Chapter 1

Elephant ears, dolphin fins and the
balance equation

1.1 Keeping the balance

It is easy to come up with a set of questions concerning daily life observations
that require some degree of physics in answering. At first sight some may be only
remotely connected to physics, like the question:

e Why do (African) elephants have such enormous ears?

Part of the answer can only be
given if the balance between radiatiunfmm@
production of heat and the de- sun&environment

sired temperature of the ani-
mal is taken into consideration.
All mammals have to maintain
a body temperature of about

convective transport
(including evaporation)

radiation from
elephant to environment

convective ransport

37°C. However, even in rest the (including evaporation) &

animal will use energy which

is partly converted into heat j:J
within its body. Obviously, to b
arrive at a steady state as far P

as its temperature is concerned,
the animal will have to transport
this heat to the environment as
can be seen from a very elementary (steady state) heat balance:

Figure 1.1 Heat production and flows from and to
an elephant.

0 = heat flow from environment - heat flow to environment +

+ internal heat production (1.1)

The heat production is proportional to the volume of the elephant.The heat flows
are more complicated as there are various ways to transport heat from an object
to its surroundings. Generally, we split these in three groups: heat transport by
conduction, by convection and by radiation. The relative importance of these three
depends on the particular circumstances. For instance, if the elephant is standing
in the bright sunshine, it is obvious that he will receive radiation from the sun that
will count as an inflow of heat. If there is wind, the elephant might be cooled by
the wind if the air is colder than the outside of the elephant or heated if the air
temperature is higher than its skin temperature.

Furthermore, for animals there is the very important possibility to loose heat due
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to evaporation of water, i.e. by sweating. For all these flows of heat it holds that
they are proportional to the surface of the elephant. So, if we look at the heat
balance of the elephant, we see that the internal production of heat is proportional
to the volume of the elephant and that the net balancing heat loss is to a good
extend proportional to its surface. This gives us a good part of the explanation for
the big ears: increase of (cooling) surface without increase of (heat producing)
volume.

e How does a dolphin in cold sea water prevent itself from too much heat
losses via its flippers?

This question can be investigated along the same lines as in the above example.
Now we focus on the flippers. It will be clear that the blood that flows through
them will be cooled substantially, being ’surrounded’ by cold sea water. Nature
has found a clever way of dealing with this, that humans (especially engineers)
since the industrial revolution started to utilize frequently: the heat exchanger. In
the flippers of the dolphin the veins carrying blood that flows from the body into
the flippers are clearly twisted around the return veins that carry the blood back
into the body (see Figure 1.2).

Figure 1.2 Schematic representation of the veins in the dolphin flippers.

What happens is that the warm blood coming from the dolphin body exchanges
heat with the blood that returns to the body. The latter is obviously cooled by the
cold surrounding sea. The driving force for the heat flow from the hot to the cold
flow is the temperature difference between the two blood streams.
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Intermezzo: balance equations

In physics ’conserved quantities’ form a special type. They
are at the foundation of physical theories for the obvious rea-
son that no matter what happens during an event a conserved
quantity will come out the same as it went in. This does not
mean that nothing is changing: the conserved quantity can be
redistributed over the various parts participating in the event.
In physics, mass, momentum and energy are amongst the most
important conserved quantities. It is, however, in many cases
more convenient to think of these quantities in terms of a bal-
ance rather than a conservation equation. The latter expresses Figure 1.3  Changing
that the quantity can not disappear. the former leaves room for number of people in
’production’ of a quantity under consideration (where a nega- a country due to in,
tive production stands for destruction). An easy example, al- out flow and birth and
though not from physics, is the number of people in a country. death.

Obviously, 'people’ is not a conserved quantity: the total num-

ber of people varies over time, as there is birth and death. If these two were absent, then
of course the total number of people would be conserved. For the country chosen, the
number of people present at time z + At, let’s call that N(z 4+ A¢) depends on the number at
time 7, N(¢) and on the number of people coming into the country during the time interval
At, the number going out during Az as well as the number of people that died and are born
in this period. We group the latter two together into a net production, Prod. We can write
this now in a balance equation:

N(t+Ar) —N(t) = in(Ar) — out (Ar) + Prod (At) (1.2)

The terms ’in’ and ’out’ can be written more convenient as a mean flow in or out of the
country (in number of people per second) acting during the time interval As. Note that
this flow in and out requires actual crossing of the border of the country by the people.
Similarly, we will write the production term as the number of people born in the country
minus those who die in the country both per unit of time, multiplied by the time interval.
Using these we can write the above equation as:

N(t+Ar) —N(t) = flow,, - At — flow,,, - At +P- At (1.3)

By dividing both sides by Ar and taking the limit Az — 0, we arrive at the basic form of
a balance equation, which describes the dynamics of the quantity under consideration, in
the above example the number of people in the country.

dN
o flow,, — flow,, +P (1.4)

In case of a steady state, obviously, the rate of change with time is zero and we get:

stst. = 0= flow,, — flowy, + P (1.5)
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Hence, this is a passive system that does not cost the dolphin any extra energy
and furthermore is sensitive to the heat loss of the blood by its nature. The colder
the returning blood the more heat is transferred from the hot blood to the cold.
Consequently, the colder the hot blood becomes before being ’exposed’ to the
cold sea. In this way the system is self regulating and the temperature of the blood
entering the dolphin’s body is as high as possible without the input of extra energy
by the animal.

In many technical applications heat exchangers (or mass exchangers for that mat-
ter) can be found that use a similar arrangement.



Chapter 2

The sky has a limit

2.1 Thickness of the atmosphere

The earth is a special planet. It has the right conditions to make life possible. It
has water in enormous quantities and is blessed with an atmosphere containing
oxygen and other gases. It has the right distance from its star, our sun, to allow
for a temperature that leaves water liquid.
The earth radius is about 6378 km. The atmosphere forms
only a thin layer around the earth. How thick is this layer?
Let’s make a guess. We do know that the pressure at the
rA earth surface is 1 atm. Just like in water, this pressure can
be explained as hydrostatic pressure: the total weight of the
atmosphere is ’lifted’ by the pressure. So, a first rough guess
could be: assume the density of the air is constant (1.2 kg/m?).
mg Then, a simple force balance over a vertical column with
cross-sectional area A of the atmosphere gives:

<

Figure 2.1 The
pressure ’carrying’

o atmasphore.  PHA—Feray=0=> pxA—pAHg=0=H="" =8 6km

@2.1)

Intermezzo: force balancing

A force balance can be set up for any material entity that is either at rest or moves
at a constant velocity. This notion goes back to Newton, who formulated this as
one of his main physical laws: given a mass at rest or moving at a constant
velocity, then the sum of forces acting on this mass must be zero. In vector
notation we can write this as:

SF=0 (2.2)

This equation is a vector relation. Hence, it holds for the different components
of the vector, e.g. for the x,y or z direction in a Cartesian coordinate system.

Obviously, this answer must be wrong as air planes routinely cruise at a height
of 10 km. Thus, we need to improve our model. And it goes without saying
that the constant density is a very dubious assumption. Of course, going up in
the atmosphere, the density decreases. We can use the ideal gas law to relate the
density to the pressure. The latter is also decreasing with height as the pressure at
height z does not have to carry what is below z. But the density is also a function
of the temperature. Let’s try isothermal conditions, hence we set 7 = 0°C =273 K.

hydrostatic
pressure
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Intermezzo: Ideal gas law

An ideal gas is a physical concept that describes the relation between the pres-
sure, temperature and volume of a given number of moles of gas. Ideal gases
do not really exist, but gases in which the molecular attraction between the
molecules plays a negligible role are accurately described by it. Boyle and Gay-
Lussac formulated the basic relations, that were later put together to form the
ideal gas law:

pV =nRT (2.3)

with p the pressure, V the volume occupied by the gas, n the number of moles
of the gas and 7' the temperature. The constant R is the gas constant and has a
value of 8.3144 J/molK.

Usually, dilute gases follow the ideal gas law. At temperatures well above the
boiling point of nitrogen and oxygen, air can be treated as an ideal gas. By
multiplying the above equation by the molar mass M, the ideal gas law describes
the relation between pressure, temperature and density (p):

M
PV = nRT — pM = n7RT — PRT 2.4)
force Now we need to set up a force balance that takes into account the variation of the
balance: density with height. Therefore, consider a small slice out of a vertical column of
slice the atmosphere, between z and z+ Az (see Figure 2.2).
-p(z+Az)
--------------- 7z +Az
_______ _ l N
A
l:‘grav
p(2)

Figure 2.2 Forces on a small slice of the atmosphere.

The weight of this slice is: pAAzg. Three forces act on this slice: at the bottom
the pressure at that position pushes upwards: p(z)A; at the top the pressure pushed
downwards: p(z+ Az)A and, of course, gravity. Thus for a steady state we have
according to Newton that the sum of the forces is zero:

p(2)A—p(z+Az)A—pAAzg =0 (2.5)

If we use a Taylor expansion on p(z+Az)

d
p(z+4A2) = p(z) + d—iAz thout. 2.6)
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we can simplify eq.(2.5) to
dp _

2.7)

Intermezzo: Robert Boyle & Joseph Gay-Lussac

The ideal gas law is attached to the work of
Robert Boyle (1627-1691) and Joseph Gay-
Lussac (1778-1850). Boyle experimented
with gases and reached an important conclu-
sion, now known as Boyle’s law: “For a gas
under constant temperature, the volume is in-
versely proportional to pressure”. In formula:
pV = const. at constant 7. He stated that
gases are made of tiny particles spaced very
far apart. After improving Guericke’s pump,
he demonstrated that a feather and a lump of
lead fall at the same speed in a vacuum.

Figure 2.3 Robert Boyle (1627-
1691).

Figure 2.4 Joseph Gay-Lussac

(1778-1850).

Joseph Louis Gay-Lussac extended the law of
Boyle, by realising that all gases expand by
equal amounts when subject to equal incre-
ments in temperature, if the pressure is kept
constant: V o< T for constant p. By combin-
ing these two laws with the notion that gases
are made of particles, the ideal law can be un-
derstood.

