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Preface

This is a book about numerically solving partial differential equations occurring in techni-
cal and physical contexts and we (the authors) have set ourselves a more ambitious target
than to just talk about the numerics. Our aim is to show the place of numerical solutions
in the general modeling process and this must inevitably lead to considerations about
modeling itself. Partial differential equations usually are a consequence of applying first
principles to a technical or physical problem at hand. That means, that most of the time
the physics also have to be taken into account especially for validation of the numerical
solution obtained.

This book in other words is especially aimed at engineers and scientists who have ’real
world’ problems and it will concern itself less with pesky mathematical detail. For the
interested reader though, we have included sections on mathematical theory to provide
the necessary mathematical background. Since this treatment had to be on the superficial
side we have provided further reference to the literature where necessary.

Delft, June 2005
Jos van Kan
Guus Segal
Fred Vermolen

Note to the first edition improvements

In this improved first edition exercises and theory are more separately presented. Fur-
thermore, some parts, such as the parts on boundary fitted coordinates, on coordinate
transformation, the treatment of essential boundary conditions for FEM and the solution
of non-linear systems of equations, have been rewritten to make them easier to under-
stand.
Newmark-type solvers for the wave equation have been added.

Delft, April 2008
Jos van Kan
Guus Segal
Fred Vermolen
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Chapter 1

Modelling

1.1 Preliminaries

In this first chapter we shall take a bird’s eye view of the contents of the book and try
to establish what topics are of interest to which reader. Furthermore we shall establish a
physical interpretation of certain mathematical notions, operators and theorems, because
this really permeates the whole modelling process. As a first application we shall formu-
late a general conservation law, because conservation laws are the back bone of physical
modelling.

1.2 Global contents

We first take a look at second order partial differential equations and their relation with
various physical problems. Then we look at numerical methods for those equations. First
we look at finite difference methods, of respectable age but still very much in use. Subse-
quently we take on finite volume methods, a typical engineers option, tailor made for con-
servation laws. And finally we turn to finite element methods (FEM) which have gained
tremendous popularity over the last three decades. Before we can move to FEM, however,
we have to delve a bit into minimization problems to provide a proper background. We
shall show, that FEM may be considered as a special case of Ritz’s method, a particular
way of obtaining an approximate solution to a minimization problem. We shall establish
a relation between minimization problems and partial differential equations. But not all
PDEs can be formulated as a minimization problem and we shall consider a generalization
that will enable us to apply the FEM also to those problems.

These methods generally leave us with a large set of linear or non-linear equations and we
consider ways of how to solve them. In particular we shall pay some attention to efficient
methods that are relatively young, like preconditioned Krylov space methods and multi-
grid methods. The treatment can be only cursory but further references will be provided.

We also pay some attention to special methods for specific problems like heat and wave
equations. Finally we consider transport equations. They do not fall within the previous
context, being only first order, yet they are very important and deserve a chapter of their
own. The last chapter will be dedicated to miscellaneous problems that fall outside the
classification so far.

1.3 Building blocks for mathematical modelling

Several mathematical concepts used in modelling are directly derived from a physical
context. We shall consider a few of those and see how they can be used to formulate a
fundamental mathematical model: conservation.
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Figure 1.1 1-dimensional heat flow.

1.3.1 Gradient of a scalar

The mathematical definition of gradient is uninspiring. Given a scalar function u of two
variables, differentiable with respect to both variables the gradient is defined as

gradu
u
x
u
y

(1.3.1)

Instead of the notation gradu also u (pronounce: nabla u) is used. To get to the core
of what a gradient really is, think of temperature. If you have a temperature difference
between two points you get a flow of heat between those points that only will stop when
the temperature difference has been annihilated. If the difference is bigger, the flow will
be larger. If the points are closer together the flow will be larger. The simplest one
dimensional model to reflect this is the following linear model. Let q be the generated
flow, directly proportional to the temperature difference T and inversely proportional to
the distance x. This leads to:

q
T
x

(1.3.2)

where is a material constant, the heat conduction coefficient. The minus sign reflects
the facts that

1. heat flows from high to low temperatures

2. physicists hate negative constants

In a continuous temperature field T x we may take limits and obtain a flow that is derived
from (driven by) the temperature:

q
dT
dx

(1.3.3)

How is this in more than one dimension? Suppose we have a two-dimensional temperature
field T x y which we can represent nicely by considering the contour lines which for
temperature are called isotherms, lines that connect points of equal temperature.
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Figure 1.2 Isotherms.

