python session, which is denoted by
>>> to visualise the interactive character of the code. This means, type a line, hit enter
and you will instantly see the result, which is different from writing a large script and then
have it run as a whole. Output, if there is one, is then displayed in the following line without
the >>>.

>>> a = 12
>>> b = 3.141
>>> c = "Tomato"
>>> d = [a, b, c]
>>> e = (1.734, 3.822)
>>> f = {3, 8, 99, -4}
>>> g = {"Hello": 5, "Nope": 4, "Ego": 3, "Rocket": 6}

Here, a is an integer, b a float, c a string, d a list, e a tuple, f a set and g a dictionary. As you
see, declaring a variable only requires the equality sign. When working with mathematical
expressions, make sure to remember BEDMAS (brackets, exponents, division, multiplication,
addition, subtraction) since this helps you memorise the order in which operators are
addressed. Note that longer blocks of code are split over multiple lines if necessary using
"\" as an indicator for a line break. If you enter the code in your editor, do not type this sign
as it is just a visual aid for the printed version.

Indices and Slices

For Python, lists are an all-purpose tool that can be utilised in most situations. Sets, tuples
1	 Geany.org

http://Geany.org

Chapter 1 ● Basics

● 9

and dicts add many more features and are often faster or more convenient, but Python
loves lists. You can store any elements or data types in a list and of course also more and
nested lists. You retrieve items from a list via their index. Remember, in Python (as in most
other programming languages), the first item of a list always receives the index 0.

>>> a = [1, 2, 3]
>>> b = ["Hi", 1, "Red", -6.87, [1, 2, 3, ["Mouse"]], 95]
>>> a[0]
1
>>> b[2]
"Red"
>>> b[4][1]
2
>>> b[-1]
95
>>> len(b)
6
>>> len(b[4])
4

As you see, items in nested lists are retrieved by combining several indices directly. For
example, if you want to retrieve the integer 2 from list b, first select the containing nested
list (which has the index 4) and then the index of this sub-list (which is the index 1), so
the final result is b[4][1]. Here, always use square brackets (this also holds for tuples and
dicts). If you want to retrieve the last item of a list, regardless of the number of items
contained, use negative indices. The last item always receives the index -1. The number
of elements in a list is reported by using len(). If you want to cut a list in parts, we refer to
this as slicing.

>>> a = [1, 2, 3, 4, 5, 6, 7]
>>> a[0:3]
[1, 2, 3]
>>> a[2:5]
[3, 4, 5]
>>> a[::2]
[1, 3, 5, 7]
>>> a[::-1]			 #Reverse a list
[7, 6, 5, 4, 3, 2, 1]

The slice-operator has three parts: the start, end, and step. The start is always included
in the resulting list, the end is always excluded. If no step is explicitly set, 1 is implied. If
start or end are omitted, Python uses the first or the last element. Also, note that lists and
strings can be sliced in the same form.

Python 3 for Science and Engineering Applications

● 10

>>> w = "Trebuchet"
>>> w[3]
"b"
>>> w[2::2]
"euht"

Dictionaries

Dictionaries or dicts are convenient when you want to build a very simple database for
lookups. Here pairs of keys and values are created, which are not selecting by an index but
by key. Let’s have a simple example with dates of birth.

>>> dateofbirth = {"Dawkins": 1941, "Dostojewski": 1821, "Goethe": 1749}
>>> dateofbirth["Goethe"]
1749
>>> dateofbirth["Boyle"] = 1948
>>> dateofbirth
{"Dawkins": 1941, "Dostojewski": 1821, "Goethe": 1749, "Boyle": 1948}

The first value (before the colon) is the key, the one after the value. To retrieve the value,
just enter the key in brackets. Adding new items is done likewise. Note that keys must be
immutable, so you can use integers, floats, strings, or tuples, but not lists. For values, any
data type is fine. Dicts have the advantage over lists that a lookup is faster. A very common
task is to loop over keys, values, or both and retrieve certain elements. Here you have
several options to do this.

