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PROLOGUE.

Considering how many fools can calculate, it is surprising that it

should be thought either a difficult or a tedious task for any other fool

to learn how to master the same tricks.

Some calculus-tricks are quite easy. Some are enormously difficult.

The fools who write the textbooks of advanced mathematics—and they

are mostly clever fools—seldom take the trouble to show you how easy

the easy calculations are. On the contrary, they seem to desire to

impress you with their tremendous cleverness by going about it in the

most difficult way.

Being myself a remarkably stupid fellow, I have had to unteach

myself the difficulties, and now beg to present to my fellow fools the

parts that are not hard. Master these thoroughly, and the rest will

follow. What one fool can do, another can.



CHAPTER I.

TO DELIVER YOU FROM THE PRELIMINARY

TERRORS.

The preliminary terror, which chokes off most fifth-form boys from

even attempting to learn how to calculate, can be abolished once for

all by simply stating what is the meaning—in common-sense terms—of

the two principal symbols that are used in calculating.

These dreadful symbols are:

(1) d which merely means “a little bit of.”

Thus dx means a little bit of x; or du means a little bit of u. Or-

dinary mathematicians think it more polite to say “an element of,”

instead of “a little bit of.” Just as you please. But you will find that

these little bits (or elements) may be considered to be indefinitely small.

(2)

∫

which is merely a long S, and may be called (if you like) “the

sum of.”

Thus

∫

dx means the sum of all the little bits of x; or

∫

dt means

the sum of all the little bits of t. Ordinary mathematicians call this

symbol “the integral of.” Now any fool can see that if x is considered

as made up of a lot of little bits, each of which is called dx, if you

add them all up together you get the sum of all the dx’s, (which is the
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same thing as the whole of x). The word “integral” simply means “the

whole.” If you think of the duration of time for one hour, you may (if

you like) think of it as cut up into 3600 little bits called seconds. The

whole of the 3600 little bits added up together make one hour.

When you see an expression that begins with this terrifying sym-

bol, you will henceforth know that it is put there merely to give you

instructions that you are now to perform the operation (if you can) of

totalling up all the little bits that are indicated by the symbols that

follow.

That’s all.



CHAPTER II.

ON DIFFERENT DEGREES OF SMALLNESS.

We shall find that in our processes of calculation we have to deal with

small quantities of various degrees of smallness.

We shall have also to learn under what circumstances we may con-

sider small quantities to be so minute that we may omit them from

consideration. Everything depends upon relative minuteness.

Before we fix any rules let us think of some familiar cases. There

are 60 minutes in the hour, 24 hours in the day, 7 days in the week.

There are therefore 1440 minutes in the day and 10080 minutes in the

week.

Obviously 1 minute is a very small quantity of time compared with

a whole week. Indeed, our forefathers considered it small as com-

pared with an hour, and called it “one minùte,” meaning a minute

fraction—namely one sixtieth—of an hour. When they came to re-

quire still smaller subdivisions of time, they divided each minute into

60 still smaller parts, which, in Queen Elizabeth’s days, they called

“second minùtes” (i.e. small quantities of the second order of minute-

ness). Nowadays we call these small quantities of the second order of

smallness “seconds.” But few people know why they are so called.

Now if one minute is so small as compared with a whole day, how
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much smaller by comparison is one second!

Again, think of a farthing as compared with a sovereign: it is barely

worth more than 1
1000

part. A farthing more or less is of precious little

importance compared with a sovereign: it may certainly be regarded

as a small quantity. But compare a farthing with £1000: relatively to

this greater sum, the farthing is of no more importance than 1
1000

of a

farthing would be to a sovereign. Even a golden sovereign is relatively

a negligible quantity in the wealth of a millionaire.

Now if we fix upon any numerical fraction as constituting the pro-

portion which for any purpose we call relatively small, we can easily

state other fractions of a higher degree of smallness. Thus if, for the

purpose of time, 1
60

be called a small fraction, then 1
60

of 1
60

(being a

small fraction of a small fraction) may be regarded as a small quantity

of the second order of smallness.∗

Or, if for any purpose we were to take 1 per cent. (i.e. 1
100

) as a

small fraction, then 1 per cent. of 1 per cent. (i.e. 1
10,000

) would be a

small fraction of the second order of smallness; and 1
1,000,000

would be

a small fraction of the third order of smallness, being 1 per cent. of

1 per cent. of 1 per cent.