Since there cannot be heat flow between points of equal temperature, the heat flow must
be orthogonal to the contour lines at every point. Two vectors v and w are orthogonal if
their inner product v w vanishes. In other words: let x s y s be a parameterization of

a contour line and let
q1
q2

be the components of the heat flow field. We then have:

q1
dx
ds

q2
dy
ds

0 (1.3.4)

at every point x s y s of the isotherm, for all isotherms. Let us substitute the equation of
an isotherm into the temperature field: T x s y s Doing this makes T a function of s
only, which is constant because we are on an isotherm. In other words along an isotherm:

dT
ds

T
x
dx
ds

T
y
dy
ds

0 (1.3.5)

If we compare Equation (1.3.4) with (1.3.5) we see that these can only be satisfied if

q gradT (1.3.6)

For three dimensions you can tell basically the same story that also ends in Equation 1.3.6.
This is known as Fourier’s law and it is at the core of the theory of heat conduction.

Exercise 1.3.1 (Darcy’s Law). In ground water flow the velocities are very small, a few
centimeters per day. This makes ground water flow basically a hydrostatic problem, in
which the flow is driven by differences in hydrostatic pressure. This hydrostatic pressure
depends linearly on the height of the ground water level h. So how does the flow q depend
on h?

Exercise 1.3.2 (Fick’s Law) In diffusion the flow of matter q is driven by differences in
concentration c. Express q in c.
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Scalar fields like T , h and c that drive a gradient flow field q are called potentials. Not
all flow fields are generated by the gradient of a potential. But those that are, are called
solenoidal or irrotational.

Exercise 1.3.3 Let C be a closed contour in the x-y-plane and q a solenoidal vector field.
Show that C q ds 0.

1.3.2 Directional derivative

In the previous paragraph we saw, how the temperature T changes along a curve x s y s .
The actual value of dTds depends on the parameterization. A natural parameterization is the

arc length of the curve. Note, that in that case dx
ds

2 dy
ds

2 1. This forms the basis of
the following definition:

Definition 1.3.1 Let n be a unit vector, then the directional derivative of T in the direction
of n is given by

T
n

T
x
n1

T
y
n2 gradT n n T

Exercise 1.3.4 Compute the directional derivative of z x2 y3 in 1 1 in the direction
1 1 (Answer: 1

2 2

Exercise 1.3.5 For what value of n is the directional derivative precisely T
x ?

1.3.3 Divergence of a vector field

The mathematical definition of divergence is equally uninspiring. Given a continuously

differentiable vector field
v1
v2

the divergence of v is defined by:

divv
v1
x

v2
y

(1.3.7)

For 3 you have the obvious generalization and there is also a nabla notation: divv v.
You will appreciate the correspondence of a genuine inner product of two vectors and the
inner product of the ”nabla vector” and a vector field. Take care, however. In a genuine
inner product you can change the order of the vectors, in the divergence you cannot.

What is the physical meaning of divergence? You could think of a vector field as a river:
at any place in the river the water has a certain velocity with direction and magnitude.
Now consider a fixed rectangular volume in the river (see Figure 1.3).

Water is flowing in through the left and bottom wall and flowing out through the right
and top wall. How much is flowing in through the left wall? If you think about it, you will
notice that the y component of the velocity gives no contribution to the inflow, because
that is parallel to the left wall. So the inflow through the left wall is equal to v1LLy,
the outflow through the right wall v1RLy. By the same reasoning the inflow through the
bottom equals v2BLx, the outflow through the top equals v2T Lx. What’s left behind? If the
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Figure 1.3 Square volume in river.

net outflow is larger than the net inflow we are losing matter in the volume, if on the other
hand the net inflow is larger we’re gaining. The net outflow is given by

net v1RLy v1LLy v2T Lx v2BLx

v1R v1L
Lx

v2T v2B
Ly

LxLy (1.3.8)

divv V

So you may consider a divergence as an outflow density.

Exercise 1.3.6 Explain that for an incompressible flow field u we must have divu 0

Exercise 1.3.7 Derive in the same way as above that divergence is an outflow density in
3 .

1.3.4 Gauss’ divergence theorem

What we have informally derived in the previous section is stated by Gauss’ divergence
theorem in a precise way. In words: the outflow density integrated over an arbitrary
volume gives the total outflow out of this volume. But this is mathematics, so we have to
be more precise.