>>> for key in dateofbirth.keys():
>>> 	 key
Dawkins
Goethe
Dostojewski
Boyle

>>> for value in dateofbirth.values():
>>> 	 value
1941
1821
1749
1948

>>> for key, value in dateofbirth.items():
>>> 	 key, value
("Dawkins", 1941)

Chapter 1 ● Basics

● 11

("Dostojewski", 1821)
("Goethe", 1749)
("Boyle", 1948)

The last scheme is especially useful since you retrieve both keys and values at the same
time in a tuple and can work with them immediately. The order in which the elements will
be retrieved from the dict was random until version 3.7, after that every dict comes with
an inherent ordering, which might be useful for certain applications. Later we will see how
we can sort dicts arbitrarily. As a side note: whenever we work in the interactive session
as in the last example, it is optional to use the print-statement to generate output since
just calling a variable or function will automatically produce a visual output in the console.
However, if you want to use the same code in a file, always wrap these variables in print(),
otherwise, it will not be on display.

Loops

Python knows several different ways of looping. Using for, you can directly loop over all
elements of a given iterable or iterator, for example, a range, list, or tuple.2 While-loops are
useful when you do not know in advance how often a loop is executed and you want to exit
dynamically. Let’s have a look at three examples.

>>> for i in range(0, 10, 2):
>>> 	 i
0
2
4
6
8
	
>>> wordlist = ["This", "is", "fine"]
>>> for word in wordlist:
>>> 	 word
‘This’
‘is’
‘fine’
	
>>> value = 0
>>> while value < 64:
>>> 	 value
>>> 	 value = 2 ** value

2	 In Python an iterable is an object which can be iterated over, say a list or tuple. An
iterator is a generator that saves its own internal state, which is useful when the same object
is called again. Only iterators can be called using next(). Later we will see how this can be
used for our benefit.

Python 3 for Science and Engineering Applications

● 12

0
1
2
4
16

The first loop produces all even numbers from 0 to 10 (exclusively). As with slices, the first
value is the start, the second the stop, and third the step. The variable i is the index and
can be named arbitrarily. The second loop iterates over all elements of the given list. The
last loop continues running until the exit condition is met. In this example, value has to
be smaller than 64 so that the loop continues. If this condition is violated, the loop is not
started anymore. Loops that never meet this exit condition will run forever and must be
terminated by the user (infinite loop). Therefore, make sure the variable that controls the
exit is manipulated somewhere inside the loop as only then an exit is possible.

If you want to exit a loop prematurely, use break. Continue is useful when you want to keep
the loop running but skip over certain elements, possibly to improve performance or avoid
obvious errors (like when you want to process integers but a string shows up in a list). With
continue, Python will always skip to the start of the loop immediately, regardless of where
the script executes at the moment within the loop. Use pass as a generic placeholder which
does exactly nothing, as the name indicates. Let’s have a look at three examples.

>>> for number in range(1, 5):
>>> 	 print(number)
>>> 	 if number == 3:
>>> 		 break
>>> 	 print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
Outside loop now

As soon as break is reached, Python will leave the loop at once and continue with the code
below. Any code within the loop below break will be skipped.

Chapter 1 ● Basics

● 13

>>> for number in range(1, 5):
>>> 	 print(number)
>>> 	 if number == 3:
>>> 		 continue
>>> 	 print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
4
40
Outside loop now

When continue is reached, Python will go back to the start of the loop and continue with the
next element of the iterable. The code inside the loop below continue is skipped.

>>> for number in range(1, 5):
>>> 	 print(number)
>>> 	 if number == 3:
>>> 		 pass
>>> 	 print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
30
4
40
Outside loop now

When pass is reached, nothing happens. The loop is not exited and Python continues to run
any code below pass if there is any. Pass usually works as a placeholder.

Comprehensions

Comprehensions can be used as a very compact alternative for loops and might also
improve performance. While we distinguish list, dict, set and generator comprehensions,
their syntax is almost identical. Suppose you want to generate a list with all integers below
100 that are divisible by both 3 and 7. Using comprehensions we can solve this within one

Python 3 for Science and Engineering Applications

● 14

line of code.

>>> [i for i in range(100) if i % 3 == 0 and i % 7 == 0]
[0, 21, 42, 63, 84]
>>> [i ** 2 for i in (1, 2, 3, 4, 5)]
[1, 4, 9, 16, 25]

The square brackets indicate that we want to create a list, i is the index which takes all
values from 0 to 99. As you see we included a filter to sort out all integers that do not fit our
condition. The second example illustrates how we can dynamically transform results before
adding them to the list. If...else constructions are also allowed with a slightly different
syntax (note the ordering of the elements).