Lastly, suppose that for some very precise purpose we should regard
1

1,000,000
as “small.” Thus, if a first-rate chronometer is not to lose

or gain more than half a minute in a year, it must keep time with

an accuracy of 1 part in 1, 051, 200. Now if, for such a purpose, we

∗The mathematicians talk about the second order of “magnitude” (i.e. great-

ness) when they really mean second order of smallness. This is very confusing to

beginners.
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regard 1
1,000,000

(or one millionth) as a small quantity, then 1
1,000,000

of
1

1,000,000
, that is 1

1,000,000,000,000
(or one billionth) will be a small quantity

of the second order of smallness, and may be utterly disregarded, by

comparison.

Then we see that the smaller a small quantity itself is, the more

negligible does the corresponding small quantity of the second order

become. Hence we know that in all cases we are justified in neglecting

the small quantities of the second—or third (or higher)—orders, if only

we take the small quantity of the first order small enough in itself.

But, it must be remembered, that small quantities if they occur in

our expressions as factors multiplied by some other factor, may become

important if the other factor is itself large. Even a farthing becomes

important if only it is multiplied by a few hundred.

Now in the calculus we write dx for a little bit of x. These things

such as dx, and du, and dy, are called “differentials,” the differential

of x, or of u, or of y, as the case may be. [You read them as dee-eks,

or dee-you, or dee-wy.] If dx be a small bit of x, and relatively small of

itself, it does not follow that such quantities as x ·dx, or x2 dx, or ax dx

are negligible. But dx× dx would be negligible, being a small quantity

of the second order.

A very simple example will serve as illustration.

Let us think of x as a quantity that can grow by a small amount so

as to become x+dx, where dx is the small increment added by growth.

The square of this is x2 + 2x · dx + (dx)2. The second term is not

negligible because it is a first-order quantity; while the third term is of

the second order of smallness, being a bit of, a bit of x2. Thus if we
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took dx to mean numerically, say, 1
60

of x, then the second term would

be 2
60

of x2, whereas the third term would be 1
3600

of x2. This last term

is clearly less important than the second. But if we go further and take

dx to mean only 1
1000

of x, then the second term will be 2
1000

of x2, while

the third term will be only 1
1,000,000

of x2.

x

x

Fig. 1.

Geometrically this may be depicted as follows: Draw a square

(Fig. 1) the side of which we will take to represent x. Now suppose

the square to grow by having a bit dx added to its size each way.

The enlarged square is made up of the original square x2, the two

rectangles at the top and on the right, each of which is of area x · dx
(or together 2x · dx), and the little square at the top right-hand corner

which is (dx)2. In Fig. 2 we have taken dx as quite a big fraction

of x—about 1
5
. But suppose we had taken it only 1

100
—about the

thickness of an inked line drawn with a fine pen. Then the little corner

square will have an area of only 1
10,000

of x2, and be practically invisible.

Clearly (dx)2 is negligible if only we consider the increment dx to be

itself small enough.

Let us consider a simile.
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x

x

x

x

dx

dx

dx

dx

Fig. 2.

x · dx

x · dx (dx)2

x2

Fig. 3.

Suppose a millionaire were to say to his secretary: next week I will

give you a small fraction of any money that comes in to me. Suppose

that the secretary were to say to his boy: I will give you a small fraction

of what I get. Suppose the fraction in each case to be 1
100

part. Now

if Mr. Millionaire received during the next week £1000, the secretary

would receive £10 and the boy 2 shillings. Ten pounds would be a

small quantity compared with £1000; but two shillings is a small small

quantity indeed, of a very secondary order. But what would be the

disproportion if the fraction, instead of being 1
100

, had been settled at
1

1000
part? Then, while Mr. Millionaire got his £1000, Mr. Secretary

would get only £1, and the boy less than one farthing!

The witty Dean Swift∗ once wrote:

“So, Nat’ralists observe, a Flea

“Hath smaller Fleas that on him prey.

“And these have smaller Fleas to bite ’em,

“And so proceed ad infinitum.”

