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PREFACE

The theory of equations is not only a necessity in the subsequent mathe-
matical courses and their applications, but furnishes an illuminating sequel to
geometry, algebra and analytic geometry. Moreover, it develops anew and in
greater detail various fundamental ideas of calculus for the simple, but impor-
tant, case of polynomials. The theory of equations therefore affords a useful
supplement to differential calculus whether taken subsequently or simultane-
ously.

It was to meet the numerous needs of the student in regard to his earlier and
future mathematical courses that the present book was planned with great care
and after wide consultation. It differs essentially from the author’s Elementary
Theory of Equations, both in regard to omissions and additions, and since it
is addressed to younger students and may be used parallel with a course in
differential calculus. Simpler and more detailed proofs are now employed.
The exercises are simpler, more numerous, of greater variety, and involve more
practical applications.

This book throws important light on various elementary topics. For ex-
ample, an alert student of geometry who has learned how to bisect any angle
is apt to ask if every angle can be trisected with ruler and compasses and if
not, why not. After learning how to construct regular polygons of 3, 4, 5, 6,
8 and 10 sides, he will be inquisitive about the missing ones of 7 and 9 sides.
The teacher will be in a comfortable position if he knows the facts and what
is involved in the simplest discussion to date of these questions, as given in
Chapter III. Other chapters throw needed light on various topics of algebra. In
particular, the theory of graphs is presented in Chapter V in a more scientific
and practical manner than was possible in algebra and analytic geometry.

There is developed a method of computing a real root of an equation with
minimum labor and with certainty as to the accuracy of all the decimals ob-
tained. We first find by Horner’s method successive transformed equations
whose number is half of the desired number of significant figures of the root.
The final equation is reduced to a linear equation by applying to the con-
stant term the correction computed from the omitted terms of the second and
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higher degrees, and the work is completed by abridged division. The method
combines speed with control of accuracy.

Newton’s method, which is presented from both the graphical and the
numerical standpoints, has the advantage of being applicable also to equations
which are not algebraic; it is applied in detail to various such equations.

In order to locate or isolate the real roots of an equation we may employ a
graph, provided it be constructed scientifically, or the theorems of Descartes,
Sturm, and Budan, which are usually neither stated, nor proved, correctly.

The long chapter on determinants is independent of the earlier chapters.
The theory of a general system of linear equations is here presented also from
the standpoint of matrices.

For valuable suggestions made after reading the preliminary manuscript of
this book, the author is greatly indebted to Professor Bussey of the University
of Minnesota, Professor Roever of Washington University, Professor Kempner
of the University of Illinois, and Professor Young of the University of Chicago.
The revised manuscript was much improved after it was read critically by
Professor Curtiss of Northwestern University. The author’s thanks are due
also to Professor Dresden of the University of Wisconsin for various useful
suggestions on the proof-sheets.

Chicago, 1921.
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First Course in

The Theory of Equations

CHAPTER I

Complex Numbers

1. Square Roots. If p is a positive real number, the symbol
√

p is used to
denote the positive square root of p. It is most easily computed by logarithms.

We shall express the square roots of negative numbers in terms of the
symbol i such that the relation i2 = −1 holds. Consequently we denote the
roots of x2 = −1 by i and −i. The roots of x2 = −4 are written in the form
±2i in preference to ±

√
−4. In general, if p is positive, the roots of x2 = −p

are written in the form ±√
pi in preference to ±√−p.

The square of either root is thus (
√

p)2i2 = −p. Had we used the less desirable
notation ±√−p for the roots of x2 = −p, we might be tempted to find the square of
either root by multiplying together the values under the radical sign and conclude
erroneously that √−p

√−p =
√

p2 = +p.

To prevent such errors we use
√

p i and not
√−p.

2. Complex Numbers. If a and b are any two real numbers and i2 = −1,
a + bi is called a complex number1 and a − bi its conjugate. Either is said to
be zero if a = b = 0. Two complex numbers a + bi and c + di are said to be
equal if and only if a = c and b = d. In particular, a + bi = 0 if and only if
a = b = 0. If b �= 0, a + bi is said to be imaginary. In particular, bi is called a
pure imaginary.

1Complex numbers are essentially couples of real numbers. For a treatment from this
standpoint and a treatment based upon vectors, see the author’s Elementary Theory of
Equations, p. 21, p. 18.
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Addition of complex numbers is defined by

(a + bi) + (c + di) = (a + c) + (b + d)i.