Theorem 1.3.1 Gauss’ divergence theorem.
Let be a bounded domain in 2 ( 3 ) with piecewise smooth boundary Let n be the
outward normal and v a continuously differentiable vector field. Then

divv d v n d (1.3.9)
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Remark

1. The expression v n is the normal component of the velocity with respect to the
boundary. If this is positive you have outflow, otherwise inflow.

2. Any good book on multivariate analysis will have a proper proof of Gauss’ theo-
rem. (See for instance [2] or [33]). A good insight will be obtained however, by
subdividing the region in small rectangles and using (1.3.8). Note in particular,
that the common side (plane in 3 ) of two neighboring volumes cancel: what flows
out of one flows into the other.

The Divergence theorem has many important implications and these implications are used
frequently in various numerical methods, such as the finite element method. First, one can
use the component-wise product rule for differentiation to arrive at the following theorem

Theorem 1.3.2 For a continuously differentiable scalar field c and vector field u, we have

div cu grad c u c div u (1.3.10)

As a result of this, one can prove the following theorem

Theorem 1.3.3 Green’s Theorem
For a sufficiently smooth c, u, we have

cdivu d gradc ud cu n d (1.3.11)

Exercise 1.3.8 Prove Theorem 1.3.2.

Exercise 1.3.9 Prove Theorem 1.3.3.

By the use of Theorem 1.3.3, the following assertion can be demonstrated:

Theorem 1.3.4 Partial integration in 2 D
For sufficiently smooth scalar functions and , we have;

x
d

x
d n1d (1.3.12)

and

y
d

y
d n2d (1.3.13)

Exercise 1.3.10 Prove Theorem 1.3.4.
Hint: choose an appropriate vector field u in the previous exercise.
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1.3.5 Conservation laws

Let us consider some flow field u in a volume V with boundary . If the net inflow into
this volume is positive something in this volume must increase (whatever it is). That is
the basic form of a conservation law:

t
V

SdV u nd
V

f t x dV (1.3.14)

The term f t x is a production density, it tells how much S is produced any time, any
place within V . The boundary integral describes the net inflow into V (mark the minus
sign). The flow field u is also called the flux vector of the model. S just like f has the
dimension of a density. Since Equation (1.3.14) has to hold for every conceivable volume
in the flow field we may formulate a point wise conservation law as follows. First we
apply Gauss’ Theorem 1.3.9 to Equation ((1.3.14)) to obtain

t
V

SdV

V

divudV
V

f t x dV (1.3.15)

Subsequently we invoke the mean-value theorem of integral calculus for each integral
separately, assuming all integrands are continuous:

S
t
x1 divu x2 f t x3 (1.3.16)

Observe that we have divided out a factor V dV and that x1, x2 and x3 all lie within V .
Finally we let V contract to a single point x to obtain a point wise conservation law in the
form of a PDE:

S
t

divu f t x (1.3.17)

This is all rather abstract, so let us look at an example.

1.3.5.1 Example: Heat flow

In heat flow, conservation law (1.3.17) takes the form

h
t

divq f t x (1.3.18)

in which h is the heat density, q the heat flux vector and f the production density. Re-
member, that all quantities in such a point wise conservation law are densities. The heat
density h stored in a material can be related to the materials (absolute) temperature T :

h cT (1.3.19)

in which is the density and c the heat capacity of the material. These material properties
have to be measured. As we already saw in Section 1.3.1 the heat flow q is driven by the
temperature gradient: q T . This enables us to formulate everything in terms of
temperature. Substituting this all we get:

cT
t

div gradT f t x (1.3.20)
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If , c are constant throughout the material and if there is no internal heat production
this transforms into the celebrated heat conduction equation:

T
t

div kgradT (1.3.21)

with k c

1.4 Minimization

Another way of deriving models is by looking at the potential energy. This is most often
used in mechanical problems, but can also be used in different contexts. An equilibrium
state can be found by minimizing that potential energy. We also meet minimization prob-
lems in optics (optical length) and economics (cost).

1.4.1 Elastic string

As an example consider an elastic string fixed in 0 0 and 0 1 , see Figure 1.4.
Without load, the string is undeformed: u x 0. When we apply a load f the string

deforms. What is the potential energy of the deformed string? First of all, there is an
elastic energy proportional to the increase in length: Pe k L. Over a small interval x
this increase amounts to

L x2 u2 x (1.4.1)

Figure 1.4 Deformed elastic string.