For isothermal conditions the density and pressure are linked according to:

RT
sznRT—)p:pﬁ (2.8)

with M the molar mass of air (= 28.8 -10™3 kg/m?). Combination of the last two

equations gives:

Ldp _ &M

SR (2.9)

Thus, for the density profile in the atmosphere (taking z =0 — p = p,) is:

PR _ o < %Z> (2.10)

" RT

isothermal
armo-
sphere
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The characteristic length scale is therefore: A = gTY/; = 8.0km. If we define rather
arbitrarily the end of the atmosphere as the position where the density has dropped

to p,/1000, we find that the atmosphere has a thickness of 55km.

Of course, we know that the atmosphere is not isothermal. Instead, we could
try and assume that the atmosphere behaves ’adiabatic’. This means that if a
portion of air moves up or down, it can adjust itself to the new surrounding without
exchanging any heat. Of course, the ideal gas law is still valid, but the temperature
is now no longer a constant with respect to height. Instead, it changes in such a
way that pV7 is constant (with y = Z—C = 1.4 for O, and N,). If we use this relation
in eq.(2.7), we find:
2dp P 08
dz YPo
with p,, and p,, the atmospheric density and pressure at ground level. The solution
of the above equation reads as:

pr~ @2.11)

1

. y—1plg \TT
p(z) = <pg 1—%}%) 2.12)
0

If we use the last equation to find z = H at which p =0, we get H =30 km.

A good approximation for the actual thickness is some 50km. There, the pressure
has dropped to about 1Pa. In the figures below, the distribution of the pressure
(calculated by integrating eq.(2.7) for both the isothermal and adiabatic solution)
is given for the isothermal and adiabatic model of our atmosphere.

10
1 P -1 isotherm
P 10
0.8 (bar) 3
(bar) 10
0.6
-5
04 10
-7
02+ isotherm 10
adiab
0 L L L L L
0 30 0 30

IOZ(km)ZO IOZ(.km)ZO

Figure 2.5 Pressure distribution of the atmosphere: (a) linear scale, (b) log-scale.
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Intermezzo: Adiabatic processes

In an adiabatic process no heat is transfered from one part of the system to an-
other. This can for instance be the case if the process is so fast that the heat flow
simply has not enough time to transport significant amounts of heat.

The first law of Thermodynamics relates changes of heat to work done and to an
increase of internal energy during the process. Actually, it is just another way of
expressing that energy is a conserved quantity that can neither be lost nor created
in a process. The first law of Thermodynamics is usually written as

dU =dQ — pdV (2.13)

with dQ the amount of heat added to the system, dU the increase of internal
energy of the system and pdV the amount of work performed on the surroundings
by the system.

In case of an adiabatic process we have

adiabatic - dQ =0 = dU = —pdV (2.14)

For an ideal gas, the internal energy is only a function of the temperature of
the gas. This makes sense, as for an ideal gas the intermolecular forces are
negligible and the only form of internal energy of the gas is the kinetic energy of
the molecules. Temperature essentially is but a measure of the kinetic energy of
these molecules. The internal energy and temperature are for an ideal gas related
as:
5

U= EnRT (2.15)
If we now combine the above equation with the adiabatic version of the first
law of Thermodynamics, we obtain a relation between temperature, volume and
pressure:

5
dU = pdV — >d(nRT) = —pdV (2.16)

Again, combining this with the ideal gas law, we can replace the term nRT by
pV:
5 7 5 Tav  dp
~dpV = —pdV — —pdV = —=Vdp - 2— = — = 2.17
24P p 7P 57 ap % v E (2.17)

If we denote y = %, the above equation can be integrated to pV? = const.

2.1.1  Cooler mountains, lower boiling temperature

As a consequence of the above, areas at higher altitude are generally colder than
those at sea-level.

From our adiabatic model, we can easily calculate the temperature change with
height using the distribution of the density and pressure that we have derived.
To obtain the temperature distribution we have to put these in the ideal gas law,
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pM = pRT. Luckily, the adiabatic density distribution is a kind of power law:
(a —z)P. Integrating that, we find a pressure distribution of the form (a — z)?*!.
Consequently, the temperature distribution which is the ratio of p over p will thus
be of the form (a —z)P*!/(a—z)? = a—z, thus linear in z! The precise answer is:

T(z)

We can insert numbers:

M = 28.8-1073 kg/mol, R =
8.3144 J/molK, p, = 101325
Pa, p, = 12 kgm?’, T, =
20°C, g = 9.81 m/s® and y =
1.4.

This gives for the temperature
decrease (in SI-units):

T(z) =20°C—9.7-1073 <ZC
(2.19)
which gives as a rule of thumb
1 degree for every 100 me-
ters. Note, that the 20°C
is just an example temper-
ature. It varies with the
time of the day, from day
to day and from place to
place. The temperature de-
crease with height, however, is
universal as it depends only
on M,R,g,y, which are con-
stants.

In reality, the temperature dis-

M([p, 7v-1 ]
== | ———& (2.18)
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Figure 2.6 Temperature and pressure distribution in
the atmosphere of the earth.

tribution is much more complicated. In our modeling above, we completely ig-
nored the possibility of temperature variations due to thermals, pressure distribu-
tions due to variation in heat received from the sun over the globe, in other words
the complicated dynamics of our atmosphere. A better impression is found in
Figure 2.6. It shows an almost linear decrease with height for the lower part of
the atmosphere, roughly for the first 10 km which is the troposphere in which we
live. The slope of this decrease coincides with our predicted slope of the adiabatic

atmosphere.

As a consequence of the decreased pressure at higher altitudes, cooking a meal
requires different cooking times. Water boils at 100°C, but only at a pressure of
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1 bar. In fact, the boiling temperature is a function of the pressure: with lower
pressures, the boiling temperature drops.

100
1.0 s, ’
1,
N N ©0)
(bar) . \Db }
09 |- i
I 195
0.8 | .
0.7 90
0 3

1 2
altitude (km)

Figure 2.7 Pressure of the atmosphere is decreases with the altitude. Consequently, the
boiling temperature of water drops with the altitude as well.

We can use a Taylor expansion of the pressure to find a linear approximation of
the pressure. If we use the same numbers for pressure, density and temperature,
we obtain:

P
p(2) ~ 101325(Pa) — 11.7756 <nj> > (2.20)

which shows that the pressure drops by approx. 11% per kilometer. So, when
camping at an altitude of 2km, the pressure will be only about 0.8 bar. Conse-
quently, the boiling temperature of water will have dropped to less than 93°C (see
Figure 2.7).

Moreover, at this altitude, the density of the air will have dropped from 1.2 kg/m?
to 1.0 kg/m?>. Consequently, the amount of oxygen in a liter of air is 16% less than
at sea-level. Thus, the gas-burner will not burn as hot and it is more difficult to
keep the pan with the food at the desired temperature.

This lack of oxygen is also felt when hiking or doing any other form of physical
exercise at high altitude. One is out of breath much quicker and it needs several
days if not weeks before our body has adjusted to the new circumstances. At a
height of 5km, i.e. in the Himalaya, the density has even decreased to 0.76 kg/m?
and at the top of the world on Mt. Everest it is down to 0.5 kg/m>: only 42% of
what we are used to.

2.2 The earth’s temperature

Usually, our temperatures range from —20°C in winter time to +40°C during the
summer. These temperatures are vital to life as we know it. From a physics point

boiling
temper-
ature

pressure
distribu-
tion
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of view, temperatures should be below 100°C as otherwise water is boiling and
life as we know it is impossible. Moreover, they should not below zero be too
long as then all water would freezes.

We can make a rough estimate of why the earth’s temperature is what it is. The
earth is heated by the sun. It looses heat by radiating heat into the universe. The
amount of heat received is in close balance with the amount released.

Figure 2.8 Sun heating the earth.

The most elementary model for predicting the earth’s temperature just equates the
amount of energy received by the earth from the sun to the amount the earth itself
radiates. In a steady state, no heat is accumulated by the earth and the in-flow of
energy from the sun will balance the out-flow. The former is given by considering
the fraction of the total energy-flow from the sun that hits the earth. The sun
radiates in all directions, the total flow is:

Osun = ATR> - T2

sun

(2.21)

The earth circles the sun at a distance S, its projected area seen by the sun being

nRz e Hence of the total radiation emitted by the sun, the earth receives:
. TR?
in = earthynR2 . 6T (2.22)

from sun — Ar Sz

Considering the earth in a first approximation as a black body, the total radiation
emitted by the earth is:
out = AnR2,., ol (2.23)

earth arth

Now, using the energy balance for the earth in steady state, we get:

fromsun ~ Yearth 28

[ RS‘M” 1/2
0= o A R Toun (2.24)

We can estimate the temperature of the sun from its spectrum: its maximum is
around yellow light, i.e. A ~ 500nm. From Wien’s law we find for the tempera-
ture of the sun: 7j,, = 5800 K. If we insert the relevant numbers in eq.(2.24): Ty,
= 5800 K, Ry =7.0-10* mand S = 1.5- 10" m, we find 7, = 280K = 7°C,
which is surprisingly close to the mean temperature of 15°C!
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2.2.1 The greenhouse effect

The estimate of the earth’s temperature fails on two points. Firstly, the earth is not
a black body. It does not absorb all radiation from the sun, but reflects a rather
significant portion. Secondly, there is the greenhouse effect.

The model for the earth’s temperature can now be refined by taking into account
the reflection of sunlight from the earth. The earth albedo a is about 0.3. Hence,
the steady state balance (2.24) is modified by a factor (1 — «) in front of the in-
coming radiation. If we still assume that the earth radiates as a black body, the
earth’s temperature is reduced by (1 — a)l/ 4 This gives T, aren.atbedo = 253K. Now,
the outcome is too low.

Greenhouse effect

So far, we did not take into account the effect of the earth’s atmosphere. That is
to say, we ignored the greenhouse effect. This causes the earth to be significantly
warmer. A simple model to incorporate this is sketched in Figure 2.9.

' ! ol
100% [30%|

Atmosphere 7, H,0, CO,,..

short wave convection long wave

Figure 2.9 Schematic representation of the greenhouse effect.