The inverse operation to addition is called subtraction, and consists in finding
a complex number z such that

(c + di) + z = a + bi.

In notation and value, z is

(a + bi) − (c + di) = (a − c) + (b − d)i.

Multiplication is defined by

(a + bi)(c + di) = ac − bd + (ad + bc)i,

and hence is performed as in formal algebra with a subsequent reduction by
means of i2 = −1. For example,

(a + bi)(a − bi) = a2 − b2i2 = a2 + b2.

Division is defined as the operation which is inverse to multiplication, and
consists in finding a complex number q such that (a+bi)q = e+fi. Multiplying
each member by a − bi, we find that q is, in notation and value,

e + fi

a + bi
=

(e + fi)(a − bi)

a2 + b2
=

ae + bf

a2 + b2
+

af − be

a2 + b2
i.

Since a2 + b2 = 0 implies a = b = 0 when a and b are real, we conclude that
division except by zero is possible and unique.

EXERCISES

Express as complex numbers

1.
√
−9. 2.

√
4.

3. (
√

25 +
√
−25)

√
−16. 4. −2

3 .

5. 8 + 2
√

3. 6.
3 +

√
−5

2 +
√
−1

. 7.
3 + 5i

2 − 3i
. 8.

a + bi

a − bi
.

9. Prove that the sum of two conjugate complex numbers is real and that their
difference is a pure imaginary.
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10. Prove that the conjugate of the sum of two complex numbers is equal to the
sum of their conjugates. Does the result hold true if each word sum is replaced by
the word difference?

11. Prove that the conjugate of the product (or quotient) of two complex numbers
is equal to the product (or quotient) of their conjugates.

12. Prove that, if the product of two complex numbers is zero, at least one of
them is zero.

13. Find two pairs of real numbers x, y for which

(x + yi)2 = −7 + 24i.

As in Ex. 13, express as complex numbers the square roots of

14. −11 + 60i. 15. 5 − 12i. 16. 4cd + (2c2 − 2d2)i.

3. Cube Roots of Unity. Any complex number x whose cube is equal
to unity is called a cube root of unity. Since

x3 − 1 = (x − 1)(x2 + x + 1),

the roots of x3 = 1 are 1 and the two numbers x for which

x2 + x + 1 = 0, (x + 1
2)2 = −3

4 , x + 1
2 = ±1

2

√
3i.

Hence there are three cube roots of unity, viz.,

1, ω = −1
2 + 1

2

√
3i, ω′ = −1

2 − 1
2

√
3i.

In view of the origin of ω, we have the important relations

ω2 + ω + 1 = 0, ω3 = 1.

Since ωω′ = 1 and ω3 = 1, it follows that ω′ = ω2, ω = ω′2.

4. Geometrical Representation of Complex Numbers. Using rect-
angular axes of coördinates, OX and OY , we represent the complex number
a + bi by the point A having the coördinates a, b (Fig. 1).
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O

A

X

Y

θ
a

b
r

Fig. 1

The positive number r =
√

a2 + b2 giving
the length of OA is called the modulus (or
absolute value) of a+bi. The angle θ = XOA,
measured counter-clockwise from OX to OA,
is called the amplitude (or argument) of a +

bi. Thus cos θ = a/r, sin θ = b/r, whence

(1) a + bi = r(cos θ + i sin θ).

The second member is called the trigonometric form of a + bi.
For the amplitude we may select, instead of θ, any of the angles θ ± 360◦,

θ ± 720◦, etc.
Two complex numbers are equal if and only if their moduli are equal and

an amplitude of the one is equal to an amplitude of the other.

1

ω

ω2

O

1
2

1
2

√
3 1

Fig. 2

120 ◦

24
0
◦

For example, the cube roots of unity are 1 and

ω = −1
2 + 1

2

√
3i

= cos 120◦ + i sin 120◦,

ω2 = −1
2 − 1

2

√
3i

= cos 240◦ + i sin 240◦,

and are represented by the points marked 1, ω, ω2

at the vertices of an equilateral triangle inscribed
in a circle of radius unity and center at the ori-
gin O (Fig. 2). The indicated amplitudes of ω
and ω2 are 120◦ and 240◦ respectively, while the
modulus of each is 1.

The modulus of −3 is 3 and its amplitude is 180◦ or 180◦ plus or minus the

product of 360◦ by any positive whole number.