>>> [1 if x > 5 else 0 for x in range(10)]
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

In this example, we receive a list that displays a 1 for any number that is larger than 5 and
a 0 otherwise. If and else are now placed on the left side of the iterator since this is not a
filter any more but the ternary operator. Sets and dicts can be created likewise, the only
difference is the type of brackets.

>>> {i for i in range(10)}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> {word: len(word) for word in ["We", "have", "fun"]}
{‘We’: 2, ‘have’: 4, ‘fun’: 3}

Be aware of the fact that comprehensions can become easily complex when nested
comprehensions are included. In this example, we create a simple matrix, which is a list
with sub-lists.

>>> [[i * j for i in range(4)] for j in range(4)]
[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6], [0, 3, 6, 9]]

Python works from inside out, first creating a list that contains the products of i and j.
After that, the four new lists are returned together in one superior list. As you see, this
gets difficult to read and while comprehensions allow for very compact and sophisticated
expressions, they can easily become a nuisance for colleagues (or yourself after returning
to your code after a two-week break). Whenever loops are nested, special caution is advised

Chapter 1 ● Basics

● 15

to generate benign and readable code.

Functions

Whenever you need to solve more complex tasks it is strongly advised to split up your code
into functional parts and create several combined functions. This has many advantages:
firstly, functions can be easily reused and even imported into other documents. Secondly,
debugging functions is often easier than larger blocks of code since you can test each
function separately. Summarised: divide and conquer!

In Python, functions can be defined with two expressions. The first one is def(). A function
can include an arbitrary number of arguments, which can also be set as defaults.3 Let’s see
this in action with a very simple calculator for addition.

>>> def adder(x, y):
>>> 	 return x + y
>>> adder(1, 1)
2

This function has two arguments, x, and y. These must always be specified by the user
when calling the function. Using return we specify which value we want to receive back from
the function. If no return is set by the programmer or if it is never reached, the function will
then return None. In many cases, this is irrelevant, for example, when a function is used
only to display something in the interactive session.

>>> def greetings(name):
>>> 	 print("Hello " + str(name) + "!")
>>> greetings("Python")
"Hello Python!"

Using defaults we can pre-specify certain arguments that can be overwritten by the user
if desired.

>>> def exponentiate(x, y=2):
>>> 	 return x ** y
>>> exponentiate(3)
9
>>> exponentiate(2, 4)
16

3	 In this book the terms parameters and arguments are used changeably regarding
functions.

Python 3 for Science and Engineering Applications

● 16

We can also create anonymous functions using lambda. These functions are usually very
compact as they consist of only one expression and can be defined "on the fly".

>>> adder = lambda x, y: x + y
>>> adder(2, 2)
4

As you need to restrict the functionality to one expression, these are usually not applicable
to more complex tasks. At this point, you should also be aware of the fact that certain
expressions can be shortened to make code more compact.

x = x + 5 <=> x += 5
x = x - 5 <=> x -= 5
x = x * 5 <=> x *= 5
x = x / 5 <=> x /= 5

Internal Checks and Dealing with Exceptions

Writing software for end-users requires a lot of time and effort to make sure that inputs
are sanitised and only certain data types are fed into special functions. For example, a
calculator app should never have to deal with strings since only numbers are used for
arithmetic. When writing code for a web application, make sure that an email address
always contains exactly one at sign (@). In some cases, the receiving function will notice
the problem and throw an exception or error message, which is usually a good thing since
you will be alerted that something went wrong. Sometimes these issues go unnoticed and
the first problem you will notice is way down the line, maybe after receiving a wrong result.
Finding the bug then can be tedious and difficult so creating a few checkpoints is often a
good idea. To check for invalid inputs or wrong results we can use assert. In this example,
we want to make sure that a given email contains at least one at sign.

>>> email1 = "test@testmail.com"
>>> assert "@" in email1, "Invalid input!"
>>> email2 = "email.email.org"
>>> assert "@" in email2, "Invalid input!"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError: Invalid input!

While the first test is fine since @ is included in the given string, this assumption is violated
in the second example. Python then stops processing the script at once and throws an

Chapter 1 ● Basics

● 17

exception so we are informed about the problem. However, note that assert can be used
as an internal diagnostic for first checks but make sure to define proper exceptions and
especially more testing to sanitise user input. Also, assert statements are removed from
the code when performance is optimized by some compilers.