Notice that roughly 30% of the incoming energy is immediately reflected (from
the soil, seas and clouds). However, in a first approximation the atmosphere acts
like the glass of a greenhouse. It captures the radiation from the earth en radiates
as a black body with its own temperature, 7;,. This radiation goes in two directions:
into the universe but also back to the earth. From this sketch, a steady state balance
for the earth & atmosphere can be set up:

0=(1-a)di . qun—47R2, 10T, (2.25)

from sun

On the other hand, for the earth itself also a steady state balance holds, but now
with the radiation from the atmosphere as an incoming flow of energy:

0=(1—a)o" . wn+47R2, ., 0TS —4nR2, 0T (2.26)

from sun eart

albedo

greenhouse

effect
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Intermezzo: Black body radiation

All physical bodies loose heat via radiation. An ideal radiating body is the so-called black
body. This is a body that absorbs all radiation that falls on it. Moreover, it radiates itself
an amount of energy per unit time, that is proportional to its surface and to its temperature
to the fourth power.

The radiation consists of electro- 250

magnetic waves, of which light is a par- T =800°C
ticular example. A black body of tem- 200~ ' !
perature 7" emits an energy-flux accord- 4 il

ing to Planck’s law. This law describes (‘k:"L
the distribution of the wave length of 100 -
the radiation, i.e. the spectrum, as a
function of the temperature of the black ; .
body. In Figure 2.10, two examples of 0 i | L
spectra are shown for a black body of
500°C and 800°C, respectively. From
Planck’s law a simple law has been
derived, describing the wave length at
which the maximum amount of energy is emitted (i.e. the ’top’ of the spectrum). This is
Wien’s displacement law:

; 0

6 8 10
A (nm)

Figure 2.10 Spectrum of black body radiation.

AmaxT =2.8978 1072 (mK) (2.27)

with A, the wave length at which the spec- 10
trum has its maximum. Note that the hori-
zontal axis of Figure 2.10 is in micro-meters,
showing that the bodies radiate predomi-
nantly in the infra-red region, invisible for hu-
mans, but easy to pick up with infra-red de-
tectors. oL
From Wien’s law, we can easily compute the *
dominating wave length at which humans ra-
diate. Our skin temperature is around 30-
37°C = 303-310K. Hence, we radiate around Figure 2.11 Wien’s law.

9.4 um (compare to visible light with wave

length of 0.5 um). The sun has a surface temperature of about 6000K, hence its dominat-
ing wave length is some 0.5 um which is yellow light.

The total energy emitted per unit area and per unit time, ¢ of a black body is given by
a simple equation, the Stefan-Boltzmann law:

sk

}”max (” m)

L L
2000
T (K)

|
4000 6000

4 =oT* (2.28)

with 6 = 5.67- 1078W /m?K*, called the Stefan-Boltzmann constant.



2. The sky has a limit

Intermezzo: Max Planck

Around 1900, Max Planck (1858-1947, Nobel
Price for physics in 1918) made several impor-
tant discoveries that paved the way for mod-
ern physics, in particular for Quantum The-
ory. He showed that light can not only be de-
scribed as waves, but that it also appears as dis-
crete amounts, quanta. Otherwise it would have
been impossible to correctly describe observed
phenomena like black body radiation. Before
Planck’s theory, it was believed that a correct
account of the electrical, optical, and thermal
properties of matter was possible on the basis of
Newtonian’s classical mechanic applied to mo-
tion and of Maxwell’s theory of the electromag-
netic field.

15

Figure 2.12 Max Planck (1858-

1947)

However, Planck showed that this did not lead to a proper description of the law
of heat radiation. Instead, it was necessary to introduce the quantum hypothesis,
which has since received brilliant confirmation. This notion forms an important
starting point for the development of Quantum Mechanics, that describes the
’world of the small’ with spectacular accuracy, while at the same time turning
the world of classical mechanics, with its deterministic view on the world, up

side down.

Around the same time as Max Planck was Wil-
helm Wien (1864-1924, Nobel Price for physics
in 1911) working on heat and electromagnetism.
Wien’s theory of black body radiation was accu-
rate for high frequencies, but showed discrepan-
cies for the longer wave length. From his work
he could deduce what is now known as Wien’s
law: the wavelength at which a black body ra-
diates with maximum intensity is inversely pro-
portional to the absolute temperature of the body.
However, his theory broke down at short wave
length. This formed an important starting point
for Planck, which led Planck towards his quan-
tum theory of radiation.

Figure 2.13
(1864-1928)

Wilhelm Wien
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On summing up the last two equations, the radiation from the atmosphere can be
eliminated and the temperature of the earth can be resolved:

14 ((Ran \ 2
Tearth = [2(1 - (l)] / <2S—;n> Toun = 304K (229)

So, the greenhouse effect significantly raises the temperature of the earth.

The temperature of the planets

A similar exercise can be performed for all the other planets in our solar system.
The calculations are done (i) for black bodies (7},,), (ii) taking into account the
planets albedo (T, ) and (iii) assuming an atmosphere that provides a greenhouse
effect (Tgh, even if the planet has no atmosphere). In Table 2.1 the relevant prop-
erties as well as the outcome of the calculations is given (together with the true
temperature of each planet).

Planet | Distance | albedo | T, | T, Tg n | Tirue
from sun
(10°%m) | () | (K) | (K) | K | K
Mercury 58 0.058 | 450 | 443 | 528 | 440
Venus 108 0.71 | 330 242 | 288 | 737
Earth 150 0.33 | 280 | 253 | 304 | 288
Mars 228 0.17 | 227 | 217 | 258 | 208
Jupiter 778 0.73 | 123 | 89 | 105 | 163
Saturn 1430 076 | 90 | 64 | 76 | 133
Uranus 2870 0.93 64 | 33 | 39 | 78
Neptune 4500 0.84 51 | 32 | 38 | 73
Pluto 5900 0.14 | 47 | 43 | 51 | 48

Table 2.1 Temperature of the planets

As can be seen from the table, the calculations give a reasonable result with Venus
as the exception as it has an atmosphere with a strongly enhanced greenhouse
effect. Further note, that the prediction for Mercury without greenhouse effect is
almost right on the spot. This makes sense, as the sun has blown away Mercury’s
atmosphere.
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Intermezzo: Grey bodies and albedo

The concept of the black body is an idealization of reality. Many objects do not
obey the black body radiation law. In fact, they emit less energy than a black
body and they absorb less radiation as well. To model reality better, grey bodies
are introduced. They emit a similar spectrum as the black bodies, but with a
reduced intensity. This reduction is called the emission coefficient, e. The total
energy emitted per unit area and per unit time, ¢’ d,grey’ of a grey body is given
by a simple equation:

¢!, =e-oT* (2.30)

The reflection of the body is accounted for via the albedo, a. The amount of
radiation reflected is a times the amount coming in; the amount absorbed is e
times the latter. Hence, for a given spectrum (i.e. a given 'temperature’ of the
radiation), the albedo and emissivity add up to one: a + e = 1. However, a body
radiates at its own temperature and may receive radiation from e.g. the sun. In
that case a does not have to equal 1 —e.

2.3 The blue sky

2.3.1 Atmospheric absorption

Light from the sun (and stars) will have to travel through the atmosphere before
reaching the ground level. On its way it will be subject to absorption and scat-
tering. How much of the sunlight is absorbed? Obviously, this depends on the
time of the day, as at noon the sun is overhead and travels a much smaller distance
through the air to us. The absorption is due to the air molecules and to ’dust’
particles floating in the atmosphere. Figure 2.14 shows the difference between
sunlight outside the atmosphere and at ground level as observed at sea level with
the sun at 20° altitude.

The absorption is a function of the wave length of the light. Not surprising as
atoms and molecules absorb light in specific frequency bands.

2.3.2 Blue is the sky

Absorption is not the entire story. Sunlight (or light from the moon) also gets
scattered by the air and the dust. This effect is so common, that hardly anybody
pays attention to it. Nevertheless, it is an important feature of the atmosphere.
When on a clear day you look into the sky its color is blue, everybody knows
that. But few people know why. The reason is found in the scattering properties
of the molecules: the probability of light being scattered by an air molecule is
proportional to the wave length of the light to the power -4, or rephrased: propor-
tional to f* (f the frequency of the light, the theory of molecular scattering was
given first given by Lord Rayleigh). Thus, blue light of a wavelength of 450nm
is compared to red light (A = 650nm) (650/450)* = 4.4 times more likely to be
scattered. Consequently, the blue end of the spectrum of the (white) sunlight has

absorption
of light

light
scatter-
ing
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Figure 2.14 Intensity of sunlight out-
side the atmosphere (©) and at sea
level (® + @, from [5]).
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Figure 2.15 Comparison of spectrum
of sunlight (®) and of sky light. The
sun is at an angle of 24°. The spec-
tra of the sky light are taken at various
angles from the sun. The intensity of
all spectra have been rescaled to the
same value at A = 500nm. Figure taken
from [5].

a reduced probability to reach our eye directly in comparison with the red end.
And thus most of the scattered light that reaches us is blue: the sky is blue. This
is illustrated in Figure 2.15), that compares the spectrum of light coming directly
from the sun to light coming from the sky (called sky light).

2.3.3 Sky light

The sky does not have a uniform brightness. This is easily verified when looking
on a bright day into the sky. The sky above us is ’deep’ blue. Towards the horizon
the sky becomes lighter. Figure 2.16 shows an example.

The effect is caused by the difference in the length of the line of sight when look-
ing at different angles into the sky. Directly overhead (this is called the Zenith)
the distance through the atmosphere is smaller, see Figure 2.17.
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Figure 2.16 Blue sky: with dark blue overhead and lighter close to the horizon (Columbine
Lake, Colorado).

Zenith

Horizon l

Figure 2.17 Geometry of the line of sight through the atmosphere when looking towards
space.

Intermezzo: Lord Rayleigh

Lord Rayleigh (1842-1919), born as John
William Strutt, is well known for his con-
tribution to our understanding of optics and
vibrations, including sound. His work cov-
ers almost the entire field of physics, includ-
ing sound, wave theory, color vision, elec-
trodynamics, electromagnetism, light scatter-
ing, flow of liquids, hydrodynamics, density
of gases, viscosity, capillarity, elasticity, and
photography. He received the Nobel price in
1904.