5. Product of Complex Numbers. By actual multiplication,

[

r(cos θ + i sin θ)
][

r′(cos α + i sin α)
]

= rr′
[

(cos θ cos α − sin θ sin α) + i(sin θ cos α + cos θ sin α)
]

= rr′
[

cos(θ + α) + i sin(θ + α)], by trigonometry.

Hence the modulus of the product of two complex numbers is equal to the prod-
uct of their moduli, while the amplitude of the product is equal to the sum of
their amplitudes.

For example, the square of ω = cos 120◦ + i sin 120◦ has the modulus 1 and

the amplitude 120◦ + 120◦ and hence is ω2 = cos 240◦ + i sin 240◦. Again, the
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product of ω and ω2 has the modulus 1 and the amplitude 120◦ + 240◦ and hence

is cos 360◦ + i sin 360◦, which reduces to 1. This agrees with the known fact that

ω3 = 1.

Taking r = r′ = 1 in the above relation, we obtain the useful formula

(2) (cos θ + i sin θ)(cos α + i sin α) = cos(θ + α) + i sin(θ + α).

6. Quotient of Complex Numbers. Taking α = β − θ in (2) and di-
viding the members of the resulting equation by cos θ + i sin θ, we get

cos β + i sin β

cos θ + i sin θ
= cos(β − θ) + i sin(β − θ).

Hence the amplitude of the quotient of R(cos β+i sin β) by r(cos θ+i sin θ) is equal
to the difference β − θ of their amplitudes, while the modulus of the quotient is
equal to the quotient R/r of their moduli.

The case β = 0 gives the useful formula

1

cos θ + i sin θ
= cos θ − i sin θ.

7. De Moivre’s Theorem. If n is any positive whole number,

(3) (cos θ + i sin θ)n = cos nθ + i sin nθ.

This relation is evidently true when n = 1, and when n = 2 it follows from
formula (2) with α = θ. To proceed by mathematical induction, suppose that
our relation has been established for the values 1, 2, . . . , m of n. We can then
prove that it holds also for the next value m + 1 of n. For, by hypothesis, we
have

(cos θ + i sin θ)m = cos mθ + i sin mθ.

Multiply each member by cos θ + i sin θ, and for the product on the right sub-
stitute its value from (2) with α = mθ. Thus

(cos θ + i sin θ)m+1 = (cos θ + i sin θ)(cos mθ + i sin mθ),

= cos(θ + mθ) + i sin(θ + mθ),

which proves (3) when n = m + 1. Hence the induction is complete.
Examples are furnished by the results at the end of §5:

(cos 120◦ + i sin 120◦)2 = cos 240◦ + i sin 240◦,

(cos 120◦ + i sin 120◦)3 = cos 360◦ + i sin 360◦.
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8. Cube Roots. To find the cube roots of a complex number, we first
express the number in its trigonometric form. For example,

4
√

2 + 4
√

2i = 8(cos 45◦ + i sin 45◦).

If it has a cube root which is a complex number, the latter is expressible in
the trigonometric form

(4) r(cos θ + i sin θ).

The cube of the latter, which is found by means of (3), must be equal to the
proposed number, so that

r3(cos 3θ + i sin 3θ) = 8(cos 45◦ + i sin 45◦).

The moduli r3 and 8 must be equal, so that the positive real number r is
equal to 2. Furthermore, 3θ and 45◦ have equal cosines and equal sines, and
hence differ by an integral multiple of 360◦. Hence 3θ = 45◦ + k · 360◦, or
θ = 15◦ + k · 120◦, where k is an integer.2 Substituting this value of θ and the
value 2 of r in (4), we get the desired cube roots. The values 0, 1, 2 of k give
the distinct results

R1 = 2(cos 15◦ +i sin 15◦),

R2 = 2(cos 135◦+i sin 135◦),

R3 = 2(cos 255◦+i sin 255◦).

Each new integral value of k leads to a result which is equal to R1, R2

or R3. In fact, from k = 3 we obtain R1, from k = 4 we obtain R2, from k = 5

we obtain R3, from k = 6 we obtain R1 again, and so on periodically.

EXERCISES

1. Verify that R2 = ωR1, R3 = ω2R1. Verify that R1 is a cube root of
8(cos 45◦ + i sin 45◦) by cubing R1 and applying De Moivre’s theorem. Why are
the new expressions for R2 and R3 evidently also cube roots?

