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Preface for students 

 

Relevance of the subject 

Psychology is based on human behaviour. It is therefore important to observe, with our 

own eyes, how people behave. The problem you encounter is that people display a 

great diversity and variety in behaviour—more than one person can possibly grasp. 

That is why researchers in psychology use statistics. Statistics helps with: 

• systematically collecting and coding observations 

• organising and summarising data 

• interpreting the results 

• communicating all of this to other researchers 

 

In short: without statistics, there is no psychology. 

 

Many psychology students dread the statistics courses in their programme. If you do 

not recognise this at all and are eager to get started with the content, you can skip the 

rest of this preface, and we wish you much pleasure and success with the course. If you 

do recognise this, we wish you the same, but we also hope that the following 

explanation will clear up a few persistent misconceptions and put you at ease. 

 

Misconceptions about the content of statistics 

Statistics aims to answer questions using data. Many people are insufficiently aware of 

this, which leads to several misconceptions. Before addressing the nature of these 

misconceptions, let us first consider their possible cause. One cause could be that many 

people think statistics is a form of mathematics. It is not. Statistics is about data. 

Mathematics is, in fact, the only science that does not use data. Mathematicians will 

never collect data in their lifetime. Admittedly, statistics uses a lot of mathematics, but 

it is not mathematics itself. 

As a result of this misunderstanding, people sometimes complain that certain 

exercises are unclear. For example, an exercise might ask for a numerical summary, 

without defining the term in the book. That would be a valid criticism if statistics were 

a form of mathematics. But it is not. Statistics aims to answer questions using data, and 

such questions are often unclear. This is the reality in almost all research. This 

uncertainty is simply part of the process, and you must learn to deal with it. In the 

above example, you must decide for yourself what a numerical summary is. That is not 

so hard: it should contain numbers, and it should be a summary. It must be a good 

summary—one that answers the main questions people might ask. So you must 
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determine which questions are important. In mathematics, you may never have had to 

do this, but in statistics it is essential. 

 

Another misconception is that statistics is about numbers and calculations. You may 

see someone doing a lot of calculations and arriving at the result ‘42’—and then they 

stop. But statistics aims to answer questions using data. If the question is, for example, 

‘What do these data tell us about the differences between men and women?’, then ‘42’ 

is obviously not an answer. You must draw conclusions and formulate and write them 

down precisely. So a good answer is not ‘42’ or ‘42 → difference’ but rather: ‘There is 

a difference of 42 points between Dutch men and women of middle age in their 

average stress tolerance, measured with the SQV-5.’ You might think such a sentence 

is unimportant in an exam, but you could be in for a nasty surprise. Many statistics 

teachers consider this the most important part. In our exams, most people fail because 

they omit or incorrectly phrase the interpretations. After all, what is the point of 

calculating everything perfectly if you then draw the wrong conclusion—or no 

conclusion at all? 

When doing exercises, keep in mind that communication and common sense are 

even more important in statistics than in everyday life. If this book does not explicitly 

state that you should report the unit of measurement, you might still consider whether 

doing so is a good way to communicate. 

 

Myths about learning statistics 

Over several years, we have analysed the exam results of students in our statistics 

courses. The conclusions were always the same. The main reason students failed was 

simply that they did not sit the exam at all. Exam grades in statistics were barely 

correlated with mathematics grades from secondary school, but strongly correlated 

with the amount of homework done. Roughly speaking, the probability of passing was 

about equal to the percentage of homework completed. Those who always did all the 

homework had a 100% chance of passing, either on the first attempt or the resit. Those 

who did 50% had about a 50% chance. Our message is simple: do all your homework 

and take the exam. 

The message is simple and the argument clear, but some students still do not believe 

it. This may be because the argument itself is statistical. That is why we will now 

explain something about the psychology of learning statistics—which will, of course, 

require many more words. 