Figure 2.18 Lord Rayleigh (1842-
1919)
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When looking at an angle 0 with the vertical we see through more air. Thus,
more light will be scattered into our direction and the sky looks brighter. As a
first approximation the ratio of the amount of air viewed in direction 8 compared
to 6 = 0 increases as 1/cos(60). This rule brakes down at large angles, when
the curvature of the earth becomes important. The ratio is plotted in Figure 2.19,
for a flat earth (when the line of sight can become infinitely long) and the actual
spherical geometry of the earth.
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Figure 2.19 Length through the atmosphere as a function of the zenith angle 6, normal-
ized by the length at 6 =0

Note that in Figure 2.16 close to the horizon the sky is becoming very light blue.
The reason is that we - wrongly - assume that the more air is on the line of sight
the more (blue) light gets scattered to us. We have ignored multiple scattering.
And this causes a very thick atmosphere to be opaque.

A simple model for the brightness of the sky itself can be conceived as follows.
The line of sight is in the direction x, making an angle 6 with the vertical. For
simplicity, assume that the sun is straight above us (at 8 = 0), then what we see
in the direction x is scattered sunlight, i.e. no direct sunlight. In Figure 2.20 the
situation we want to analyse is shown.

LI )

rHdx EI, *

xtdx Txdx

Figure 2.20 Schematic representation of sky light received by the observer.
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Intermezzo: Scattering of light by molecules

Light traveling through the atmosphere will have interaction with the molecules
of the air. One of the possible interactions is scattering. This can be understood
by considering a simple molecule made of a fixed nucleus with one electron
orbiting it. The equation of motion of the electron can be written as that of a
harmonic oscillator, with eigen frequency @:

mi+kx=0—i+agx=0 (2.31)

When light passes the electron, a
force acts upon the electron (since g

light is an electro-magnetic wave). )

The electric field is the dominating nucleus
force. For light of wave length A, i.e. : .
angular frequency ® =2nf =277,

the electric field can be written as

E,sin t. Such a field will produce a

.
force F, = ek, sin ot on the electron, /\ /\ /\ /\

modifying its equation of motion to: \VARVARVARY;

e g
¥+ ng = —E,sinwt  (2.32) Figure 2.21 Simple model of light having in-
n teraction with an atom.
The solution to this equation is of the
form: 7o
ek, sinwt
: 0
x(t) = ¢, sinwyt + ¢, cos Wyt + ——5—— 2.33
(t) 1 0 2 0 o wg P (2.33)
The important part is the last term: the extra motion caused by the passing

electric field. This causes an additional acceleration of the electron: a(z) =
eE)  ©?
T m 03— w?

to the extra acceleration the electron starts radiating. It sends out an electromag-
netic field with the wave length of the incoming light and an intensity propor-
tional to the square of the acceleration, (a(t)?), i.e.

0> 1
[ o [7} (2.34)
0} — w?

sin@t. The electron in its original orbit does not radiate. But, due

As the eigen frequency @, of the electrons in oxygen and nitrogen is much higher

than the frequency w of the incoming light we have that this is basically propor-
4

tional to (%) . As this radiation by the electron obviously feeds on the incom-

0
ing light, we find that the scattering of the light is proportional to the frequency
of the incoming light to the power 4.
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Consider a part of the line of sight between {x,x + dx}. The intensity of the light
is called /, the initial intensity outside the atmosphere is /5. The light that is com-
ing along the x-axis into the observer’s direction has an intensity , at position x,
when it is at position x + dx its intensity has become I, , . This change is caused
by scattering. In a good approximation the loss is proportional to the intensity of
the incoming light, so /; is scattered in different directions and will no longer
reach the observer. But, we shouldn’t forget the light that is added to our line of
sight from direct sunlight that is scattered into our direction. Again this is propor-
tional to the intensity of the sunlight at position x. We can safely ignore that this
is, due to scattering, no longer the original intensity I and we formally write for
this gain-term u/,. Note, that we did not use in this last expression I. This is
because we now deal with scattering of light by the molecules on the line segment
dx precisely into our direction, whereas to account for the losses all we need is
that the light originally moving in our direction is being scattered away from the
line of sight, without having to specify into which direction. So, [, is taking all
this into account and is a lumped (unspecified, but constant) parameter.

Now obviously, we should also take into account that the loss and gain term are
also proportional to the number of molecules on the small piece dx. As discussed
before, the density of the atmosphere is a function of the altitude. In order to
keep things simple, we will ignore this and consider the density as a constant.
Consequently, the number of molecules is proportional to the length of the line
segment, dx, we are considering. The longer dx, the more air molecules will
participate in the scattering. If we add everything up, we find:

0=5L—1_, —uldx+ pulydx (2.35)
If we use a Taylor expansionon /_ ;. :
dl
Ig=hL+ adx (2.36)
we can reduce eq.(2.35) to
dl
—=u(ly—1 2.37
=k (h=1) (2.37)
The general solution is:
In (IO—I) =—ux+C (2.38)

The integration constant C is found from the boundary condition. At position
x =0, which is the outer boundary of the atmosphere, no sunlight is yet reflected
into our line of sight as no molecules are present there. Thus, we find C = [nl,
and the solution for the brightness of the atmosphere in direction x is:

109y e (2.39)
I()

Note that u has a dimension of m~!, ie. itis the reciprocal of a characteristic
distance A. The observer will see, of course, the intensity at position x,,, which
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denotes ground level. The length through the atmosphere changes with the angle,
0 with the vertical as H/cos(0) (H is the thickness of the atmosphere above us).
This ignores the curvature of the earth for which we can adjust. So, the sky light
intensity that we see when looking into different directions is given by (the earth-
atmosphere is approximated as a flat, infinitely wide system)

1(6)

R B ] (2.40)
IO

For 6 = 0 we have 1(0)/I, = 0.1 (see [S]). Thus £ = —in(0.9). The bright-
ness of the sky is plotted in Figure 2.22. The dashed line is the flat atmosphere
approximation, the full curve the one adjusted for the earth curvature.
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Figure 2.22 Brightness of the sky for an observer at sea level, viewing at angle 6 with
respect to the vertical.

Now we understand the change in brightness of the sky, but we haven’t answered
the question why the sky close to the horizon looses its blue color. The answer is
simple. The sky light intensity saturates at large angles; it will do so for all wave
lengths, so blue isn’t the dominating color any more, but all other colors mix in
and they do so at comparable intensities. Hence, the sky turns white.

2.3.4 Distant mountain appear lighter

Another consequence of the scattered sunlight that is related to the whiter color
of the horizon, is seen when looking at a distant mountain ridge. The mountains
furthest away seem lighter, those closer by look darker, see Figure 2.23.

The explanation is that the further away, the more scattered sunlight mixes in with
the light that is directly coming from the mountains. Since a mountain close by
hides some of the scenery behind it, the distance to that mountain top is signifi-
cantly less than that of the scenery seen just above the ridge. In other words there
is a discontinuity in the distance when looking from the mountain to the scenery
behind it. This is illustrated in Figure 2.25. Consequently, the intensity from the
scattered light changes rather abruptly.
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Figure 2.23 Distant mountains appear lighter than those close by.

Figure 2.24 Distant mountains (190 km away) not visible during the day, but showing
clearly at sunset (from [5]).

The sky light can be so bright that mountains at great distances can not be seen
during the day. But at sunrise or sunset they become visible as dark areas against
a red sky, see Figure 2.24.

2.4 Color of smoke, fog or clouds

The color of cigarette smoke is different when being inhaled first compared to
coming directly from the cigarette. Why? Again this can be explained by the
scattering properties of the smoke. When rising up directly from the cigarette, the
smoke particles are very small. Many of them are in fact smaller than the wave
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Figure 2.25 Discontinuity in brightness caused by discontinuity in distance seen.

length of visible light. This means that they have scattering properties quite sim-
ilar to the air molecules discussed before. Therefore, blue light is preferentially
scattered and the smoke looks blueish to us. If on the other hand, the smoke is
first inhaled it contains relatively large water droplets. These are larger than the
wave length of visible light and will therefore have different scattering properties
(that can be described by the Mie theory, by Gustav Mie (1868-1957), explaining
the scattering of light by spherical particles of any size). It means that the prefer-
ence for scattering of higher frequencies is lost. The scattering is for the ’large’
droplets much closer to ordinary reflection and refraction. This makes the smoke
look white. Of course, this argument will also hold for fog or clouds.

Big or small?

One might wonder what makes the scattering different for small or big water
droplets. After all, all the scattering is done by the water molecules which are
the same in any type of droplet. Or perhaps, equally puzzling now that we start
to think about it: why can clouds be seen anyhow? Before the cloud is formed
the water vapor is present already at the location of the cloud-to-form. All that is
needed is a sufficient decrease in temperature (and some nuclei to start the conden-
sation process). The total number of water molecules on the line of sight hasn’t
changed at all! The difference is in the scattering of single isolated molecules
(the vapor) and an agglomerate of atoms (a droplet). In the droplets the atoms are
packed together at inter-molecule distances much smaller than the wave length
of the light. Now, remember that light is 'nothing’ but electro-magnetic waves.
The molecules respond to the passing electro-magnetic field. In case of the iso-
lated molecules they do so individually and the scattering is proportional to N,
the number of molecules. But when two molecules are very close together, they
start to respond in phase to the electro-magnetic field. This gives a summation of
the contributions of each of the two molecules to the amplitude of the scattered
electro-magnetic field, which means that the energy of the scattered light is four
times higher, as the energy is proportional to the square of the wave amplitude.
Thus, the linearity in N is broken. The conclusion is that scattering is stronger by

light
scatter-
ing at
droplets
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lumps of water molecules than by separate molecules. Thus, water vapor is invisi-
ble to the naked eye, but droplets are easily seen. For a more complete description
of the scattering see 'The Feynman Lectures on Physics’, part I Ch.32 ([1]).

2.4.1 Clouds: floating droplets

Clouds consist of "floating” water droplets. What is suspending them in the air?

Obviously, gravity is pulling them down. And the upwards directed buoyancy

force of the air (Archimedes’ law: the upward force on an object submerged in a

fluid is equal to the weight of the displaced fluid) is insufficient to keep the droplets

up. So, apparently there is some force acting on the droplets in the upward vertical
direction.