2. Find the three cube roots of −27; those of −i; those of ω.

3. Find the two square roots of i; those of −i; those of ω.

4. Prove that the numbers cos θ+ i sin θ and no others are represented by points
on the circle of radius unity whose center is the origin.

2Here, as elsewhere when the contrary is not specified, zero and negative as well as
positive whole numbers are included under the term “integer.”



§9.] ROOTS OF COMPLEX NUMBERS 7

5. If a+bi and c+di are represented by the points A and C in Fig. 3, prove that
their sum is represented by the fourth vertex S of the parallelogram two of whose
sides are OA and OC. Hence show that the modulus of the sum of two complex
numbers is equal to or less than the sum of their moduli, and is equal to or greater
than the difference of their moduli.

X

Y

O
EF H

G

S

A

C

Fig. 3

XU
O

A
C

P

Fig. 4

6. Let r and r′ be the moduli and θ and α the amplitudes of two complex
numbers represented by the points A and C in Fig. 4. Let U be the point on the
x-axis one unit to the right of the origin O. Construct triangle OCP similar to
triangle OUA and similarly placed, so that corresponding sides are OC and OU,CP
and UA, OP and OA, while the vertices O, C, P are in the same order (clockwise or
counter-clockwise) as the corresponding vertices O, U , A. Prove that P represents
the product (§5) of the complex numbers represented by A and C.

7. If a + bi and e + fi are represented by the points A and S in Fig. 3, prove
that the complex number obtained by subtracting a + bi from e + fi is represented
by the point C. Hence show that the absolute value of the difference of two complex
numbers is equal to or less than the sum of their absolute values, and is equal to or
greater than the difference of their absolute values.

8. By modifying Ex. 6, show how to construct geometrically the quotient of two
complex numbers.

9. nth Roots. As illustrated in §8, it is evident that the nth roots of
any complex number ρ(cos A + i sin A) are the products of the nth roots of
cos A+ i sin A by the positive real nth root of the positive real number ρ (which
may be found by logarithms).

Let an nth root of cos A + i sin A be of the form

(4) r(cos θ + i sin θ).

Then, by De Moivre’s theorem,

rn(cos nθ + i sin nθ) = cos A + i sin A.
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The moduli rn and 1 must be equal, so that the positive real number r is
equal to 1. Since nθ and A have equal sines and equal cosines, they differ by
an integral multiple of 360◦. Hence nθ = A + k · 360◦, where k is an integer.
Substituting the resulting value of θ and the value 1 of r in (4), we get

(5) cos

(

A + k · 360◦

n

)

+ i sin

(

A + k · 360◦

n

)

.

For each integral value of k, (5) is an answer since its nth power reduces to
cos A + i sin A by DeMoivre’s theorem. Next, the value n of k gives the same
answer as the value 0 of k; the value n + 1 of k gives the same answer as the
value 1 of k; and in general the value n + m of k gives the same answer as
the value m of k. Hence we may restrict attention to the values 0, 1, . . . , n − 1

of k. Finally, the answers (5) given by these values 0, 1, . . . , n − 1 of k are all
distinct, since they are represented by points whose distance from the origin
is the modulus 1 and whose amplitudes are

A

n
,

A

n
+

360◦

n
,

A

n
+

2 · 360◦

n
, . . . ,

A

n
+

(n − 1)360◦

n
,

so that these n points are equally spaced points on a circle of radius unity.
Special cases are noted at the end of §10. Hence any complex number different
from zero has exactly n distinct complex nth roots.

10. Roots of Unity. The trigonometric form of 1 is cos 0◦+i sin 0◦. Hence
by §9 with A = 0, the n distinct nth roots of unity are

(6) cos
2kπ

n
+ i sin

2kπ

n
(k = 0, 1, . . . , n − 1),

where now the angles are measured in radians (an angle of 180 degrees being
equal to π radians, where π = 3.1416, approximately). For k = 0, (6) reduces
to 1, which is an evident nth root of unity. For k = 1, (6) is

(7) R = cos
2π

n
+ i sin

2π

n
.

By De Moivre’s theorem, the general number (6) is equal to the kth power
of R. Hence the n distinct nth roots of unity are

(8) R, R2, R3, . . . , Rn−1, Rn = 1.

As a special case of the final remark in §9, the n complex numbers (6), and
therefore the numbers (8), are represented geometrically by the vertices of a
regular polygon of n sides inscribed in the circle of radius unity and center at
the origin with one vertex on the positive x-axis.
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O
1

i

−1

−i

Fig. 5

For n = 3, the numbers (8) are ω, ω2, 1, which are
represented in Fig. 2 by the vertices of an equilateral tri-
angle.