When the inclination u x is small (this is true in a realistic problem), this is approxi-
mately equal to

L x 1 1
2

u
x
2 x (1.4.2)

1
2

u
x

2

x (1.4.3)

The work done by the load f per fragment x equals W u f x, assuming we take
the positive u–axis pointing down. The potential energy per fragment x then is given by
Pe W and the potential energy over the whole string is obtained by integrating over
the whole interval 0 1 :

P Pe W

1

0

1
2k

du
dx

2

u f dx (1.4.4)
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So any (sufficiently smooth) function u satisfying u 0 0 and u 1 0 yields a
potential energy. The solution to the mechanical problem is that function u for which the
potential energy P is minimal. In Chapter 5 we shall see how to deal with this.

Exercise 1.4.1 Show by Taylor’s theorem that 1 x 1 1
2x O x2

1.5 Summary of Chapter 1

In this chapter we have seen the importance of conservation in the development of models
and the role the mathematical operators divergence and gradient play in that development.
We have met the famous divergence theorem of Gauss as an expression of global conser-
vation.

We have looked at various applications deriving from conservation: heat transfer, dif-
fusion and ground water flow. We concluded the chapter with an example of minimization
as an instrument to derive a physical model.



Chapter 2

A crash course in PDE’s

Objectives

In the previous chapter we looked at PDE’s from the modelling point of view, but now
we shall look at them from a mathematical angle. Apparently you need at least two in-
dependent variables to speak of a PDE (with less you would have an ordinary differential
equation), so the simplest case to consider are PDE’s with exactly two independent vari-
ables. A second aspect is the order of the PDE, that is the order of the highest derivative
occurring in it. First order PDE’s are a class of their own: the transport equations. We
shall consider them in Chapter 11. In this chapter we shall take a look at second order
PDE’s and show that (for two independent variables) they can be classified into three
types. We shall provide boundary and initial conditions needed to guarantee a unique so-
lution and consider a few properties of solutions to these PDE’s. We conclude the chapter
with a few examples of second and fourth order equations that occur in various fields of
physics and technology.

2.1 Classification

Consider a second order PDE in two independent variables with constant coefficients.

a11
2u
x2

2a12
2u
x y

a22
2u
y2

b1
u
x

b2
u
y

cu d 0 (2.1.1)

By rotating the coordinate system we can make the term with the mixed second derivative
vanish. This is the basis of the classification. To carry out this rotation, we keep in mind
that

x y
A

u
x
u
y

a11
2u
x2

2a12
2u
x y

a22
2u
y2

(2.1.2)

where A
a11 a12
a12 a22

. Since A is symmetric, we can factorize A into A Q QT , where

diag 11 22 , in which 11 and 22 are eigenvalues of A. The columns of Q are the
normalized (with length one) eigenvectors of A. Note that QT Q 1 due to symmetry of
A. Hence, one obtains from equation (2.1.2)

a11
2u
x2

2a12
2u
x y

a22
2u
y2 x y

Q QT
u
x
u
y

u

u 11

2u
2 22

2u
2

(2.1.3)
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The resulting equation will look like:

11

2u
2 22

2u
2 1

u
2

u
cu d 0 (2.1.4)

Exercise 2.1.1 Show that a212 a11a22 0, a212 a11a22 0 and a212 a11a22 0, respec-
tively correspond to 11 22 0, 11 22 0 and 11 22 0 (these cases correspond to
the situations in which the eigenvalues of A have the same sign, one of the eigenvalues of
A is zero and opposite signs of the eigenvalues of A respectively).

There are three possibilities:

1. 11 22 0. (I.e. both coefficients have the same sign) The equation is called
elliptic. An example of this is Poisson’s equation

2u
x2

2u
y2

f (2.1.5)

2. 11 22 0. (I.e. both coefficients have opposite sign) The equation is called hy-
perbolic. An example of this is the wave equation

2u
x2

2u
y2

0 (2.1.6)

3. 11 22 0. (I.e. either coefficient vanishes). The equation is called parabolic. An
example is the heat equation in one space dimension:

u
t

2u
x2

(2.1.7)

Exercise 2.1.2 Let D a11a22 a212. Show that the condition for hyperbolic, parabolic
or elliptic in the original coefficients ai j is given by D 0, D 0 and D 0 respectively.
Use the result of Exercise 2.1.1.

For the classification only the second order part of the PDE is important. The three dif-
ferent types have very different physical and mathematical properties. To begin with,
elliptic equations are time-independent and often describe an equilibrium. Parabolic and
hyperbolic equations are time-dependent: they describe the evolution in time or transient
behavior of a process.