However, sometimes we want to silence errors explicitly and continue with the script. This
is done using try...except. If an error occurs, we can specify in advance how to handle it.
As an example, suppose you want to access a certain index in a list that does not exist.
Usually, Python would stop the script and complain.

>>> a = [1, 2, 3]
>>> a[20]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

As the list has only three elements, there is no element with index 20 available. However,
when we catch this error we can continue with the script.

>>> for list in matrix:
>>> 	 try:
>>> 		 print(list[20])
>>> 	 except IndexError:
>>>		 print("Index not found, continue")

This script takes lists from a given matrix and always displays the element with index 20.
Some shorter lists might not contain so many elements, which would cause problems.
However, as we can foresee that this error might occur, we define that all IndexErrors will
be caught by our script, produce a short warning note and then resume with the code.
There is also the possibility to create catch-alls, which are statements that silence any type
of error. Be very careful when working with these things and better specify in advance
which errors are possible.

Modules

Some functions or objects are always available in Python, for example, lists or the functions
len() or max(). Some other functions are also official parts of Python but are grouped in
modules that must be imported before usage. This is an efficient solution since not all
functions are always loaded into Python and many more names for variables and functions
are available for yourself. To access these other functions we need to import the respective
modules. Let’s demonstrate their usage with some mathematical function

Python 3 for Science and Engineering Applications

● 18

>>> import math
>>> math.cos(math.pi)
-1.0

Here we import the math module to access one constant and one function from this
module. The prefix math is subsequently used to tell Python where to take the functions
from. However, typing this all the time can become tedious so there are workarounds. For
example, we can shorten the name of a module to make writing and reading code more
convenient.

>>> import itertools as it
>>> list(it.combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

As long as only a few functions are required you can also only import this function.

>>> from itertools import combinations
>>> list(combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

If you need all functions, use the asterisk as a generic placeholder.

>>> from itertools import *
>>> list(combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

When working with longer scripts and more complicated tasks it can be especially beneficial
to keep the respective module prefixes so it is clear to all colleagues where certain functions
are taken from.

1.3 • Principles of Good Programming

1.	 Indentations play a significant role in Python as they replace most of the parentheses
and brackets known from other programming languages. Whether you are using spaces
or tabs for indentations is irrelevant as long as you are consistent and never mix them,
which causes Python to produce an error message.

2.	 All variables and objects (and in Python, virtually everything is an object) should
have a unique and clear name. There are certain styles to choose from, for example,
Panelleft (Pascal case), panelLeft (Came case), or panel_left (Snake case). However,

Chapter 1 ● Basics

● 19

be consistent with your style. It might not be necessary to waste time thinking about
names for index variables (often just i) or very temporary variables. Try to limit the
usage of one-letter variables for narrow blocks of code or comprehensions.

3.	 Functions should usually do exactly one thing. If you conclude that a given function does
a lot of things, maybe due to the usage of many if...else statements, it might be wise
to split it up. Also, never define two functions at two different places in the code that
do the same thing but define it once and when call whenever necessary. This makes
debugging a lot easier and you have to clean up bugs only in one place if you find any.
Furthermore, a function should normally only return one data type (for example, a
math function that only returns integers but not strings or lists). Whenever something
goes bad, do not return a special "error code" or False but raise an exception.4

4.	 Python was created to get things done and work efficiently. Therefore it might be a good
idea to think about certain parameters before starting a project. How many people are
involved, how much time will it take? Should I start defining ten classes or are a few
functions enough to get the job done? Will I work with this code again in five years or is
it obsolete next week? Depending on the answers, you might want to spend more time
preparing the project and defining things, possibly with your colleagues. This refers to
a common style of coding, naming objects, and creating shared documentation. Note
that even the smallest projects deserve some documentation, even if it is just for a
weekend project.

5.	 Readability is a major factor in any code. For example, consistent spacing makes it
much easier to understand. Therefore, I recommend making use of it and writing x =
(5 + 5) instead of x=(5+5). Again, there are no strict rules but rather guidelines you
can choose. In this book, we will insert a space between most numbers and operators.