For n = 4, R = cos π/2+i sin π/2 = i. The four fourth

roots of unity (8) are i, i2 = −1, i3 = −i, i4 = 1, which

are represented by the vertices of a square inscribed in a

circle of radius unity and center at the origin O (Fig. 5).

EXERCISES

1. Simplify the trigonometric forms (6) of the four fourth roots of unity. Check
the result by factoring x4 − 1.

2. For n = 6, show that R = −ω2. The sixth roots of unity are the three cube
roots of unity and their negatives. Check by factoring x6 − 1.

3. From the point representing a + bi, how do you obtain that representing
−(a + bi)? Hence derive from Fig. 2 and Ex. 2 the points representing the six sixth
roots of unity. Obtain this result another way.

4. Find the five fifth roots of −1.

5. Obtain the trigonometric forms of the nine ninth roots of unity. Which of
them are cube roots of unity?

6. Which powers of a ninth root (7) of unity are cube roots of unity?

11. Primitive nth Roots of Unity. An nth root of unity is called
primitive if n is the smallest positive integral exponent of a power of it that
is equal to unity. Thus ρ is a primitive nth root of unity if and only if ρn = 1

and ρl �= 1 for all positive integers l < n.
Since only the last one of the numbers (8) is equal to unity, the number R,

defined by (7), is a primitive nth root of unity. We have shown that the
powers (8) of R give all of the nth roots of unity. Which of these powers of R

are primitive nth roots of unity?
For n = 4, the powers (8) of R = i were seen to be

i1 = i, i2 = −1, i3 = −i, i4 = 1.

The first and third are primitive fourth roots of unity, and their exponents 1 and 3

are relatively prime to 4, i.e., each has no divisor > 1 in common with 4. But the

second and fourth are not primitive fourth roots of unity (since the square of −1

and the first power of 1 are equal to unity), and their exponents 2 and 4 have the
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divisor 2 in common with n = 4. These facts illustrate and prove the next theorem

for the case n = 4.

Theorem. The primitive nth roots of unity are those of the numbers (8)

whose exponents are relatively prime to n.
Proof. If k and n have a common divisor d (d > 1), Rk is not a primitive

nth root of unity, since

(Rk)
n

d = (Rn)
k

d = 1,

and the exponent n/d is a positive integer less than n.
But if k and n are relatively prime, i.e., have no common divisor > 1, Rk

is a primitive nth root of unity. To prove this, we must show that (Rk)l �= 1 if
l is a positive integer < n. By De Moivre’s theorem,

Rkl = cos
2klπ

n
+ i sin

2klπ

n
.

If this were equal to unity, 2klπ/n would be a multiple of 2π, and hence kl a
multiple of n. Since k is relatively prime to n, the second factor l would be a
multiple of n, whereas 0 < l < n.

EXERCISES

1. Show that the primitive cube roots of unity are ω and ω2.

2. For R given by (7), prove that the primitive nth roots of unity are (i) for
n = 6, R, R5; (ii) for n = 8, R, R3, R5, R7; (iii) for n = 12, R, R5, R7, R11.

3. When n is a prime, prove that any nth root of unity, other than 1, is primitive.

4. Let R be a primitive nth root (7) of unity, where n is a product of two
different primes p and q. Show that R, . . . , Rn are primitive with the exception
of Rp, R2p, . . . , Rqp, whose qth powers are unity, and Rq, R2q, . . . , Rpq, whose pth
powers are unity. These two sets of exceptions have only Rpq in common. Hence
there are exactly pq − p − q + 1 primitive nth roots of unity.

5. Find the number of primitive nth roots of unity if n is a square of a prime p.

6. Extend Ex. 4 to the case in which n is a product of three distinct primes.

7. If R is a primitive 15th root (7) of unity, verify that R3, R6, R9, R12 are the
primitive fifth roots of unity, and R5 and R10 are the primitive cube roots of unity.
Show that their eight products by pairs give all the primitive 15th roots of unity.

8. If ρ is any primitive nth root of unity, prove that ρ, ρ2, . . . , ρn are distinct
and give all the nth roots of unity. Of these show that ρk is a primitive nth root of
unity if and only if k is relatively prime to n.
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9. Show that the six primitive 18th roots of unity are the negatives of the
primitive ninth roots of unity.