This force comes from the interaction between the droplet

and the surrounding air. If there is a relative motion be-

Vair tween these two, the droplet feels a frictional force acting

V 1 in the opposite direction of the relative motion. This force,

usually called the drag force, is proportional to the mag-

V4 nitude of the relative velocity squared, the density of the

surrounding air and the area of the projection of the droplet

Figure 2.26  Rela- perpendicular to the velocity, A | . The relative velocity, v,

tive velocity between js the difference between the velocity of the droplet, ¥,

droplet and flowing air. o 4 that of the surrounding air, V.,

1e.:

V=V, =V, (2.41)
Furthermore, this drag force (see intermezzo) is in the opposite direction of the
relative velocity. So we have:

=

L7
FD:_CDAJ_EPair|VV| e

- (2.42)
|V |
Let’s assume that the vertical component of the velocity of the water droplets in
a fog or cloud is zero. We then have that the vertical component of the relative
velocity is equal to —v,,. .. If we assume further that the horizontal velocity of
the air and the droplets is the same, we have a non-zero vertical component of the
drag force. It si given by:

2" Vairz (2.43)

F,
b v

P _CDAL Epair | Y;air|

air,z

Obviously, gravity is pulling the droplets downwards, so the drag force must have
a vertical component that is pointing upwards. This can only be so if the vertical
component of the air velocity is pointing upwards! Apparently, the motion of air
in a cloud has an upward component that is sufficient to keep the water droplets
"floating’: the drag force exerted by the air flowing around the droplet balances
the pull of gravity. In Figure 2.27 the air velocity needed is given as a function of
the size of the water droplets.



2. The sky has a limit 27

v (m/s)

d (mm)

Figure 2.27 Required air velocity for suspending a water droplet as a function of the
droplet diameter.

The atmosphere is always in motion. It is by and large transparent for sunlight.
So, if there are no clouds most of the sunlight reaches the ground and heats it up.
The ground in turn heats up the air. This process obviously induces temperature
and density differences, causing e.g. upward motion of hot air. In a cloud the
droplets may grow until finally their size is such, that the force of gravity, which
is proportional to the diameter to the third power, is larger than the drag force that
goes as the square of the diameter. Then the droplets will fall and we have rain, or
hail etc. Even during their fall to the earth the droplets may grow. Furthermore, the
upward velocity of the air close to the ground could be small or zero. In the latter
case we find that the velocity of a droplet with a size of 3mm is approximately
8m/s.

e Example: What is the speed of a returning bullet when shooting in the air?

This question was raised in news on tv at the time freedom fighters in Albania
were celebrating their victory. The estimates that followed on television and in
the newspapers were all dangerously high: several hundreds of meters per second
up to a kilometer per second. This would certainly be deadly if hit by such a
returning bullet.
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Intermezzo: the drag force

Any object moving at a relative speed in a
continuous medium (either a gas or a fluid)
will experience a drag force that tries to
make it move at the velocity of the medium.
The drag force consists of two contributions.
One is the viscous drag due to the difference
between the velocity of the surface of the
object and the medium. The other is due
to a pressure difference that builds up over
the object: an increased pressure at the
upstream side of the object as the fluid has to
be ’stopped’ and pushed aside (this requires
a force which shows up as an increased )

Figure 2.28 Flow lines around a
pressure) and a decreased pressure at the cylinder at low velocity (top) and
back of the object, the region called its wake,  pigh velocity (bottom).

e.g. due to an ’overshooting’ of the fluid.

The general modeling of the drag force is based on the notion that the bigger
the object obstruction is, the higher the drag force. Note that both the actual
surface (for the viscous drag) as well as the projected area on which effectively
the pressure difference works play a role. The choice has been made to use the
projected area as in most cases the pressure difference is the deciding contribu-
tion. A first estimate of the pressure difference is based on the so-called pressure
head % p ﬂvz, which is the pressure needed to stop an incoming flow of velocity v.
So, the drag force is a pressure difference times an area. Everything that makes
this first estimate incorrect is put in the "proportionality constant’, C},, called the
drag coefficient:

1
Fp=—CpA 5p e (2.44)

The constant Cp, is not really a constant, but rather a function of the Reynolds
number, Re = %, the single most important dimensionless number in fluid me-
chanics (with p the density of the fluid, v the relative velocity, D the characteristic
dimension of the object and u the dynamic viscosity of the fluid). Low Reynolds
numbers indicate laminar flows, high Reynolds numbers turbulence.

Only for simple objects (like spheres) and low Reynolds numbers (around O(1))
is the drag coefficient analytically known. For all other cases we rely on experi-
mental data. The figure below gives the drag coefficient for a few simple objects

as a function of the Reynolds number.
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Figure 2.29 Drag coefficient as a function of the Reynolds number.

A falling droplet

Consider a spherical rain drop of 1mm diameter. The drop is falling at constant
velocity through quiet air. What is the velocity of this droplet?

To answer this question, we set up, according to Newton’s laws, a force balance.
Three forces are acting on the drop: gravity downwards, the buoyancy force and
drag force upwards:

T 51 1 /4
0=F,+F,—F,= CDZDzipairvz + pm-,gD3g — pdrgD3g (2.45)

where D = 1 mm the droplet diameter, p ;= 1.2 kg/m? and p . =1.0- 103 kg/m?
the density of the air and the droplet, resp. From the above equation we can not
solve v, as we need to know C;,, which is an unknown function of the Reynolds
number that depends on v.

The way to solve this, is using an iterative method in which we first guess C),
then calculate v. Next from v, we calculate Re (with g = 2.0- 10 —>kg/ms the vis-
cosity of air) and look up the new value for Cj, in the figure above and repeat the
sequence until convergence is reached. For the example this means (according

to eq.(2.45)):
_ i@ Par — Pair
v=y/ 3¢, P (2.46)

guess: Cp=0.43 —v=50m/s— Re=3.0-10°
— Cp=07 —v=39m/s— Re=2.4-10°
— Cp=08 —v=3.Tm/s— Re=22-107

— C,=0.8 — conv.: the answer is: v=3.7m/s
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Figure 2.30 Shooting bullits in the air. Figure 2.31 Gravity and drag acting
on a falling sphere.

The real velocity is much lower. Let’s assume that the bullets are small steel
spheres with a diameter of 5 mm. Gravity will act on them. If this was the only
force, things would be easy. Assuming the bullet to be fired perfectly vertically
upwards the only parameter determining the return velocity is the velocity with
which the bullet leaves the rifle. Just for the sake of the argument let’s assume
that this is 600m/s. As only gravity acts, the bullet’s total energy (i.e. kinetic and
potential energy) is conserved. Hence, if the bullet returns, its potential energy is
the same as when it left and consequently its kinetic energy is at its starting value.
Thus the velocity when returning would indeed be 600m/s.

But of course gravity is not the only force. On earth an object usually travels
through air or water. Thus, we should include the frictional force exerted by the
air on the bullet. In a steady state the gravitational force is balanced by the drag,
ignoring buoyancy (see Figure 2.31.

Thus we have that the net force on the bullet is zero and therefore its velocity is
constant:

0=F

1
drag — Fgrav = CDAL Epairv2 —mg (2.47)

Like in the previous example, with A| = 7d? and m = £p,d;, we find for the

velocity of the bullet:
14 p, gd
air ~D

where d,, denotes the bullet diameter and p,, the density of the bullet. Substituting
numbers: d, = 5 mm, p, =8.9- 103 kg/m?, Puir = 1.2 kg/m? and taking a value
of order 0.5 for the drag coefficient, we find for the velocity : 31 m/s.

Still a hit would hurt, but it is probably not fatal! Notice that the initial velocity at
which the bullet was fired is irrelevant (provided of course it was well above the
velocity we just calculated).

2.4.2 Staring in the fog

Clouds and fog are very similar: a large number of floating small water droplets.
The droplet size is sub-millimeter as otherwise the terminal velocity of the droplets
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is so high that a fog can quickly disappear (see Figure 2.27). Some fog is ’open’
and one can look several hundred meters ahead. Others are dense and the view
is limited to less than a few meters. What causes this difference? There are a
few properties that are important: the size of the droplets, d,., and the number of
droplets per unit volume, n,,. Obviously, the higher the number of droplets per
unit volume the more difficult it is to see through. In Figure 2.32 a sketch is made
of light traveling through a foggy area.
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Figure 2.32 Light penetrating into the fog.

The incoming light has an intensity /. It passes through a fog, formed by spherical
droplets. If we consider the difference in area-averaged intensity between the light
passing at a plain at position x and x + dx, the latter will be reduced due to the
blocking of the droplets of part of the light rays. We can make a simple model of
this effect. The reduction in intensity in the slab {x,x + dx} is proportional to the
incoming intensity, /(x). Moreover, it is proportional to the projected area of the
droplets in this slab, 3 %dgr:

% 4dg,

I(x+dx)=1(x)—1I(x)- A

(2.49)
slab

The total blocking area in the slab can also be written as N - ”dgr, with N the total
number of droplets in the slab. We will replace AN by n-dx, with n the number
of droplets per unit volume. A related measure of the number of droplets per unit
volume is the volume fraction of droplets, o, defined as:
ytot N-Z d3 T
— Yar _ "V 6%r _ 3
= Vtgt = —tar —”gddr (2.50)

Combining the equations (2.49) and (2.50) we find:

ﬂddr

I(x+dx) =1(x)—I(x)- )

dx 2.51)

light

penetra-

tion
the fog

in
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which can be rewritten as:

I(x+dx)—1(x) 3 o dl 3 o
xren) Ty _ 2 22 252
dx 2d, " T dax T 24, (252

Solving eq.(2.52), with boundary condition x = 0 — I = [, gives:

30-x

I(x) = I,exp <—§d—dr> (2.53)
The reason to use the droplet volume fraction rather than the number of droplets
per unit volume is, that use of the volume fraction allows us to compare fog with
tiny droplets and rain with relatively big ones at the same water content. The view
in a typical rain shower is less obstructed than in a fog. This is a consequence of
the size of the droplets. In a rain shower the droplets will have a diameter of about
2 mm (with terminal velocity of about 7 m/s).

Let’s assume that the droplet number density is 100 droplets/m?.

Figure 2.33 A column of rain Figure 2.34 A weak sun seen through the fog.
droplets.