∗On Poetry: a Rhapsody (p. 20), printed 1733—usually misquoted.
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An ox might worry about a flea of ordinary size—a small creature of

the first order of smallness. But he would probably not trouble himself

about a flea’s flea; being of the second order of smallness, it would be

negligible. Even a gross of fleas’ fleas would not be of much account to

the ox.



CHAPTER III.

ON RELATIVE GROWINGS.

All through the calculus we are dealing with quantities that are grow-

ing, and with rates of growth. We classify all quantities into two classes:

constants and variables. Those which we regard as of fixed value, and

call constants, we generally denote algebraically by letters from the be-

ginning of the alphabet, such as a, b, or c; while those which we consider

as capable of growing, or (as mathematicians say) of “varying,” we de-

note by letters from the end of the alphabet, such as x, y, z, u, v, w,

or sometimes t.

Moreover, we are usually dealing with more than one variable at

once, and thinking of the way in which one variable depends on the

other: for instance, we think of the way in which the height reached

by a projectile depends on the time of attaining that height. Or we

are asked to consider a rectangle of given area, and to enquire how any

increase in the length of it will compel a corresponding decrease in the

breadth of it. Or we think of the way in which any variation in the

slope of a ladder will cause the height that it reaches, to vary.

Suppose we have got two such variables that depend one on the

other. An alteration in one will bring about an alteration in the other,

because of this dependence. Let us call one of the variables x, and the
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other that depends on it y.

Suppose we make x to vary, that is to say, we either alter it or

imagine it to be altered, by adding to it a bit which we call dx. We are

thus causing x to become x + dx. Then, because x has been altered,

y will have altered also, and will have become y + dy. Here the bit dy

may be in some cases positive, in others negative; and it won’t (except

by a miracle) be the same size as dx.

Take two examples.

(1) Let x and y be respectively the base and the height of a right-

angled triangle (Fig. 4), of which the slope of the other side is fixed

x dx

y y

dy

30◦

Fig. 4.

at 30◦. If we suppose this triangle to expand and yet keep its angles

the same as at first, then, when the base grows so as to become x+ dx,

the height becomes y + dy. Here, increasing x results in an increase

of y. The little triangle, the height of which is dy, and the base of which

is dx, is similar to the original triangle; and it is obvious that the value

of the ratio
dy

dx
is the same as that of the ratio

y

x
. As the angle is 30◦

it will be seen that here
dy

dx
=

1

1.73
.
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(2) Let x represent, in Fig. 5, the horizontal distance, from a wall,

of the bottom end of a ladder, AB, of fixed length; and let y be the

x

y

O A

B

Fig. 5.

height it reaches up the wall. Now y clearly depends on x. It is easy to

see that, if we pull the bottom end A a bit further from the wall, the

top end B will come down a little lower. Let us state this in scientific

language. If we increase x to x+dx, then y will become y−dy; that is,

when x receives a positive increment, the increment which results to y

is negative.

Yes, but how much? Suppose the ladder was so long that when the

bottom end A was 19 inches from the wall the top end B reached just

15 feet from the ground. Now, if you were to pull the bottom end out

1 inch more, how much would the top end come down? Put it all into

inches: x = 19 inches, y = 180 inches. Now the increment of x which

we call dx, is 1 inch: or x+ dx = 20 inches.
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How much will y be diminished? The new height will be y − dy. If

we work out the height by Euclid I. 47, then we shall be able to find

how much dy will be. The length of the ladder is

√

(180)2 + (19)2 = 181 inches.

Clearly then, the new height, which is y − dy, will be such that

(y − dy)2 = (181)2 − (20)2 = 32761− 400 = 32361,

y − dy =
√
32361 = 179.89 inches.

Now y is 180, so that dy is 180− 179.89 = 0.11 inch.

So we see that making dx an increase of 1 inch has resulted in

making dy a decrease of 0.11 inch.

And the ratio of dy to dx may be stated thus:

dy

dx
= −0.11

1
.

It is also easy to see that (except in one particular position) dy will

be of a different size from dx.

Now right through the differential calculus we are hunting, hunting,

hunting for a curious thing, a mere ratio, namely, the proportion which

dy bears to dx when both of them are indefinitely small.