 

One of the main reasons people fail statistics exams may be hard for you to believe: 

they have the wrong psychological theory. It is psychological, not statistical, because it 

concerns human thinking performance. The theory is: statistics is a matter of innate 

ability—you either have it or you do not. Before we address this theory, ask yourself to 

what extent you believe it, and why. 
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Research shows that those who believe this theory tend to perform poorly in 

statistics. By contrast, those who do well usually believe that their performance is 

mainly a matter of hard work and patience. In this respect, it is somewhat like 

mathematics. Mathematicians have an expression that you need ‘sitzfleisch’ (the ability 

to sit and persevere). Without it, you will not get far. 

You do not need to be a great psychologist to see that the innate-ability theory is 

disastrous for someone’s performance in statistics. If it is true, there is no point in 

studying—and so people do not. Then they fail. And then they say: ‘See? I can’t do it.’ 

We have heard this before. If you believe in the innate-ability theory, you may still not 

be convinced otherwise. But why do you believe it? Perhaps in your class there were 

pupils for whom it all seemed effortless, and others who always had to slog away. 

Perhaps teachers or parents told you: ‘That’s not for you.’ For many people, it is 

psychologically advantageous to maintain this myth. Those who supposedly find it 

effortless are proud of it, and therefore downplay the time they actually put in. 

Surprisingly, even those who had to slog are often proud of that, declaring while 

working on a problem: ‘I’m a humanities person—I can’t do this,’ with a certain 

satisfaction. 

Before you read on, take a minute to imagine how such a person approaches a statistics 

problem. A typical problem requires a few minutes of thought before you can start 

answering. Now picture someone secretly proud of not being able to do statistics. How 

will they approach a statistics problem? 

A person like that will not succeed. After five seconds, they think: ‘I don’t know the 

answer. See? I’m a humanities person!’—which is exactly what they want to think 

about themselves. This thought would not be that bad if they would then just start 

solving the problem. However, the trouble is, they then stop working on the problem 

and expect someone else to help them, or they keep repeating such thoughts for 

minutes on end. The problem never gets solved, and everyone sees this as confirmation 

of the theory. But in reality, it is just a self-fulfilling prophecy. 

There is another myth about being a ‘humanities person’: that a humanities person 

is not a science person. Dozens of studies have shown that all cognitive performances 

correlate positively: people who are good at humanities subjects are usually also good 

at science subjects, and vice versa. Yet the myth claims the opposite. Here too, a self-

fulfilling prophecy arises: once someone concludes they are a humanities person and 

believes this is incompatible with science ability, they tend to neglect science 

subjects—thinking there is no point in trying. 

 

Closely related to the innate-ability myth is this one: statistics is a matter of ‘insight.’ 

People who say this often secretly add: ‘...and you either have it or you don’t,’ which is 

just the innate-ability myth again. But even without that addition, it is a myth. 

Statistics, at least as taught in this book, is 70% practice, 30% memorisation, and 10% 

insight. Yes, you read that right—and you can do the maths. Insight is not something 
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you start with, or a prerequisite; it is something you end up with as a result of practice 

and memorisation. What is ‘insight’ anyway? We have never heard a clear definition. 

Insight seems to be little more than well-organised knowledge and skills, plus a good 

feeling about them. This brings us to another related myth: memorisation is for the less 

intelligent. Quite a few students—especially those who want to be seen as smart—

refuse to memorise things because they feel it is beneath them. Please believe us: you 

can only truly understand things once you know them largely by heart. 

 

These myths share the assumption that performance in statistics is tied to unchangeable 

personal traits. They are often secret choices people make about what they want to 

believe about themselves. In doing so, they ignore the fact that statistics can be 

learned—just as one can learn to play the piano. But you must practise. No one, not 

even prodigies like Mozart, can play the piano at birth. It takes practice first, with 

‘blood, sweat, and tears’. The same is true for statistics.  

