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Preface

As in other physical sciences, empirical data are used in Geodesy and Earth Observation to make
inferences so as to describe the physical reality. Many such problems involve the determination
of a number of unknown parameters which bear a linear (or linearized) relationship to the set of
data. In order to be able to check for errors or to reduce for the effect these errors have on the
final result, the collected data often exceed the minimum necessary for a unique determination
(redundant data). As a consequence of (measurement) uncertainty, redundant data are usually
inconsistent in the sense that each sufficient subset yields different results from another subset.
To obtain a unique solution, consistency needs to be restored by applying corrections to the data.
This computational process of making the data consistent such that the unknown parameters can
be determined uniquely, is referred to as adjustment. This book presents the material for an
introductory course on Adjustment theory. The main goal of this course is to convey the
knowledge necessary to perform an optimal adjustment of redundant data. Knowledge of linear
algebra, statistics and calculus at the undergraduate level is required. Some prerequisites,
repeatedly needed in the book, are summarized in the Appendices A-F.
Following the Introduction, the elementary adjustment principles of ’least-squares’, unbiased
minimum variance’ and ’maximum likelihood’ are discussed and compared in Chapter 1. These
results are generalized to the multivariate case in chapters 2 and 3. In Chapter 2 the model of
observation equations is presented, while the model of condition equations is discussed in
Chapter 3. Observation equations and condition equations are dual to each other in the sense that
the first gives a parametric representation of the model, while the second gives an implicit
representation. Observables that are either stochastically or functionally related to another set of
observables are referred to as yR-variates. Their adjustment is discussed in Chapter 4. In Chapter
5 we consider mixed model representations and in Chapter 6 the partitioned models. Models may
be partitioned in different ways: partitioning of the observation equations, partitioning of the
unknown parameters, partitioning of the condition equations, or all of the above. These different
partitionings are discussed and their relevance is shown for various applications. Up tot this point
all the material is presented on the basis of the assumption that the data are linearly related. In
geodetic applications however, there are only a few cases where this assumption holds true. In
the last chapter, Chapter 7, we therefore start extending the theory from linear to nonlinear
situations. In particular an introduction to the linearization and iteration of nonlinear models is
given.

Many colleagues of the Department of Mathematical Geodesy and Positioning whose assistance
made the completion of this book possible are greatly acknowledged. C.C.J.M. Tiberius took care
of the editing, while the typing was done by Mrs. J. van der Bijl and Mrs. M.P.M. Scholtes, and
the drawings by Mr. A. Smit. Various lecturers have taught the book’s material over the past
years. In particular the feedback and valuable recommendations of the lecturers C.C.J.M.
Tiberius, F. Kenselaar, G.J. Husti and H.M. de Heus are acknowledged.

P.J.G. Teunissen
April, 2003
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Introduction

The calculus of observations (in Dutch: waarnemingsrekening) can be regarded as the part of
mathematical statistics that deals with the results of measurement. Mathematical statistics is often
characterized by saying that it deals with the making of decisions in uncertain situations. In first
instance this does not seem to relate to measurements. After all, we perform measurements in
order to obtain sharp, objective and unambiguous quantitative information, information that is
both correct and precise, in other words accurate information. Ideally we would like to have
’mathematical certainty’. But mathematical certainty pertains to statements like:

if a=b and b=c and c=d, then a=d.

If a, b, c, and d are measured terrain distances however, a surveyor to be sure will first compare
d with a before stating that a=d. Mathematics is a product of our mind, whereas with
measurements one is dealing with humans, instruments, and other materialistic things and
circumstances, which not always follow the laws of logic. From experience we know that
measurements produce results that are only sharp to a certain level. There is a certain vagueness
attached to them and sometimes even, the results are simply wrong and not usable.
In order to eliminate uncertainty, it seems obvious that one seeks to improve the instruments, to
educate people better and to try to control the circumstances better. This has been successfully
pursued throughout the ages, which becomes clear when one considers the very successful
development of geodetic instruments since 1600. However, there are still various reasons why
measurements will always remain uncertain to some level:

1. ’Mathematical certainty’ relates to abstractions and not to physical, technical or social
matters. A mathematical model can often give a useful description of things and relations
known from our world of experience, but still there will always remain an essential
difference between a model and the real world.