It should be noted here that we can only find this ratio
dy

dx
when

y and x are related to each other in some way, so that whenever x varies

y does vary also. For instance, in the first example just taken, if the

base x of the triangle be made longer, the height y of the triangle

becomes greater also, and in the second example, if the distance x of

the foot of the ladder from the wall be made to increase, the height y
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reached by the ladder decreases in a corresponding manner, slowly at

first, but more and more rapidly as x becomes greater. In these cases

the relation between x and y is perfectly definite, it can be expressed

mathematically, being
y

x
= tan 30◦ and x2 + y2 = l2 (where l is the

length of the ladder) respectively, and
dy

dx
has the meaning we found in

each case.

If, while x is, as before, the distance of the foot of the ladder from

the wall, y is, instead of the height reached, the horizontal length of

the wall, or the number of bricks in it, or the number of years since it

was built, any change in x would naturally cause no change whatever

in y; in this case
dy

dx
has no meaning whatever, and it is not possible

to find an expression for it. Whenever we use differentials dx, dy,

dz, etc., the existence of some kind of relation between x, y, z, etc., is

implied, and this relation is called a “function” in x, y, z, etc.; the two

expressions given above, for instance, namely
y

x
= tan 30◦ and x2+y2 =

l2, are functions of x and y. Such expressions contain implicitly (that

is, contain without distinctly showing it) the means of expressing either

x in terms of y or y in terms of x, and for this reason they are called

implicit functions in x and y; they can be respectively put into the

forms

y = x tan 30◦ or x =
y

tan 30◦

and y =
√
l2 − x2 or x =

√

l2 − y2.

These last expressions state explicitly (that is, distinctly) the value

of x in terms of y, or of y in terms of x, and they are for this reason

called explicit functions of x or y. For example x2 + 3 = 2y − 7 is an
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implicit function in x and y; it may be written y =
x2 + 10

2
(explicit

function of x) or x =
√
2y − 10 (explicit function of y). We see that

an explicit function in x, y, z, etc., is simply something the value of

which changes when x, y, z, etc., are changing, either one at the time

or several together. Because of this, the value of the explicit function

is called the dependent variable, as it depends on the value of the other

variable quantities in the function; these other variables are called the

independent variables because their value is not determined from the

value assumed by the function. For example, if u = x2 sin θ, x and θ

are the independent variables, and u is the dependent variable.

Sometimes the exact relation between several quantities x, y, z ei-

ther is not known or it is not convenient to state it; it is only known,

or convenient to state, that there is some sort of relation between these

variables, so that one cannot alter either x or y or z singly without

affecting the other quantities; the existence of a function in x, y, z

is then indicated by the notation F (x, y, z) (implicit function) or by

x = F (y, z), y = F (x, z) or z = F (x, y) (explicit function). Sometimes

the letter f or φ is used instead of F , so that y = F (x), y = f(x) and

y = φ(x) all mean the same thing, namely, that the value of y depends

on the value of x in some way which is not stated.

We call the ratio
dy

dx
“the differential coefficient of y with respect

to x.” It is a solemn scientific name for this very simple thing. But

we are not going to be frightened by solemn names, when the things

themselves are so easy. Instead of being frightened we will simply pro-

nounce a brief curse on the stupidity of giving long crack-jaw names;

and, having relieved our minds, will go on to the simple thing itself,
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namely the ratio
dy

dx
.

In ordinary algebra which you learned at school, you were always

hunting after some unknown quantity which you called x or y; or some-

times there were two unknown quantities to be hunted for simultane-

ously. You have now to learn to go hunting in a new way; the fox being

now neither x nor y. Instead of this you have to hunt for this curious

cub called
dy

dx
. The process of finding the value of

dy

dx
is called “dif-

ferentiating.” But, remember, what is wanted is the value of this ratio

when both dy and dx are themselves indefinitely small. The true value

of the differential coefficient is that to which it approximates in the

limiting case when each of them is considered as infinitesimally minute.

Let us now learn how to go in quest of
dy

dx
.
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NOTE TO CHAPTER III.

How to read Differentials.

It will never do to fall into the schoolboy error of thinking that dx

means d times x, for d is not a factor—it means “an element of” or “a

bit of” whatever follows. One reads dx thus: “dee-eks.”

In case the reader has no one to guide him in such matters it may

here be simply said that one reads differential coefficients in the follow-

ing way. The differential coefficient

dy

dx
is read “dee-wy by dee-eks,” or “dee-wy over dee-eks.”