If, while studying this subject, you often find yourself thinking: ‘I can’t do this,’ we 

encourage you to reframe that thought into: ‘I can’t do this yet.’ Adopt a growth 

mindset: you can learn new things. And sometimes that means stepping outside your 

comfort zone. You didn’t learn to read in a single day either—and in the end, you 

managed that too. But if, against our advice, you keep telling yourself that you will 

never succeed, then we have a challenge for you. This course is not going away. You 

cannot graduate without it. If the thought ‘I can’t pass this course’ were really true, the 

consequence would be that you would never graduate. In that case, you might as well 

stop your studies right now, don’t you think? Please realize that we do not expect 

everyone will or can become a Rachmaninoff of statistics. But a student who 

disciplines themselves to study regularly (without cramming only right before the 

exam), asks questions when things are unclear, and spends a lot of time working 

through problems, will find that a statistics course is perfectly manageable. 

 

 

Jules L. Ellis & Inge M. Rabeling, 

Nijmegen 

 

 

 



 

Part I-A 
Descriptive Statistics: 

Univariate 

 



 

1 Introduction of the examples 
 

 

What is statistics? According to the American Statistical Association (2016),  

‘Statistics is the science of learning from data, and of measuring, controlling, 

and communicating uncertainty; and it thereby provides the navigation essential 

for controlling the course of scientific and societal advances (Davidian, M. and 

Louis, T. A., 10.1126/science.1218685).’ 

So, for learning about statistics then, we need data. Several data examples will be 

considered repeatedly throughout this book. These examples come from different 

behavioural research areas. In this chapter, the examples are introduced. 

1.1 Example 1: Clinical psychology (depression prevention) 

Reference of the study. This example is based on Veltman, Ruiter, and Hosman (1996). 

 

Goal of the study. The study evaluated a training program aimed to prevent depression.  

 

Subjects. Participants were individuals aged between 15 and 19 from the Dutch cities 

of Nijmegen and Arnhem who were believed to be at risk of developing a depression.  

 

Intervention. Some participants were given a training to reduce automatic negative 

thoughts (ANTs). An example of an ANT is the thought ‘what’s wrong with me’ if one 

cannot stop the thought from recurring again and again. Automatic negative thoughts 

are an important cause of depression according to ‘Beck’s cognitive theory of 

depression’ (Moilanen, 1993). The training therefore was hoped to reduce the risk of 

depression. The goal of the study was to evaluate whether this was actually achieved. 

The participants who did not receive the training served as a control group. The 

training will henceforth be called the treatment. 

 

Measures. The degree of depression was assessed by the Beck Depression Inventory 

(BDI), which contains 21 multiple choice questions. In each question, the participant 

has to pick one out of four possible alternatives. An example of one question is this: 
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 I do not feel sad 

 I feel sad 

 I am sad all the time and I can’t snap out of it 

 I am so sad or unhappy that I can’t stand it 

The answer of the participant is scored as 0, 1, 2, or 3. For example, if the participant 

has picked the third alternative (‘I am sad all the time and I can’t snap out of it’), then 

the participant’s score for that question would be 2. After completing the questionnaire, 

the scores of the participant are summed, yielding the participant’s total score. 

A similar questionnaire was used to measure the amount of automatic negative 

thoughts of the participant. The frequency of such thoughts was assessed by the 

Automatic Thoughts Questionnaire (ATQ) (Hollon & Kendall, 1980), which has 30 

questions. An example of one of those questions is: 

 

 

 

not at all sometimes moderately 

often 

often all the time 

My life is a 

mess 

1 2 3 4 5 

 

Each question is scored by the indicated number. The scores are summed per 

participant. 

 

Repeated measures. Both the BDI and the ATQ were administered three times to each 

participant: before the treatment period, after the treatment period and after a follow-

up. Only the first two measurements are displayed below. The batch of third 

measurements is available in the file prevention.sav. 