2. The circumstances of measurement can be controlled to some level in the laboratory, but
in nature they are uncontrollable and only partly descriptive.

3. When using improved methods and instrumentation, one still, because of the things
mentioned under 1 and 2, will have uncertainty in the results of measurement, be it at
another level.

4. Measurements are done with a purpose. Dependent on that purpose, some uncertainty is
quite acceptable. Since better instruments and methods usually cost more, one will have
to ask oneself the question whether the reduction in uncertainty is worth the extra costs.

Summarizing, it is fundamentally and practically impossible to obtain absolute certainty from
measurements, while at the same time this is also often not needed on practical grounds.
Measurements are executed to obtain quantitative information, information which is accurate
enough for a specific purpose and at the same time cheap enough for that purpose. It is because
of this intrinsic uncertainty in measurements, that we have to consider the calculus of
observations. The calculus of observations deals with:
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1. The description and analysis of measurement processes.
2. Computational methods that take care, in some sense, of the uncertainty in measurements.
3. The description of the quality of measurement and of the results derived therefrom.
4. Guidelines for the design of measurement set-ups, so as to reach optimal working

procedures.

The calculus of observations is essential for a geodesist, its meaning comparable to what
mechanics means for the civil-engineer or mechanical-engineer. In order to shed some more light
on the type of problems the calculus of observations deals with, we take some surveying
examples as illustration. Some experience in surveying will for instance already lead to questions
such as:

1. Repeating a measurement does usually not give the same answer. How to describe this
phenomenon?

2. Results of measurement can be corrupted by systematic or gross errors. Can these errors
be traced and if so, how?

3. Geometric figures (e.g. a triangle) are, because of 2, usually measured with redundant
(overtallig) observations (e.g. instead of two, all three angles of a triangle are measured).
These redundant observations will usually not obey the mathematical rules that hold true
for these geometric figures (e.g. the three angular measurements will usually not sum up
to p). An adjustment (vereffening) is therefore needed to obtain consistent results again.
What is the best way to perform such an adjustment?

4. How to describe the effect of 1 on the final result? Is it possible that the final result is
still corrupted with non-detected gross errors?

Once we are able to answer questions like these, we will be able to determine the required
measurement set-up from the given desired quality of the end product. In this book we mainly
will deal with points 1 and 3, the elementary aspects of adjustment theory.