So also
du

dt
is read “dee-you by dee-tee.”

Second differential coefficients will be met with later on. They are

like this:

d2y

dx2
; which is read “dee-two-wy over dee-eks-squared,”

and it means that the operation of differentiating y with respect to x

has been (or has to be) performed twice over.

Another way of indicating that a function has been differentiated is

by putting an accent to the symbol of the function. Thus if y = F (x),

which means that y is some unspecified function of x (see p. 13), we may

write F ′(x) instead of
d
(

F (x)
)

dx
. Similarly, F ′′(x) will mean that the

original function F (x) has been differentiated twice over with respect

to x.



CHAPTER IV.

SIMPLEST CASES.

Now let us see how, on first principles, we can differentiate some simple

algebraical expression.

Case 1.

Let us begin with the simple expression y = x2. Now remember

that the fundamental notion about the calculus is the idea of growing.

Mathematicians call it varying. Now as y and x2 are equal to one

another, it is clear that if x grows, x2 will also grow. And if x2 grows,

then y will also grow. What we have got to find out is the proportion

between the growing of y and the growing of x. In other words our task

is to find out the ratio between dy and dx, or, in brief, to find the value

of
dy

dx
.

Let x, then, grow a little bit bigger and become x + dx; similarly,

y will grow a bit bigger and will become y+dy. Then, clearly, it will still

be true that the enlarged y will be equal to the square of the enlarged x.

Writing this down, we have:

y + dy = (x+ dx)2.
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Doing the squaring we get:

y + dy = x2 + 2x · dx+ (dx)2.

What does (dx)2 mean? Remember that dx meant a bit—a little

bit—of x. Then (dx)2 will mean a little bit of a little bit of x; that

is, as explained above (p. 4), it is a small quantity of the second order

of smallness. It may therefore be discarded as quite inconsiderable in

comparison with the other terms. Leaving it out, we then have:

y + dy = x2 + 2x · dx.

Now y = x2; so let us subtract this from the equation and we have

left

dy = 2x · dx.

Dividing across by dx, we find

dy

dx
= 2x.

Now this∗ is what we set out to find. The ratio of the growing of y

to the growing of x is, in the case before us, found to be 2x.

∗N.B.—This ratio
dy

dx
is the result of differentiating y with respect to x. Dif-

ferentiating means finding the differential coefficient. Suppose we had some other

function of x, as, for example, u = 7x2+3. Then if we were told to differentiate this

with respect to x, we should have to find
du

dx
, or, what is the same thing,

d(7x2 + 3)

dx
.

On the other hand, we may have a case in which time was the independent variable

(see p. 14), such as this: y = b+ 1

2
at2. Then, if we were told to differentiate it, that

means we must find its differential coefficient with respect to t. So that then our

business would be to try to find
dy

dt
, that is, to find

d(b+ 1

2
at2)

dt
.
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Numerical example.

Suppose x = 100 and ∴ y = 10, 000. Then let x grow till it becomes

101 (that is, let dx = 1). Then the enlarged y will be 101 × 101 =

10, 201. But if we agree that we may ignore small quantities of the

second order, 1 may be rejected as compared with 10, 000; so we may

round off the enlarged y to 10, 200. y has grown from 10, 000 to 10, 200;

the bit added on is dy, which is therefore 200.
dy

dx
=

200

1
= 200. According to the algebra-working of the previous

paragraph, we find
dy

dx
= 2x. And so it is; for x = 100 and 2x = 200.

But, you will say, we neglected a whole unit.

Well, try again, making dx a still smaller bit.

Try dx = 1
10
. Then x+ dx = 100.1, and

(x+ dx)2 = 100.1× 100.1 = 10, 020.01.

Now the last figure 1 is only one-millionth part of the 10, 000, and

is utterly negligible; so we may take 10, 020 without the little decimal

at the end. And this makes dy = 20; and
dy

dx
=

20

0.1
= 200, which is

still the same as 2x.

Case 2.

Try differentiating y = x3 in the same way.

We let y grow to y + dy, while x grows to x+ dx.

Then we have

y + dy = (x+ dx)3.

Doing the cubing we obtain

y + dy = x3 + 3x2 · dx+ 3x(dx)2 + (dx)3.