 

Data. The data matrix is given in the table below (Table 1-1). The variables are: 

Group = indicates whether the participant had the treatment (1 = treatment, 2 = 

control) 

Bdi1 = the total score on BDI before the treatment period (BDI pretest) 

Bdi2 = the total score on BDI after the treatment period (BDI posttest) 

Atq1 = the total score on ATQ before the treatment period (ATQ pretest) 

Atq2 = the total score on ATG after the treatment period (ATQ posttest).  
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Table 1-1 

Group Bdi1 Bdi2 Atq1 Atq2 

1 22 4 80 40 

1 13 3 57 38 

1 15 4 89 47 

1 19  70 53 

1 23 8 79 56 

1 12 3 68 38 

1 15 7 63 55 

1 18 22 77 104 

1 14 3 70 47 

1 12 1 91 32 

1 16 7 50 40 

1 21 3 69 40 

1 23 11 117 80 

1 11 7 72 56 

1 16 21 71 73 

1 20 33 95 95 

1 13 6 50 47 

1 16 18 103 94 

1 14 10 52 57 

1 15 14 78 70 

1 16 8 99 73 

1 12 7 68 48 

1 11 1 80 35 

1 15 6 47 49 

1 11 6 58 45 

1 11 6 55 51 

1 14 14 93 73 

1 12 10 54 44 

1 12 9 66 49 

1 14 11 59 54 

1 21 13 67 45 

1 17 27 67 72 

1 12 14 55 79 

1 12 8 70 61 

1 21 19 110 91 

1 21 9 66 70 

1 13 3 56 39 

1 25 4 92 36 

1 14 7 61 45 

1 14 6 84 65 
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1 19 19 103 108 

1 22 14 99 78 

1 19 22 97 90 

1 20 14 91 69 

1 19 25 85 87 

1 11 5 57 57 

1 12 15 63 68 

1 10 19 65 77 

1 19 16 94 90 

2 11 5 69 52 

2 11 5 58 52 

2 13 0 43 33 

2 12 5 60 51 

2 22 17 58 61 

2 12 3 44 32 

2 10 13 53 53 

2 10 5 36 43 

2 12 5 47 39 

2 11 9 67 57 

2 18 3 79 56 

2 14 15 61 58 

2 10 10 58 58 

2 16 0 66 84 

2 15 16 55 66 

2 10 13 46 59 

2 16 15 89 92 

2 11 4 58 31 

2 13 12 50 45 

2 16 13 82 62 

2 11 0 47 38 

2 22 22 87 100 

2 16 14 64 58 

2 13 9 67 62 

2 15 11 84 50 

2 10 6 70 62 

2 19 8 99 83 

2 11 12 64 59 

2 14 12 85 81 

2 11 5 38 41 

2 12 13 69 63 

2 20 8 88 80 

2 10 10 50 51 
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2 12 6 58 55 

2 15 9 64 68 

2 13 11 58 67 

2 15 8 53 61 

2 18 26 72 72 

2 16 12 43 66 

2 11 7 87 41 

2 20 16 70 59 

2 10 16 35 38 

 

1.2 Example 2: Education (arithmetic lesson) 

Reference of the study. This example is based on Ellis and Van de Veerdonk (2016). 

 

Goal of the study. This study evaluated two different methods for teaching long 

division to students in intermediate vocational education.  

 

Subjects. Participants were students of a school in the South-west of the Netherlands 

who were supposed to refresh their long-division skills. 

 

Intervention. All participants followed a classroom lesson of one hour. Some classes 

were taught the classical long division algorithm. Other classes were taught the newer 

chunking method.  

 

Measures. The proficiency at the long division was assessed before and after the lesson 

by two different though similar tests with 17 items each. The number of correct 

answers was converted into a grade between 1 and 10. 