Suppose that it would rain an hour and the water is not drained. The thickness
of the water layer on the ground would then be 1 cm. This is easily calculated
from the droplet size, d;,, the number of droplets per unit volume, n,,, and the
terminal velocity of the droplets, v,.. We could imagine that all rain drops that
will fall during that hour are contained in a vertical column of air. The height of
this column is H = v b with ¢ the time interval it rains. In the present case this
would be H = 25 km. The amount of water (in the form of the droplets) in this
column is calculated from V;, = (n,, Zd3 ) A+ H, with A the cross-sectional area
of the column. If all this water will form a layer, the layer height, £, follows from:
A-h=V,,—h=(n, %d3)-H=lcmin the present case. Note that n,, Fd3, is the
amount of water in an unit volume, hence it equals the volume fraction ¢, which
is in this example equal to 4.2 - 1078, So, we could write 4 = a.H.
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Let’s go back to the visibility question. From eq.(2.53) we will define the visibility
length [ as the distance at which the intensity has dropped to e~ of the original
one, i.e.

@ —e 2 5= i%

I, 3 «a

For the rain shower this means / = 6.4 km. Hence, the view is not significantly
obstructed. If, however, the same amount of water was not in the form of droplets
of 2mm, but of 0.2mm the answer would be / = 640m and the rain would be no-
ticeable. A droplet size of 0.2mm is still too big for a good fog, as the steady state
velocity of these droplets is about 0.6m/s.
A real fog would have even smaller droplets, let’s say 20um. Then, the terminal
velocity is 1cm/s. Now we find for the visibility length: /=64m. Hence, this fog
is getting dense.

(2.54)

So, small droplets have a big effect on the visibility. This is a consequence of
keeping o, i.e. the amount of water per unit volume, constant. Then, by taking
smaller and smaller droplets, we create an increasing blocking area as the sur-
face/volume ratio goes up for smaller droplets. Actually, this ratio increases with
d;rl which is exactly the dependence we find in the visibility length.

Relation (2.53) is obviously an approximation. We assumed that light rays hitting
arain droplet are stopped and do no longer contribute to the light intensity further
into the fog. Light gets scattered in other directions, the absorption is not big. The
scattered light will get rescattered and penetrates into the fog. Moreover, we did
not take into account that droplets deeper in the fog will be in the shadow of those
closer to the light source. Thus our estimate of the blockage of the droplets by
their frontal area is too optimistic. However, the multiple scattering and the over-
estimated blocking partially cancel each other out. This makes that our relation is
not so bad after all as has been confirmed by experiments.

2.5 Color of the sun

When, on a clear day, we would look into the sun at the middle of the day, we
would find that the sun is white. It is almost as white as it is seen in space. Even
though some of the visible sun light is scattered by the atmosphere and some is
absorbed, most of it is reaching us. The spectrum is not affected too much and thus
the sun’s color is white. However, when the sun is low, the sunlight has to pass
through a much thicker layer of the atmosphere. This means scattering, which
is especially effective on the high frequency part of the spectrum (remember the
frequency to the fourth power in the scattering). Thus, the sunlight we receive
from a low sun has lost quite some energy over all wave lengths and the sun is
less bright.

But in addition the blue end of the visible spectrum is weakened more: the sun
starts to look yellow. On top of the scattering is absorption by water vapor and
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Figure 2.35 The evening sun coloring Figure 2.36 Twilight arch, just before sunrise
the sky red and purple. (from [5]).

ozone, that absorbs extra in blue and green. The lower the sun, the longer the
path through the atmosphere. So, finally the scattering of the yellow is also so
effective, that the sun turns red . Here also small "floating’ particles, dust, smoke
or small droplets (all called aerosols) help in scattering the light. If their size is
in the order of 100 nm, they are especially effective. As their concentration (i.e.
number per unit volume) differs from day to day, so is every setting sun different
in color.

Twilight arch

Just after sunset, the horizon colors yellow over a wide angle (see Figure 2.36).
This is called the twilight arch. As the sun is just below the horizon, no direct
sunlight can reach the observer. The sky above the horizon, however, is still illu-
minated by the sun. The observer will see this light indirectly, i.e. via scattering.
The light path that the sunlight has to travel through the atmosphere before illumi-
nating the sky above the observers horizon is quite long. So, most of the blue light
will be scattered before it reaches that part of the atmosphere (see Figure 2.37).
This means that the scattered light is mostly yellow and that the twilight arch is
yellow. As the sun sets more, the path through the upper sky above the horizon
gets longer and thus the twilight arch turns redder and redder. At the same time the
portion of the visible sky that is illuminated by the sun gets smaller and smaller:
it gets dark. Note that in Figure 2.36 the twilight arch is brightest just above the
horizon and gets redder when moving upwards. This is also a consequence of the
length of the light path to the illuminate sky as well as the density of air molecules
that scatter the light.

Due to symmetry, the twilight arch can of course also be seen just before sunrise.
The part of the horizon opposite to the sun will be dark just before sunrise or just
after sunset. This is caused by the shadow of the earth itself, that blocks the sun
from illuminating the sky just above that part of the horizon. So, we will see a
dark band just above the horizon. This is known as the anti-twilight arch.
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horizon

Figure 2.37 Light path length to the illuminated sky above the horizon increases as the
sun sets more below the horizon. Furthermore, a smaller portion of the upper atmosphere
can be seen by the observer.

Purple sky

When the sun is about 5° below the horizon, the sky some 45° above the sun’s
position may show a purplish glow, see Figure 2.38. This is called the "purple
light’. It most likely is caused by the scattering of light in the stratosphere (about
20-25 km high) by dust particles. Most of this light that reaches the observer is
blue. However, it gets mixed by light that is coming from the lower atmosphere.
This light is red, as discussed above. So, the observer sees a mixture of red and
blue, i.e. purple. The different light paths are shown in Figure 2.40. The particle
number density of dust (i.e. the number of particles per unit volume) in the strato-
sphere varies from time to time. Volcanic eruptions add dust to the stratosphere,
and so do meteorites from space. This causes the occurrence and intensity of the
purple light to change.

Figure 2.38 Purple light above the twilight Figure 2.39 The setting sun, seen just
arch (from [5]). above the horizon.

2.6 Where is the sun at sun setting?

If the sun gets very close to the horizon, its shape seems to change from a sphere
to an ellipsoid which has a height-to-width ratio of less than one. This is caused
by refraction of sunlight in the atmosphere. The refraction index, n, of the atmo-
sphere is not a constant, but depends on the density and on the type of molecules.

purple
light

refraction
index
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earth
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Figure 2.40 Different paths of sunlight to the observer lead to a mixture of red light that
follows a path through the lower atmosphere and blue light scattered from the strato-
sphere.

In vacuum (e.g. outer space) its value is 1. In the atmosphere it gradually in-
creases from a value of one at the edge’ of the atmosphere towards a value of
about 1.0003 at ground level (it depends on the wavelength and is slightly higher
for the blue side of the visible spectrum than for the red side). The change might
look small but the effects this has are not negligible. For instance, when the sun
is seen to touch the horizon it actually is below the horizon! This can be easily
understood if we think about the path of light beams through a medium that is
increasing its refraction index along the beam path.
When a light beam passes an interface separating two layers with different refrac-
tion indices, we have according to Snell’s law

M = To (2.55)

sina, n;

with ¢; and o, the angles of the ’incoming’ and ’outgoing’ light with the normal
to the interface at the point of intersection and n; and n, the refraction indices at
the ’incoming’ and ’outgoing’ side of the interface, respectively. See Figure 2.41.

Figure 2.41 Refraction of a light beam at an interface separating two layers of different
index of refraction.
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Intermezzo: Snell’s law

Snell’s law: )
sinby _ ny (2.56)
sinf, n;
was first formulated by Willibrord Snellius (a Dutch scientist) in 1621. However,
Snellius did not publish his findings. That was much later done (in 1703) by the
famous Dutch scientist Christiaan Huygens, who credited it to Snellius. Snellius
found his law from observations.
Somewhat later, the French scientist Pierre de P y

Fermat (1601-1665) arrived at the same law

0
based on the physical argument that the light !
will travel along the path requiring minimum v,
time. Consider Figure 2.42: the light starts i =

at point P = (py, py) in medium 1, where the v, 8,
speed of light is v, . It crosses the interface be-

tween medium 1 and 2 at point M = (my,0) \
and passes point Q = (¢x,qy) in medium 2, Q
where the speed of light is v, # v,. As light
moves in a straight line in a given, homoge-
neous medium, the time taken to move from
PtoMto Qis:

Figure 2.42 Light path from P to Q.

NP _PM+MQ \/ +py+\/(mx—qx)2+q§
oo 4] v Vi v

(2.57)

According to Fermat, the position of M is such that 7 is a minimum. Thus,we
differentiate ¢ with respect to m, and set the derivative to zero:
dt  my—px  my—qy sin@, sin®,

= =0— = 2.58
dm,  PM-v, +MQ'V2 v Vv, ( )

If we now use the definition of the refraction index: n; = vi > 1, we indeed find
Snell’s law. l

As the refraction index of the atmosphere will change continuously, we will have
to set up a differential equation that describes the changes of the angles in Snell’s
law from place to place. This is complicated by the fact that the atmosphere is
folded around the earth, hence its geometry is curved as well. Let’s for simplicity
assume, that the atmosphere consists of concentric layers, each with a thickness
Ar and an index of refraction n(r). A light beam will “hit’ the outer surface at
position r at an angle ¢; and move on with an angle o,. These angles are defined
with respect to the normal at the interface at position r. As the beam follows its
path, it will hit’ the inner surface of the same layer, which is located at position
r — Ar. Even though the path of the beam in this layer is a straight line, it will not
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’hit’ the interface at r — Ar with the same angle o, as it has left the interface at
r. This is caused by the curvature of the layer. In a flat geometry this would be
the case and the analysis would be relatively easy. The two cases are clarified in
Figure 2.43.