This classification strictly spoken only holds for equations with constant coefficients. For
equations with varying coefficients this classification holds only locally. If the coefficients
depend on the solution itself the type of equation may depend on the solution itself.
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2.1.1 Three or more independent variables

The general second order part of a quasi-linear PDE in N 2 independent variables is
given by:

N

i 1

N

j 1

ai j
2u
xi x j

(2.1.8)

ai j a ji and in a way similar to that in the previous section one may remove the mixed
derivatives. This leads to:

N

i 1
ii

2u
2
i

(2.1.9)

Only three cases are of interest in a physical context:

1. All ii have the same sign. In this case all independent variables i are space vari-
ables. The equation is called elliptic. Example: 3D Laplacian

2u
x2

2u
y2

2u
z2

0 (2.1.10)

2. Exactly one ii, say 11 has different sign from the rest. In this case 1 is a time
variable, all other i are space variables. The equation is called hyperbolic. Exam-
ple: 3D Wave equation

2u
t2

2u
x2

2u
y2

2u
z2

(2.1.11)

3. Exactly one ii vanishes, say 11. Then 1 is a time variable and the equation is
called parabolic. Example: 3D Heat equation

u
t

2u
x2

2u
y2

2u
z2

(2.1.12)

Exercise 2.1.3 If A is a symmetric n n matrix there exists a real unitary matrix C such
that CTAC . is a diagonal matrix containing the eigenvalues of A on the diagonal.
Show that the substitution CTx eliminates the mixed derivatives in the differential
operator divAgradu.

2.2 Boundary and initial conditions

To ensure a unique solution to our PDE we need to prescribe appropriate boundary condi-
tions and in time dependent problems we need initial conditions too. We will just consider
here second order PDE’s because the considerations for first order PDE’s are very differ-
ent and will be considered in Chapter 11.
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Figure 2.1 The bounded region .

2.2.1 Boundary conditions

Consider the bounded region in 2 , with boundary in Figure 2.1. Let consist of
three disjoint pieces 0, 1 and 2. For an elliptic equation of the form

divkgradu f (2.2.1)

with k 0 x ¯ , the following boundary conditions guarantee a unique solution:

1.
u g0 x x 0 (2.2.2)

the Dirichlet boundary condition.

2.

k
u
n

g1 x x 1 (2.2.3)

the Neumann boundary condition.

3.

k
u
n

u g2 x 0 x 2 (2.2.4)

the Robbins, radiation, kinetic or mixed boundary condition.

These boundary conditions do not have to occur together, each (but not all) of 0, 1
or 2 could be empty. Because the pieces are disjoint exactly one boundary condition
occurs on each point of the boundary. There is a small problem if 1 in other words
if there is a Neumann boundary condition on all of the boundary. Physically this may be
understood, by noting that the inflow at each point of the boundary is prescribed. And
since we have an equilibrium the net inflow over the whole region must be annihilated
inside or the net outflow must be produced inside. This result is stated in mathematical
form in the following theorem.
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Theorem 2.2.1 If a Neumann boundary condition is given on all of , then the solution u
of Equation (2.2.1) is determined up to an additive constant only. Moreover the following
compatibility condition must be satisfied:

g1 d f d (2.2.5)

Exercise 2.2.1 Prove Theorem 2.2.1. Use Gauss’ divergence theorem on the PDE.

Remarks

1. Only the highest order part of the PDE determines what type of boundary conditions
are needed, so the same set is needed if first and zeroth order terms are added to
Equation (2.2.1).

2. On each part of the boundary precisely one boundary condition applies. (For second
order PDE’s)

3. Boundary conditions involving the flux vector (Neumann, Robbins) are also called
natural boundary conditions. (For second order PDE’s) This term will be explained
in Chapter 5.

4. The boundary conditions needed in parabolic and hyperbolic equations are deter-
mined by the spatial part of the equation.

5. If the coefficients of the terms of the highest order are very small compared to the
coefficients of the lower order terms it is to be expected that the nature of the solu-
tion is mostly determined by those lower order terms. Such problems are called sin-
gularly perturbed. An example is the convection dominated convection-diffusion
equation.

2.2.2 Initial conditions

Initial conditions only play a role in time dependent problems, and we can be very short.
If the equation is first order in time, u has to be given on all of at t t0. If the equation
is second order in time in addition u

t has to be given on all of at t t0

Exercise 2.2.2 Consider the transversal vibrations of membrane that is fixed to an iron
ring. These vibrations are described by the wave equation. What is the type of boundary
condition? What initial conditions are needed?