6.	 Clear and meaningful documentation is the gold standard of programming. Especially
larger, longer running projects with many co-workers deserve extensive documentation
that is understandable to all people working on it after you. And even if you code alone,
your future self will be very grateful if you spend just a few minutes on documenting
what you did. For example, Python docstrings ("""This is the comment""") are
very useful to describe what a function or class is doing. In this book there is little
documentation within the coding blocks since everything is explained in detail in the
chapters so probably do not use this is a template unless you are willing to explain
everything as in a tutorial. For inline comments use the number sign #.

7.	 When you have little experience with version control software it might be a good idea
to spend some time learning about it, especially when you are working on larger or
longer running projects. This makes the creation of many documents obsolete that
allow you to go back to previous versions of your code (we all know final.py, final2.py,
final3.py, …). Basic software that helps you out is git or bazaar. When collaborating
online, try Github.

8.	 Debugging, that is finding and fixing errors and bugs in your code usually takes a
large part of your time. An advantage of Python that can never be underestimated is
that error messages and exceptions are usually very clear and try to describe what
went wrong, which makes finding the problem a lot easier. Sometimes these are trivial
errors, like missing parentheses or letters. If an error is unknown to you, just search

4	 For more information on clean code, research the works of Robert C. Martin. Youtube
provides some excellent presentations.

Python 3 for Science and Engineering Applications

● 20

for it online and things might be a lot clearer. Also, when Python reports a line together
with the error, make sure you check the lines before and after if you do not find it in
the one reported.

9.	 There is no rule without exception. The guidelines presented here are just basic
principles and not written in stone. There might be good reasons to deviate from them
but be sure that these are justified. If you feel too tired or lazy to follow a certain style,
it is perhaps time for a break instead of writing sluggish code.

10.	 If you are looking for more detailed information on style and coding principles, make
sure to have a look at the official Python style guide PEP8.5

1.4 • Problem-Solving Skills

As stated before, this is not a classical and theoretical textbook but rather is a focus on
applications and real-world problem-solving skills. Suppose your boss gives you a task and
isn’t interested in exactly how you process it as long as you quickly present the results. It’s
up to you to find out how to do it. All in all, Python is a precious tool for tackling complex
tasks. It comes with a wide range of libraries, modules, and packages which in many
cases are somewhat related to your specific task and can be easily adapted. Since the
performance of modern computers is huge it is nowadays also possible to tackle problems
by crunching numbers (Brute-Force solutions) or performing simulations for approximate
solutions instead of thinking about an analytical solution that requires a lot of theoretical
knowledge, time, and experience. What exactly could such a workflow look like?

First of all, it is relevant to understand the given task or problem and get an overview of
the situation. Have you already worked on related challenges in the past? Are there similar
problems you know about? Try to deduce the unknown to known things, which is quite easy
due to search engines or Wikipedia. In many cases, you will find ready to use solutions
online that perhaps only require implementation in Python. Sometimes you get lucky and
all you need to do is copy a few lines of code. This being said, it is of course not the goal
of this book to solve the tasks presented here by searching online and looking for ready to
use solutions - this would only train your research skills. Therefore, if you are stuck with a
problem and run out of ideas, perhaps just skip to the next task and come back later. The
human brain works tirelessly and subconsciously on unsolved problems which can lead to
Heureka-moments.

After you have a plan in mind it is time to work on the implementation in Python, which
is an easy task. As discussed before it is often a good idea to split up complex problems
into small chunks that can be easily solved. Using functions as an implementation is then
quite convenient. At this stage do not strive for perfection as you probably want a first
result quickly, which you can later optimise. Often your boss might be happy with a first
approximation as long as it is submitted in time. If you struggle with the implementation
phase, it might be beneficial to consult a textbook or guide on the required technique. Since
Python comes with so many features it is rarely necessary to reinvent things - be smart and
be sure to make use of the available functions and modules - these are tested and approved
by the community. The official documentation comes with many examples and serves as
5	 Pep8.org

http://Pep8.org

Chapter 1 ● Basics

● 21

a wonderful guideline and teacher. If you need special functions, it might be wise to invest
some time to study the documentation of these external packages, especially when diving
deeper into some material and plan to work longer on related projects.