Example of Snell’s law
Snell’s law not only applies to light, but to other phenomena where motion in
two different media is found as well. As a simple example, consider the follow-
ing situation. You are a bay watch and spot a swimmer at sea in trouble. The
swimmer is out at sea a given distance to your right. Obviously, it is your task
to reach the swimmer as soon as possible. Being a bay watch, you are a great
athlete and able to run and swim fast. Nevertheless, running goes at a speed v,
which is much faster than the swimming speed v;. What do you need to do? The
answer is now simple: follow the path of least time and, hence, chose the one
that obeys Snell’s law.
Of course, being a bay watch you don’t have the time to figure out what exactly
the running & swimming track is according to Snell. But the second best option
is realizing that you run much faster than you can swim; % << 1. Hence in
Snell’s law: ) )
sinb _sinbs _, ing, = sin6, % ~0 (2.59)
Vr Vs Vr
In other words, you run in a straight line until you are exactly at the same height
of the swimmer and swim the shortest distance. This is thus not the shortest time,
but it will be very close as any realistic example will show.

(@) (b)

Figure 2.43 Path of light through a medium with a changing index of refraction: (a) flat
geometry, (b) curved geometry.

For the curved situation we still have Snell’s law at each interface, but now o, #
o. The light beam intersects the inner surface at a position where the normal is
rotated over a small angle compared to the normal at the intersection point with
the outer surface. The relation between the two angles is found from Figure 2.46:

o = 0, + AP (2.60)
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We can use that Ar is small, thus A¢ is small and thus the curvature of the line
segment / can be neglected. Therefore, it holds that:

tanA¢ :#
tang, =4 (2.61)

Thus, eliminating / we have a relation between o, and A¢:

tanA¢ Ar Ar
= =—+hot —
tano, r—Ar r

A
A = tanoy, - (2.62)
r

Intermezzo: Willebrord Snellius

Willebrord Snell, or Snellius in its Latin
form, was born in Leiden, The Nether-
lands, in 1580. His father was professor
of mathematics at Leiden university, but
Willebrord decided to enter Law School.
However, he switched to mathematics. In
1613 he succeeded his father as professor
of mathematics at the University of Lei-
den. In 1617 Snell published his methods Figure 2.44 Willebrord Snellius (1580-
for measuring the Earth. 1626)

He proposed the method of triangulation,
which is the foundation of geodesy. Snell dis-
covered his law of refraction in 1621. How-
ever, he did not publish it. Thanks to Christi-
aan Huygens Snell’s name is attached to this
law. After Huygens’ death (1695) in 1703
Huygens’ famous work Dioptrica was pub-
lished in which he mentions Snell’s law and
attributes it rightfully to Snellius.

Figure 2.45 Christiaan Huygens
(1629-1695)

So, in principle, we now have connected o; to o, (via Snell’s law) and o, to oci’

and Ar. At this stage it is important to realise that of = o;(r — Ar), in words: o

is the angle that the incoming angle o, has at layer position » — Ar. Thus, we can
write eq.(2.60), using the above equation, as:

A
o (r — Ar) = ot + tan oy — (2.63)
r
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Figure 2.46 The two normals make a small angle due to the curved geometry.

We can expand: o (r —Ar) = oy(r) — %Ar and take the sinus of both sides of the
above equation:

do; A
sin <0¢i ~ ’Ar> =sin <Otg + tan Oco—r> (2.64)
r r

Remember that this equation gives us the change of the direction of the light
beam. If we use the summation rule for the sinus sin(o + f3) = sin(ct) cos() +
cos(a)sin(f), we can write:

do, do, do.
sin (ai— da’Ar> = sin(ai)cos<d?’Ar)—cos(oci)sin <(%Ar>:

r

. Ar
= sin(oy)cos tanaoT +

A
cos(0t,) sin (tan o, _r> (2.65)

r

Next, we will simplify this equation by using that Ar is small. For small x we have
sin(x) = x and cos(x) = 1. Thus, the above equation can be simplified to:

do, A
sin(o;) — cos(oy,) < d?Ar) sin(a,) +cos(0y) <tanoc0rr>

A
= sin(a) + sin(0p) — (2.66)
r
We can eliminate ¢, using Snell’s law:
sinoy = “Lsine;, = n(r) sina,
" n, L n(r—Ar) i
— & sin ai

n(r)— %Ar

1d
- <1 4 ”Ar> sin (2.67)
ndr
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Finally, if we now combine eq.(2.66) and eq.(2.67) we have the differential equa-
tion that describes the evolution of the angle ¢ of the light beam we were looking
for:

—cos al.-”ilor‘l - (%% + %) sino, (2.68)
The above equation can easily be solved. We use as boundary condition that at
the edge of the atmosphere the refraction index equals 1 and the incoming angle
depends on what light beam we are trying to trace. It may be from the sun or any
star. So, we have at r = R+ H (R denotes the earth radius and H the thickness of
the atmosphere). n = 1 and we will call the incoming angle ¢,. The solution then

1S:
inc; 1 R+H
oy _ R (2.69)
siney;,, n(r) r

Although we now know the angle a light beam makes with each normal on its
way from space to the observer (at e.g. ground level), we still haven’t solved
everything. We still don’t know the direction of all those normals, as they depend
on where the light beam is in the atmosphere.

What needs to be done is to reconstruct the entire
beam path and look for that particular beam from the
sun, whose path will be such that it reaches the ob-
server. As the sun is far away from the earth, half
of the atmosphere is always hit by the sun’s light
beams. These are, due to the large distance from
sun to earth, virtually parallel to one another. How- Figure 2.47 Different angles
ever, their incoming angle changes with the position for incoming sunlight

at which they enter the atmosphere, as the normal at

the point of incidence changes from point to point.

The light path can best be desribed in cylinder coordinates {r, ¢ }, where we define
¢ = 0 as the direction of the vertical (= zenith). Further, our observer is at ground
level and thus has coordinates {R,0}, see Figure 2.48. The relation between ¢ and
r is already given in eq.(2.62):

d tan o,
d¢ _ tano (2.70)
dr r
Furthermore, o, is coupled to ¢; via Snell’s law:
ino. —A 1d
s.mocl _ n(r—Ar) ldn, @271
sin o, n(r) ndr

Thus we have: o, = o + ¢(Ar). Putting this into eq.(2.70) gives the relation
between ¢, r and ¢ (r). The latter is a known function of r and n(r), i.e. eq.(2.69).
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Putting it all together gives:

dp  tano
dr r
1 sin ¢
r \/1— sin? o,
R+H sinoy,

= (2.72)
nr? \/1 — sin? o, (R+H)2

nr

The last equation does look complicated, but it can elegantly be simplified by
introducing the coordinate s = a

sinay, (R+H)

do 1

r_ - (2.73)
ds  svs2n2—1

This equation describes the trajectory of a light beam through the atmosphere. We
have arrived at a good point to test whether or not our description makes any sense.
We will analyze the situation in which the refraction index of the atmosphere
is 1, i.e. what an observer would experience on the moon. Furthermore, we
will assume that the light beams enter the atmosphere’ parallel to the horizon.
Obviously, we expect that a light beam will continue on a straight line, as there is
nothing to deflect it from its path. This situation is drawn in Figure 2.48.

——R+H

Figure 2.48 Straight path of light through an atmosphere with a refraction index of 1.

From simple geometrical considerations we see that the straight line of the beam

is described by:
. (R+H)sina, _ (R+H)cos ¢, (2.74)
cos ¢ cos ¢

Let’s see whether eq.(2.73) gives the same result, when taking n(r) = 1. Thus, we
have to solve n :

— = 2.75
ds  sv/s2—1 &7

The general solution of this equation is:

1 1
¢ = arccos — + Const — — =cos (¢ — C) (2.76)
s s
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For the boundary condition, we have another look at Figure 2.48. The beam enters
at {r;,, = R+ H,¢,}, making an angle o, with the normal at that point. From

Figure 2.48 it is clear that sin ¢, = cos ¢,. Thus we have that s, = smar'% =
1 1 mn

s, = sy If we put this boundary condition into eq.(2.76) it is found that the
integration constant C equals 2k7. Thus the solution for s(¢) is:

1 R+ H)sinc,
s=———>r= (R+H)sinay, 2.77)
cos ¢ cos ¢
which is exactly the same result as we have found above from the geometrical
consideration (eq.(2.74))!

We now can turn to solving the path of a light beam in the atmosphere of the earth.
For simplicity we assume that the refractive index of the atmosphere changes lin-
early from 1 at the outer edge to 1.0003 at ground level: n(r) = 140.0003 - 2+H=".
It is easy to see, that light rays coming directly out of the zenith are not bend but
continue on a straight line. We expect the biggest changes when light enters close
to the horizon. Thus, we will analyse what the apparent position of the sun is
when the upper edge of the sun just touches the horizon; the sun has just set. That
is to say, it would do so if there was no atmosphere. We now ask the question:
which of all the sun beams that come in parallel to the horizon and enter the atmo-
sphere over its entire height is seen by the observer and under what angle with the
horizon? From a numerical solution of eq.(2.73) we find that this angle is 0.27°.
Hence, the observer still sees a large part of the sun above the horizon!

In reality, the apparent ’lift’ of the
sun’s position close to the horizon is
about 39 arc minutes. As the diame-
ter of the sun is only 30 arc minutes,
the sun is actually completely below
the horizon when we see it touching it
with its lower edge. This also means
that the apparent motion of the sun Figure 2.49 Refraction of light rays makes the
slows down when the sun approaches sun appear above the horizon after setting.
the horizon. This is a simple way of

showing that the earth is a curved object rather than a flat one, as for flat geome-
tries the apparent motion differs from the curved ones.

Furthermore, the bending of the light paths is stronger for beams that enter the
atmosphere closer to the horizon than those higher up. Consequently, the shape of
the sun or moon gets distorted when they approach the horizon. The lower edge
gets lifted up more than the upper edge: the sun (or moon) start to look ellipsoidal.
As mentioned, normally the sun’s diameter is 30°, but close to the horizon it looks
like its vertical dimension has shrunken to 24’. The sun’s portrait is no longer a
circle but it has become ellipsoidal.

apparent position

true position
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There is of course another reason why the sun has already set, when we still see it
above the horizon: the finite speed of light. Although light travels at an enormous
speed, ¢ =2.998 - 108m/s in vacuum, it takes a finite time for sunlight to reach the
earth. As the average distance between the sun and earth is 150 - 10km, it takes
500s for light to reach us. This means that by the time this light has reached the
earth, the earth has rotated over an angle of 2°.