2.3 Existence and uniqueness of a solution

Physicists and technicians usually consider the mathematical chore of proving existence
and uniqueness of a solution a waste of time. ‘I know the process behaves in precisely
one way’, they will claim and of course they are right in that. What they do not know is
if their mathematical model describes their process with any accuracy and existence and
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uniqueness of a solution is an acid test for that. In ODE’s a practical way to go about this
is try and find one. In PDE’s this is not much of an option, since solutions in closed form
are seldom available.

Proving existence and uniqueness is usually a very difficult assignment, but to get some
of the flavor we shall look at a relatively simple example: Poisson’s Equation (2.1.5). We
shall prove that a solution to this equation with Dirichlet boundary conditions on all of
is unique.

2.3.1 The Laplacian operator

The Laplacian operator divgrad is such a fundamental operator that it has a special sym-
bol in the literature: . So the following notations are equivalent:

divgradu u
2u
x2

2u
y2

(2.3.1)

In a technical context divgrad is mostly used, in mathematical contexts the other two.

2.3.2 The maximum principle

Solutions to Laplace’s and Poisson’s equation share a number of properties that have to
do with extreme values in the interior of . To start off, we note, that if a smooth function
of two variables u x has an isolated maximum in some point x0 (i.e. u x0 u x in
a neighborhood of x0) then the Hessian matrix, that is the matrix of second derivatives
(2.3.3), must be negative definite. To prove this, we consider the 2-D Taylor expansion of
u around x0:

u x u x0 u x0 x x0 x x0 H x0 x x0 O x x0
3 (2.3.2)

in which H is the Hessian matrix

H

2u
x2

2u
x y

2u
y x

2u
y2

(2.3.3)

Because u has a maximum in x0, u x0 0. For x close enough to x0, say x x0
the third order term is negligible compared to the rest. Since u x0 u x for all x with
x x0 , we necessarily have x x0 H x0 x x0 0 for those x. Hence H x0
is negative definite.

Exercise 2.3.1 Prove that H x0 is positive definite if u has a minimum in x0.

Exercise 2.3.2 Show that if H is positive definite both diagonal elements must be positive.
Hint: Make special choices for u in u Hu .

Definition 2.3.1 A function satisfying Laplace’s equation u 0 is called harmonic.

The result of Exercise 2.3.2 shows that if a function of two variables f has an isolated
minimum both fxx and fyy must be positive. This suggests the following theorem on
harmonic functions :
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Theorem 2.3.1 If u x is harmonic in a bounded region , then u cannot have an extreme
value in an interior point of .

To prove this theorem the observations on the Hessian are insufficient, we need some-
thing more. Harmonic functions have a number of interesting properties, one of which is
described by

Lemma 2.3.2 Let u be harmonic in . Let x0 be a point of and let C be a circular disk
with midpoint x0, radius r and boundary C fully contained in . Then r 1

C u ds does
not depend on r and is equal to 2 u x0 .

Proof By Gauss’ divergence theorem we have

C

divgradud

C

u
r
ds (2.3.4)

where r represents the distance between any point in C and x0. Since u is harmonic the
integral on the left side vanishes, so

C

u
r
ds 0 (2.3.5)

Now putting ds rd we get r 2
0

u
r d 0 and hence 2

0
u
r d 0. Note that the

integrand must be evaluated at

x x0 r
cos
sin

Interchanging the order of integration and differentiation we get

r

2

0

u x d 0

giving us
2

0

u x d constant.

By taking r 0 we obtain the value of this constant: 2 u x0 .

If a harmonic function has an extreme within , hence not on the boundary, then the
function is constant. This is formulated in the following theorem:

Theorem 2.3.3 If a harmonic function u takes on a maximum M at an interior point x0
of , then

1. u M at the circumference of any circle with midpoint x0 fully contained in ;

2. u M on every disk with midpoint x0 that is fully contained in ;
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3. u M for every point in .

Exercise 2.3.3 Prove Theorem 2.3.3.

Exercise 2.3.4 Prove Theorem 2.3.1

Corollary Laplace’s equation with homogeneous Dirichlet boundary conditions has only
the trivial solution u 0.

From this observation follows the uniqueness of a solution to Poisson’s equation with
Dirichlet boundary conditions.

Theorem 2.3.4 Let be a bounded region in 2 with boundary . Let u satisfy u
g0 x and divgradu f x . Then u is the only solution to this problem.

Proof. Let v be a second solution to the problem. Now consider the difference w u v.
Clearly w 0 on and divgradw 0 on . Hence by the maximum principle w 0 on
and u v.