 

Data. The data matrix is given in the table below (Table 1-2). The variables are 

Algorithm = indicates whether the student learned the chunking or the classical 

long division 

GradeBefore = grade before the lesson (arithmetic pretest) 

GradeAfter = grade after the lesson (arithmetic posttest) 
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Table 1-2 

Person Algorithm GradeBefore GradeAfter 

1 chunk 5.8 7.4 

2 chunk 6.3 5.8 

3 chunk 8.4 7.9 

4 chunk 5.2 6.8 

5 chunk 6.8 6.8 

6 chunk 8.4 7.9 

7 chunk 6.8 6.8 

8 chunk 6.8 8.9 

9 chunk 7.9 7.4 

10 chunk 3.1 1.5 

11 chunk 7.4 4.7 

12 chunk 8.9 5.8 

13 chunk 8.4 6.3 

14 chunk 8.9 7.4 

15 chunk 5.2 6.3 

16 chunk 4.7 5.2 

17 chunk 4.7 5.2 

18 chunk 5.2 6.8 

19 classical 4.7 5.2 

20 classical 5.2 7.9 

21 classical 7.9 4.7 

22 classical 8.4 6.8 

23 classical 6.8 8.4 

24 classical 7.4 6.3 

25 classical 8.4 4.7 

26 classical 6.3 6.3 

27 classical 5.2 5.2 

28 classical 7.4 4.7 

29 classical 7.9 5.8 

 

1.3 Example 3: Human-computer interaction (mind reading) 

Reference of the study. This example is based on the study of Ryan et al. (2011). 

 

Goal of the study. This study evaluated whether a predictive spelling program can 

improve the performance of a brain-computer interface (BCI) in typing sentences. 

Some diseases cause patients to become completely paralysed (locked-in syndrome), 

which makes communication extremely difficult. The BCI2000 software uses 

electrophysiological brain responses (EEG) to provide alphanumeric character 

selection by which patients can communicate. It is based on the P300, which is a 
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positive part of the EEG response that occurs approximately 300 ms after presentation 

of a meaningful stimulus. 

 

Subjects. Participants were 24 able-bodied undergraduate university students. 

 

Intervention. All participants completed two sessions on separate days. In each session 

they had to write a sentence of 58 characters with their EEG, using the BCI2000 

software. In one session the session (PS), the BCI2000 software was extended with a 

predictive spelling application. In the other session (NS), the BCI2000 software was 

used without predictive spelling. The order of the sessions was counterbalanced. This 

means that half of the subjects had the sessions in the order PS-NS, and the other half 

of the subjects had the sessions in the order NS-PS, and this order was assigned 

randomly to the subjects.  

 

Measures. In this example, we will use some but not all of the measures of Table 1 and 

2 of Ryan et al. (2011). The first measure is accuracy, which is the number of correct 

selections divided by the total number of selections in the session. The second measure 

is the time needed to complete the sentence, measured in minutes.  

 

Data. The data matrix is given in the table below (Table 1-3). The variables are 

PS Acc = accuracy in the PS condition 

NS Acc = accuracy in the NS condition 

PS Comp = time (minutes) to complete the sentence in the PS condition 

NS Comp = time (minutes) to complete the sentence in the NS condition 

Table 1-3 Part of data of Ryan et al. (2011). Reprinted by permission of the publisher 

(Taylor & Francis Ltd,  http://www.tandfonline.com). 

Subject PS Acc NS Acc PS Comp  NS Comp 

1 96.88 95.31 7.80 12.70 

2 88.89 87.50 9.00 17.90 

3 70.00 88.16 24.00 22.70 

4 79.59 89.86 10.92 17.15 

5 91.89 92.65 11.00 23.58 

6 87.18 95.31 8.67 15.90 

7 91.67 100.00 8.90 14.40 

8 81.13 87.50 14.47 16.10 

9 80.95 70.83 10.40 23.90 

10 82.35 98.33 10.10 11.90 
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11 80.00 91.18 19.15 23.70 

12 77.59 82.50 20.20 27.90 

13 82.22 93.94 11.25 16.40 

14 94.29 77.17 8.75 25.20 

15 91.18 95.31 9.25 17.50 

16 94.29 85.25 10.40 18.20 

17 72.50 77.23 17.75 35.25 

18 91.89 100.00 7.30 11.50 

19 100.00 100.00 7.65 14.40 

20 96.88 91.18 8.70 18.60 

21 86.67 91.43 13.40 24.45 

22 57.58 83.67 16.95 29.30 

23 67.07 96.77 22.45 21.60 

24 94.44 84.15 9.80 24.50 

 

1.4 Example 4: Criminology (reconviction) 

Reference of the study. This example is based on Killias, Gilliéron, Villard, and Poglia 

(2010). 