2.7 The rainbow across the sky

Rainbows are a good example of the interplay between light and water. Water
droplets in the atmosphere refract light. As the refractive index is a (weak) func-
tion of the wave length of light, different colors get refracted over different angles.
The rainbow is only seen with the sun in the back. This is so, because the rain
drops in the atmosphere internally refract and reflect the light back and send it
back. The paths of light are shown in Figure 2.50. From this the primary rainbow
is formed.

Figure 2.50 Light rays (of a single wave length) refracted through a water droplet.

There are also rainbows in the direction of the sun. However, they are rather weak
and much weaker than the sunlight itself.

It is easy to show that for a spherical droplet the maximum angle between the
incoming and outgoing light is 42°. Consider Figure 2.51. Light coming in, is
making an angle o, with the normal on the droplet surface. According to Snell’s
law the light beam is refracted towards the droplets normal, making an angle o,,,,.
It hits the droplet surface from the inside at an angle ¢ with the normal. Part of
the light is reflected back into the droplet, obviously also at an angle ¢ with the
normal. Then it reaches the surface again, now at an angle o, with the normal
and is refracted out of the droplet with an angle ,,. The angle describing the
total deviation is called .

From Figure 2.51 it is clear, that the two triangles, IMP and OMP, within the
droplet are identical, hence a,,, = o,. Consequently, ¢, = o,,,. Furthermore,
¢ = a,,; as the sides IM and MP in the triangle IMP are equal. So, for the total
deviation of the light beam path we find:

a = 4a,,—2a

mn

"
— 4arcsin <Smn m> 20, 2.78)
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Figure 2.51 Geometry of a refracted light beam through a water droplet.

The incoming angle, o, varies from O to . Thus, we can calculate the variation
of the deviation, o. It shows a maximum at 42.01° for n = 1.3335. This is the
value for the refraction index for (red) light with a wave length of 600nm. In

Figure 2.52 the deviation angle is shown.
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Figure 2.52 Deviation of light beam that is refracted and reflected by a spherical water
droplet: (a) as a function of the incoming angle ., (b) as a function of x/IR.

The incoming light hits the droplet at various positions. We denote this by the
coordinate x, see Figure 2.50. As figure 2.52b shows, there is region for x/R
between say 0.8 and 0.9 where all the incoming light is ’focused’ in a small region
of the deviation angle. This obviously means that this portion of light is seen with
a much greater intensity by the observer. This light forms the rainbow.

The maximum deviation angle depends on the refraction index, which in turn is a
(weak) function of the wave length. This dependence is plotted in Figure 2.53.
Thus, we see that the colors of the rainbow run from red at the outside to blue at
the inside. Notice further, that the separation between the colors blue and red is
1.5°. Considering that the effective diameter of the sun is less than 0.5° we find
that this separation is sufficient to have a rainbow with separate colors, a fact we
obviously knew.

colors of
the rain-
bow
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Figure 2.53 Maximum deviation against wave length.

2.7.1 Secondary rainbow

The rainbow discussed above is caused by light that is reflected once inside the
droplet. There is, however, the possibility of multiple internal reflections. These
generate different deviation angles and thus more rainbows can be formed simul-
taneously. Under the right circumstances, a secondary rainbow can be seen.

The light path through a droplet for

a secondary rainbow is shown in N

Figure 2.54. Now there are two in- ¢ ¢ o
ternal reflections and of course the R\ R o Out\A
beam is refracted twice. As shown o Roogy i

in the figure, all ’internal’ angles )

i

are equal. The deviation angle, o,
is related to the incoming angle, Figure 254 Geometry of a refracted light beam

Q- that forms the secondary rainbow.

n oL
0 = 7 — 6arcsin <smn ’"> +2a, (2.79)

This is plotted in Figure 2.55, together with the result we had for the primary
rainbow both for a wave length of 600nm.
There are a few matters to be noticed in this figure.

e The deviation shows a minimum, rather than a maximum, at oc = 51°.
e There is a "forbidden band’ in the deviation angles from about 42° to 51°.

The second point means that there is a dark band between the primary and sec-
ondary rainbow, where no light refracted by droplets is sent into the direction of
the observer. This is known as Alexander’s band , in honor of the Greek Alexan-
der of Aphrodisias, who first pointed out that the area between the two red bands
of the primary and secondary bows is darkened rather than brightened. In Figure
2.56 the relation of the deviation angle with the wave length of the light is plotted
for both the primary and the secondary rainbow.
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Figure 2.55 Deviation of light beam that is refracted and reflected by a spherical water
droplet.
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Figure 2.56 Maximum deviation against wave length.

We see, that the secondary rainbow is inverted with respect to the primary one,
now the colors run from red at the center towards blue at the outside (see Figure
2.57).

Of course, the intensity of the primary rainbow is greater than that of the sec-
ondary. This has two main reasons. in the first place, the light intensity decreases
after each (internal) reflection. Secondly, the secondary rainbow is broader than
the primary one: the ’focusing’ of light along the minimum. Tertiary and higher
order rainbows are present each with one more internal reflection than the previ-
ous one. Obviously, each higher order rainbow becomes fainter and broader and
is therefore less visible. Very few reliable reports exist about the observations of
the tertiary and quaternary rainbows. Even higher order rainbows have not been
observed. In table (2.2) for the first 5 orders the mean angle, width and intensity
relative to the primary are listed.

colors
of sec-
ondary
rainbow

higher
order
rain-
bows
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order angle width rel. intensity

©) ©)
1 424 1.72 1
2 504  3.11 0.43
3 137.5 4.37 0.24
4 137.2  5.58 0.15
5 529 6.78 0.10

Table 2.2 Primary and higher order rainbows

Figure 2.57 Primary and secondary rainbow.

2.7.2 What about tertiary rainbows?

There are reports from observations of the tertiary and even quartiary rainbow.
Are these all fake?

The answer is: yes and no. Yes, because as we see from table (2.2) the third and
fourth rainbow are located in the direction of the sun and can not be seen by the
naked eye. And no, there are special circumstances where a third rainbow is seen.
See for example Figure 2.58.

How can that be? What is this mysterious third rainbow. The answer is that it is
the reflection of the part of the primary rainbow that can not be seen, in a lake that
is in front of the photo. Hence, it is not the tertiary rainbow, but rather a part of
the primary one. This is clarified in Figure 2.59.

2.8 Soap bubbles, butterflies and light

The colors of the rainbow also show up when looking at soap bubbles, beit not in
a particular order. Here, the mechanism causing this is not refraction, but ’double’
reflection.

The light that shines on the bubble is reflected twice, once on the outside of the
soap film of the bubble, once on the inside of the soap film. The soap film is very
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Figure 2.58 Primary, secondary and Figure 2.59 Third rainbow coming from a re-
tertiary rainbow? flection on water.

thin, on the order of a micro-meter. This causes the two reflected light *beams’
to interfere. Light can be considered as waves. These waves are not infinitely
long, but form small packages that are independent from each other. This is

schematically shown in Figure 2.61.

Figure 2.60 Colorful soap bubble.

After the waves have reflected from the
soap film, they interfere and form new
wave packages. If the film thickness is
smaller than the size of the packages, the
waves add if they are in phase and they
cancel each other out if they are out of
phase.

In Figure 2.62 an example is given. Here
the two reflected waves are almost in op-
posite phase (see the wave amplitude at
the dashed line). Consequently, these

M-

Figure 2.61 Light as wave packages.

e

film

Figure 2.62 Interfering waves after reflec-
tion.

waves will cancel each other out almost completely and no reflected light will
be seen (or only very weak with a small amplitude). If, on the other hand the two

wave
package
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waves move in phase, they will add up to give the reflection a larger amplitude.
Whether there is amplification or canceling out of the two reflected waves depends
on the distance between the reflecting layers, the angle of reflection and, of course,
on the wave length of the wave. For complete destruction the two reflected waves
should be shifted with respect to each other by exactly half a wave length.

Figure 2.63 Colorful wings. Figure 2.64 More colorful wings.

Different colors are from a physical point of view waves with different wave-
length. As we have seen before, different colors will have different amplitudes
after the double reflection. Depending on the thickness of the soap film, some
colors will be reflected at maximum intensity, others will almost completely dis-
appear. That is why we see at different spots different colors and the colorful
patterns develop.

This only works if the incoming wave is coherent over a "long distance’. We mean
by this, that the package is so long, that the first reflection and the second reflec-
tion when meeting each other actually come from the same package. If this is
not the case, they may have very different phase and the outcome of the addition
can be anything. For our eye this means that the total light of a particular color
that comes in will be a mix of *weakening and addition’. This will be fluctuating
and we will not observe anything particular. If, however, the soap film is thin, the
interference will work well for each wave package; the reflected waves originate
from the same packages and have started with the same phase. Thus, thin soap
films can generate the colorful display, thick ones can’t. This not only holds for
soap films. Various animals use the same trick. For instance, the colorful wings of
a butterfly have a top layer that generates two reflections. This layer is very thin
and varies in such a way over the wing that a colorful pattern becomes visible. All
that is needed is to have that pattern in the thickness of the layer distributed in the
right way over the wing.

CD ROM

There is another ’trick’ that is used with interference of light. Sharp contrast can
be reached by making use of complete demping. This can be reached by making
a step change in the depth of the reflecting surface. Our CD ROM technology
employs this.
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Figure 2.65 The red laser light trying to  Figure 2.66 Destructive interference using
read a CD ROM. the quart lambda trick.

The information on a CD ROM is written in the form of small dimples. Laser
light is focused on the CD ROM and the reflections are recorded. A dimple gives
a different intensity than the flat surface. To sharpen this effect, it is desirable to
give the red dot of the laser light hitting the dimple dark edges. How can we do
that? The laser light will reflect anywhere from the CD surface. Here, interference
of the laser light is used.

The depth of the dimple is one quarter of the value of the wave length, A4, of the
laser light used. This means that light reflected just inside the dimple has to travel
a path that is 0.54 longer than the light that is reflected just outside the dimple.
As a consequence, the two waves will be opposite in phase and they will cancel
each other out, see Figure 2.66. Thus, the detector will not receive any light from
and around the edge of a dimple. This makes discrimination of the dimples much
better. Obviously, this contributes to error free reading of the CD ROM.