Theorem 2.3.5 Let u be smooth with continuous second order derivatives, then divgradu
0, subject to homogeneous Dirichlet boundary conditions, implies u 0.

Exercise 2.3.5 Prove Theorem 2.3.5. Reason by contradiction and follow the proof of
Lemma (2.3.2).

Exercise 2.3.6 Show that the elliptic operator auxx 2buxy cuyy, a,b,c constant, ac
b2 0 satisfies the same maximum principle as the Laplacian operator. Use scaling and
rotation of the coordinates.

2.3.3 Existence

To prove existence of a solution of Poisson’s equation is very hard. In general one needs
extra requirements on the smoothness of the boundary. This is far outside the scope of
this book, the interested reader may look at [12]. As we shall see in Chapter 7, there is an
alternative way to obtain a generalized solution to these problems. The existence proof of
such a solution is somewhat easier.

2.4 Examples

In this section we give a few examples of PDE’s that describe physical and technical
problems. For all problems we consider a bounded region 2 with boundary .
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2.4.1 Flows driven by a potential

Flows driven by a potential we already met in Chapter 1. They all have the form

c u
t

div gradu f t x u (2.4.1)

For uniqueness c must be a monotone function of u and for stability it must be non-
decreasing. In ordinary heat transfer, ground water flow and diffusion, c is linear. In
phase transition problems and diffusion in porous media it is non linear.

2.4.1.1 Boundary conditions

In Section 2.2 there have been introduced three types of boundary conditions that may
occur in combination

u g0 x x 0 Dirichlet, (2.4.2a)

u
n

g1 x x 1 Neumann, (2.4.2b)

u
n

u g2 x x 2 Robbins. (2.4.2c)

This is not a limitative enumeration, there are other ways to couple the heat flow at the
boundary to the temperature difference one way or another, mostly non linear.

2.4.1.2 Initial condition

In order that Problem 2.4.1 with boundary conditions (2.4.2) has a unique solution u x t ,
it is necessary that u is prescribed at t t0: u x t0 u0 x x .

2.4.1.3 Equilibrium

An equilibrium of Equation (2.4.1) is reached when all temporal dependence has disap-
peared. But this problem can also be considered in its own right:

div gradu f x u (2.4.3)

with boundary conditions (2.4.2).

2.4.2 Convection-Diffusion

The convection-diffusion equation describes the transport of a pollutant with concentration
c by a transporting medium with given velocity u. The equation is

c
t

u gradc div gradc f t x c (2.4.4)

Comparison of Equation (2.4.4) with (2.4.1) shows that a convection term u gradc has
been added. Boundary and initial conditions are the same as for the potential driven flows.

In cases where the diffusion coefficient is small compared to the velocity u the flow
is dominated by the convection. The problem then becomes singularly perturbed and in
these cases the influence of the second order term is mostly felt at the boundary in the
form of boundary layers. This causes specific difficulties in the numerical treatment.
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2.4.3 Navier-Stokes equations

The Navier-Stokes Equations describe the dynamics of material flow. The momentum
equations are given by:

u
t

u
u
x

v
u
y

divsx bx (2.4.5a)

v
t

u
v
x

v
v
y

divsy by (2.4.5b)

We shall not derive the equations (see for instance [3]), but we will say a few things about
their interpretation. The equations describe Newton’s second law on a small volume V of

fluid with density and velocity u
u
v

moving along with the flow. Thus, a particle

P V with coordinates x at time t has at time t t coordinates x u t. Therefore the
change in velocity of a moving particle is described by

u u x u t t t u x t (2.4.6)

We recall Taylors theorem in three variables:

f x h y k t f x y h
f
x

k
f
y

f
t

O h2 k2 2 (2.4.7)

Applying this to Equation (2.4.6) we get:

u u t
u
x

v t
u
y

t
u
t

(2.4.8a)

v u t
v
x

v t
v
y

t
v
t

(2.4.8b)

If we divide both sides by t and let t 0 we find the material derivative

Du
Dt

u
u
x

v
u
y

u
t

(2.4.9a)

Dv
Dt

u
v
x

v
v
y

v
t

(2.4.9b)

The right hand side of Equations (2.4.5) consists of the forces exerted on a (small) volume
of fluid. The first term describes surface forces like viscous friction and pressure, the
second term describes body forces like gravity. The quantity

sTx
sTy

xx xy

yx yy
(2.4.10)

is called the stress tensor.