 

Goal of the study. To compare the effect of imprisonment versus community service on 

re-offending.   

 

Subjects. The participants were 141 defendants who had been sentenced to a short 

custodial sentence in the Swiss Canton of Vaud between 1993 and 1995. However, 

some subjects were excluded from the analysis because they had died, emigrated, had 

been removed from the programme, and for various other reasons. 

 

Intervention. Subjects were randomly assigned to either community service or prison. 

Studies like this, in which real sentences are randomly assigned, are extremely 

exceptional. 

 

Measures. It was recorded whether the subject has had at least one new conviction after 

11 years.  

 

Data. The counts are presented in Table 1 of Killias et al. (2010), and in the text 

pertaining to that table. In the custodial group, 22 out of 38 subjects had a new 

conviction after 11 years. In the community service group, 41 out of 78 subjects had a 

new conviction after 11 years. 
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1.5 Example 5: Developmental psychology (bullying) 

Reference of the study. Unknown. The source of these data were developmental 

psychologists of the Radboud University. 

 

Goal of the study. To investigate the effect of bullying on social isolation. 

 

Subjects. 42 schoolchildren. 

 

Measures. The children were questioned as to one another’s social positions within the 

group. On the basis of this, the children were categorised as either bully, victim or non-

involved. Each child responded to a questionnaire in order to measure social isolation. 

A high score on this variable means that the child was experiencing a lot of social 

isolation. 

Data.  

Table 1-4 

Position Social isolation 

non-involved  1.75 

non-involved  0.25 

non-involved  0.25 

non-involved  1.25 

non-involved  0.75 

non-involved  0.5 

non-involved  0.25 

non-involved  1 

non-involved  0.75 

non-involved  1 

non-involved  1.25 

non-involved  0.25 

non-involved  1.5 

non-involved  0.5 

non-involved  0.25 

non-involved  0.25 

non-involved  0.25 

non-involved  0.5 

non-involved  1.75 

non-involved  0.25 

bully 0.75 

bully 0.25 

bully 0.75 

bully 0.5 
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bully 0.5 

bully 0.5 

bully 0.75 

bully 0.25 

bully 0.25 

victim 1 

victim 2 

victim 0.75 

victim 3.25 

victim 0.5 

victim 2.25 

victim 3 

victim 1 

victim 1.75 

victim 1.75 

victim 0.25 

victim 0.25 

victim 1.75 

 

1.6 Example 6: Social psychology (food consumption) 

Reference of the study. This example is based on Van de Veer, Van Herpen, and Van 

Trijp (2015).  

 

Goal of the study. To investigate the effect of outer appearance focus on food 

consumption. 

 

Subjects. The study does not specify how the participants were initially sampled. 

Participants who did not follow the instructions and participants who indicated a strong 

dislike for M&Ms were excluded from the study. Also, a participant who was an 

outlier in mean M&M consumption was excluded. There remained 107 subjects. 

 

Interventions. In the appearance focus condition, a mirror was positioned so that 

participants could view their face and upper body part. In a previous study it was found 

that this increases attention to outward appearance of the body. In the condition of no 

appearance focus, the mirrors were turned back to front. Participants were served a 

300-ml milkshake that contained either 534 or 215 kcal. So, in total there were two 

focus conditions (appearance focus vs no appearance focus) and two conditions as to 

the milkshake’s caloric content (low vs high). The design was crossed, which means 

that all 2 × 2 = 4 combinations of focus and caloric content were used. Participants 