Functional and stochastic model

In order to analyze scientific or practical problems and/or make them accessible for a quantitative
treatment, one usually tries to rid the problem from its unnecessary frills and describes its
essential aspects by means of notions from an applicable mathematical theory. This is referred
to as the making of a mathematical model. On the one hand the model should give a proper
description of the situation, while, on the other hand, the model should not be needlessly
complicated and difficult to apply. The determination of a proper model can be considered the
’art’ of the discipline. Well-tried and well-tested experience, new experience from experiments,
intuition and creativity, they all play a role in formulating the model.
Here we will restrict ourselves to an example from surveying. Assume that we want to determine
the relative position of terrain-’points’, whereby their differences in height are of no interest to
us. If the distances between the ’points’ are not too large, we are allowed, as experience tells us,
to describe the situation by projecting the ’points’ onto a level surface (niveauvlak) and by
treating this surface as if it was a plane. For the description of the relative position of the points,
we are then allowed to make use of the two-dimensional Euclidean geometry (vlakke
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meetkunde), the theory of which goes back some two thousand years. This theory came into
being as an abstraction from how our world was seen and experienced. But for us the theory is
readily available, thus making it possible to anticipate on its use, for instance by using sharp and
clear markings for the terrain-’points’ such that they can be treated as if they were
mathematically defined points. In this example, the two-dimensional Euclidean geometry acts as
our functional model. That is, notions and rules from this theory (such as the sine- and cosine
rule) are used to describe the relative position of the terrain-’points’.
Although the two-dimensional Euclidean geometry serves its purpose well for many surveying
tasks, it is pointed out that the gratuitously use of a ’standard’ model can be full of risks. Just
like the laws of nature (natuurwetten), a model can only be declared ’valid’ on the basis of
experiments. We will come back to this important issue in some of our other courses.
When one measures some of the geometric elements of the above mentioned set of points, it
means that one assigns a number (the observation) according to certain rules (the measurement
procedure) to for instance an angle a (a mathematical notion). From experience we know that
a measurement of a certain quantity does not necessarily give the same answer when repeated.
In order to describe this phenomenon, one could repeat the measurements a great many times
(e.g. 100). And on its turn the experiment itself could also be repeated. If it then turns out that
the histograms of each experiment are sufficiently alike, that is, their shapes are sufficiently
similar and their locations do not differ too much, one can describe the measurement variability
by means of a stochastic variable. In this way notions from mathematical statistics are used in
order to describe the inherent variability of measurement processes. This is referred to as the
stochastic model.
In practice not every measurement will be repeated of course. In that case one will have to rely
on the extrapolation of past experience. When measuring, not only the measurement result as a
number is of interest, but also additional information such as the type of instrument used, the
measurement procedure followed, the observer, the weather, etc. Taken together this information
is referred to as the registration (registratie). The purpose of the registration is to establish a link
with past experience or experiments such that a justifiable choice for the stochastic model can
be made.
In surveying and geodesy one often may assume as stochastic model that the results of
measurement (the observations) of a certain measurement method can be described as being an
independent sample drawn (aselecte trekking) from a normal (Gaussian) distribution with a
certain standard deviation. The mathematical expectation (verwachting) of the normally
distributed stochastic variable (the observable, in Dutch: de waarnemingsgrootheid), is then
assumed to equal the unknown angle etc. From this it follows, if the three angles a, b and g of
a triangle are measured, that the expectations of the three angular stochastic variables obey the
following relation of the functional model:
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For the individual observations themselves this is usually not the case. A sketch of the relation
between terrain situation, functional model, measurement, experiment and stochastic model is
given in figure 0.1. The functional and stochastic model together from the mathematical model.

Figure 0.1: Diagram of the fundamental relations in adjustment theory



1 Linear estimation theory: an introduction

1.1 Introduction

Before stating the general problem, let us define a simple example that contains most of the
elements that will require our consideration.

Suppose that an unknown distance, which we denote as x, has been measured twice. The two
measurements are denoted as y1 and y2, respectively. Due to all sorts of influences (e.g.
instrumental effects, human effects, etc.) the two measurements will differ in general. That is y1

y2 or y1 - y2 0. One of the two measurements, but probably both, will therefore also differ
from the true but unknown distance x. Thus, y1 x and y2 x. Let us denote the two differences
y1 - x and y2 - x, the so-called measurement errors, as e1 and e2 respectively. We can then write:

or in vector notation:

(1)

with:

( * denotes the operation of transposition; thus y* is the transpose of y).

Our problem is now, how to estimate the unknown x from the given measurement or observation
vector y. It is to this and related questions that we address our attention. In this introductory
chapter we will restrict ourselves to the case of two observations and one unknown. In the next
section we will introduce the least-squares principle. Least-squares can be regarded as a
deterministic approach to the estimation problem. In the sections following we will introduce
additional assumptions regarding the probabilistic nature of the observations and measurement
errors. This leads then to the so-called best linear unbiased estimators and the maximum
likelihood estimators.