The form of the stress tensor depends on the fluid. A Newtonian fluid has a stress tensor
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of the form:

xx p 2
u
x

(2.4.11a)

yy p 2
v
y

(2.4.11b)

xy
u
y

v
x

(2.4.11c)

in which p is the pressure and the viscosity. The minimum configuration to be of
practical importance requires a mass conservation equation in addition to (2.4.5):

t
div u 0 (2.4.12)

and a functional relation between and p like for instance Boyle’s law.

An important special case is where is constant and Equation (2.4.12) changes into

divu 0 (2.4.13)

the incompressibility condition. In this case can be scaled out of Equation (2.4.5) and
together with (2.4.11) and (2.4.13) we obtain

u
t

u
u
x

v
u
y

p
x

u bx (2.4.14a)

v
t

u
v
x

v
v
y

p
y

v by (2.4.14b)

u
x

v
y

0 (2.4.14c)

In this case p is determined by the equations.

Exercise 2.4.1 Derive Equation (2.4.14).

2.4.3.1 Boundary conditions

On each boundary two boundary conditions are needed, a normal and a tangential bound-
ary condition. This can be either the velocity or the stress. The tangential stress is com-
puted by t n for given unit tangent vector t and unit normal vector n. For an
extensive treatment of the Navier-Stokes equations see [37] and [15].

2.4.4 Plane stress

Consider the flat plate in Figure 2.2.
The plate is fixed along side ABC but forces are applied along the free boundary ADB

as a consequence of which the plate deforms in the x-y-plane. We are interested in the

stresses xx xy

xy yy
and the displacements u

u
v

The differential equations
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Figure 2.2 Fixed plate with forces applied along the boundary.

for the stresses (compare also (2.4.5)) are given by

xx

x
xy

y
b1 0 (2.4.15a)

xy

x
yy

y
b2 0 (2.4.15b)

in which b is the (given) body force per unit volume. Usually only gravity contributes to
the body force term. We transform Equations (2.4.15) in two stages into a set of PDE’s
in the displacements. If the medium is isotropic we have a a very simple form of Hooke’s
Law relating stresses and strains:

E x xx yy (2.4.16a)

E y xx yy (2.4.16b)

E xy
1
2 1 xy (2.4.16c)

E, themodulus of elasticity and , Poisson’s constant, are material constants. Furthermore
there is a relation between strain and displacement:

x
u
x

(2.4.17a)

y
v
y

(2.4.17b)

xy
u
y

v
x

(2.4.17c)
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This leads to the following set of PDE’s in the displacements u:

E
1 2 x

u
x

v
y

E
2 1 y

u
y

v
x

b1 (2.4.18a)

E
2 1 x

u
y

v
x

E
1 2 y

u
x

v
y

b2 (2.4.18b)

Exercise 2.4.2 Derive Equations (2.4.18)

2.4.4.1 Boundary conditions

The boundary conditions are comparable to those of the Navier-Stokes equations. At each
boundary point we need a normal and a tangential piece of data, either the displacement
or the stress.

Exercise 2.4.3 Formulate the boundary conditions along ABC.

Exercise 2.4.4 Along ADC the force per unit length is given: f. Show that

xxnx xyny f1 (2.4.19a)

xynx yyny f2 (2.4.19b)

and hence:

nxE
1 2

u
x

v
y

nyE

2 1
u
y

v
x

f1 (2.4.20a)

nxE
2 1

u
y

v
x

nyE

1 2

u
x

v
y

f2 (2.4.20b)

2.4.5 Biharmonic equation

The prototype of a fourth order PDE is the biharmonic equation on a bounded region
2 with boundary :

w f (2.4.21)

It describes the vertical displacement w of a flat plate in the x-y-plane, loaded perpendic-
ularly to that plane. To this problem belong three sets of physical boundary conditions:

1. Clamped boundary

w 0
w
n

0 x (2.4.22)

2. Freely supported boundary

w 0
2w
n2

2w
t2

0 x (2.4.23)

3. Free boundary

2w
n2

2w
t2

0
3w
n3

2
3w
t3

0 x (2.4.24)
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n and t stand for normal and tangential derivative respectively. is Poisson’s con-
stant, which depends on the material. In the biharmonic equation the natural boundary
conditions contain derivatives of second order or higher, all other boundary conditions are
essential.

2.5 Summary of Chapter 2

In this chapter we obtained a classification of second order PDE’s into hyperbolic, parabolic
and elliptic equations. We formulated appropriate initial and boundary conditions to guar-
antee a unique solution. We obtained a maximum principle for harmonic functions and
used this to prove uniqueness for elliptic equations. We looked at a few examples of
partial differential equations in various fields of physics and technology.