If your first attempt is complete and the code is written, it is time to test. Often code will not
work directly as planned, resulting in either a runtime error or an obviously incorrect result.
Syntax errors are easily debugged because of the quite specific error messages that Python
produces. It might be more challenging to wipe out logical errors in your code that relate
more to your algorithms and strategy than the implementation itself. If this happens, first
try to individually test each function to reduce the potential source of the problem. Think
about cases that are easy to test for correctness and work your way up to more complex
inputs. It is justifiable to place temporary print-statements inside the code to observe the
state of variables. By adding sleep-statements you can also run the code in slow motion
and trace the flow. Although this technique of debugging is often ridiculed, there are good
reasons to use it, especially in smallish projects. Of course, a real debugger is way more
powerful but often depends on the IDE you use and requires further experience. Python
comes with the internal debugging system pdb6 which allows you to follow the execution
of your code step by step. To spot logical errors, make sure you explain the principles and
algorithms of your code to colleagues. This will force you to spell out clearly what the code
is doing, which helps in clarifying your ideas.

If the code runs and is clear of any obvious bugs you can try to optimise it. Especially
when you work on longer projects which will run more often, increasing performance and
refactoring can be a boon. Then you should try to work on readability, documentation, and
performance to make your code better and more enjoyable. This task is often more relaxed
since your boss is already happy with the first outcome and there is less pressure. Try
identifying overly complex blocks of code and cleanly rewrite them. Add more documentation
while you work through it. When working on performance, testing functions individually
helps you identify the slow parts which might benefit from different approaches. In this
book, we will also talk about measuring runtime speeds and working on optimisation.

6	 https://docs.python.org/3.6/library/pdb.html

https://docs.python.org/3.6/library/pdb.html

Python 3 for Science and Engineering Applications

● 166

F
factorial 25

fibonacci 22

G
gambling 102, 104

game of life 92

generator 26
genetic code 135

grid 89

H
hash function 142

histogram 125

I
import 17

init 97

integral 74

islice 38

J
John Conway 92

K
knight's tour 70

kwargs 69

L
lcs 137

logistic function 50

logistic map 51

loop 11

lps 135

M
matrix 90

module 17

monotonic 68

multiprocessing 84

N
norm 57

numerical integration 74

● Index

● 167

O
object 18

optimization 103

P
palindrome 135, 154

parallelisation 84

pass 13

pep8 20

pi 30, 80

pig 104

population 96

prime number 26

process 85

product 123

profiling 41

program flow 140

Q
queue 84

R
random 83

random walk 88

recursion 22, 24, 36

recursionlimit 40

refactoring 21

resampling 128

return 15

roman numerals 147

S
sample 84

scalar product 59

series 31

simulation 103

slice 9

T
time 37, 79

transpose 161

trigonometry 31, 88

try 17

V
vector 57

Python 3 for Science and Engineering Applications

● 168

Y
yield 27

yield from 153

Z
zip 58

booksbooks

Python 3 for Science and Engineering A
pplications • Felix

Bittm
ann

Felix Bittmann is a research
associate at the Leibniz Institute
for Educational Trajectories
and a doctoral candidate at the
University of Bamberg, Germany.
His research interests include
social inequality, the role of
education in the course of life,
quantitative methods, and the
philosophy of science. With a
focus on statistical analysis and
applied research, Python is an
integral and multifunctional tool of
his daily workflow.

If you have mastered the basics of Python and are wanting to explore
the language in more depth, this book is for you. By means of concrete
examples used in different applications, the book illustrates many aspects
of programming (e.g. algorithms, recursion, data structures) and helps
problem-solving strategies. Including general ideas and solutions, the
specifics of Python and how these can be practically applied are discussed.

Python 3 for Science and Engineering Applications includes:
	> practical and goal-oriented learning
	> basic Python techniques
	>modern Python 3.6+ including comprehensions, decorators and
generators
	> complete code available online
	>more than 40 exercises, solutions documented online
	> no additional packages or installation required, 100% pure Python

Topics cover:
	> identifying large prime numbers and computing Pi
	>writing and understanding recursive functions with memorisation
	> computing in parallel and utilising all system cores
	> processing text data and encrypting messages
	> comprehending backtracking and solving Sudokus
	> analysing and simulating games of chance to develop optimal
winning strategies
	> handling genetic code and generating extremely long palindromes

Elektor International Media BV
www.elektor.com

Python 3 for Science and
Engineering Applications

Learn to use Python productively in real-life
scenarios at work and in everyday life