1.2 Least-squares estimation (orthogonal projection)

The equation , in which y and a are given, and x and e are unknown, can bey
2x1

a
2x1

x
1x1

e
2x1

visualized as in figure 1.1a.
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Figure 1.1a: x and e unknown Figure 1.1b: x̂ as estimate of x
ê as estimate of e

From the geometry of the figure it seems intuitively appealing to estimate x as , such thatx̂ ax̂

is as close as possible to the given observation vector y. From figure 1.1b follows that hasax̂

minimum distance to y if is orthogonal to a. That is if:ê y ax̂

"orthogonality"
fl

"normal equation"
fl

"LSQ-estimate of x"
fl

(2) "LSQ-estimate of observations"
fl

"LSQ-estimate of measurement errors"
fl

"Sum of squares"

The name "Least-Squares" (LSQ) is given to the estimate of x, sincex̂ (a a) 1a y x̂

minimizes the sum of squares . We will give two different proofs for this:(y ax) (y ax)

First proof: (algebra)

. End of proof.



Linear estimation theory 7

Second proof: (calculus)

From calculus we know that x̂ is a solution of the minimization problem if:

With:

and:

the proof follows. End of proof.

Example 1: Let us consider the problem defined in section 1.1:

With a = (1,1)* the normal equation (a*a)x̂ = a*y reads:

Hence the least-squares estimate x̂ = (a*a)-1a*y is:

Thus, to estimate x, one adds the measurements and divides by the number of measurements.
Hence the least-squares estimate equals in this case the arithmetic average. The least-squares
estimates of the observations and observation errors follow from ŷ = ax̂ and ê = y - ŷ as:

and .

Finally the square of the length of ê follows as:

End of example.
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The matrices a(a*a)-1a* and I - a(a*a)-1a* that occur in (2) are known as orthogonal projectors.
They play a central role in estimation theory. We will denote them as:

(3)

The matrix Pa projects onto a line spanned by a and along a line orthogonal to a. To see this,
note that we can write Pay with the help of the cosine rule as (see figure 1.2):

Figure 1.2

In a similar way we can show that Pa
^ projects onto a line orthogonal to a and along a line

spanned by a (see figure 1.3).

Figure 1.3

If we denote the vector that is orthogonal to a as b, thus b*a=0, the projectors Pa and Pa
^ can

alternatively be represented as:

(4)

To see this, consult figure 1.4 and note that with the help of the cosine rule we can write:
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Figure 1.4

With (3) and (4) we have now two different representations of the orthogonal projectors Pa=Pb
^

and Pa
^=Pb. The representations of (3) are used in (2), which followed from solving equation (1)

in a least-squares sense. We will now show that the representations of (4) correspond to solving
the equation:

(5)

in a least-squares sense. Equation (5) follows from pre-multiplying equation (1) with b* and
noting that b*a=0. We know that the least-squares solution of (1) follows from solving the
minimization problem:

We have used the notation . 2 here to denote the square of the length of a vector. The
minimization problem y-ax 2 can also be written as:

subject to

The equation z=ax is the parametric representation of a line through the origin with direction
vector a. From linear algebra we know that this line can also be represented in implicit form with
the help of the normal vector b. Thus we may replace z=ax by b*z=0. This gives:

subject to

With e=y - z, this may also be written as:

subject to

The least-squares estimate ê of the unknown e in (5) thus follows as the vector ê which satisfies
(5) and has minimal length. Figure 1.5 shows that ê is obtained as the orthogonal projection of
y onto the vector b. The least-squares estimates of (5) read therefore:
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(6)

Figure 1.5

Example 2: Let us consider the problem defined in section 1.1:

The form corresponding to (5) is:

This equation expresses the fact that the difference between the two observed distances y1 and
y2 is unequal to zero in general because of the presence of measurement errors e1 and e2.
Since the vector b is given in this case as:

we have:

and
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The least-squares estimates read therefore:

and

which is identical to the results obtained earlier.
End of example.

1.3 Weighted least-squares estimation

Up to now, we have regarded the two observations y1 and y2 as equally accurate, and solved:

by looking for the value x̂ that minimized:

The least-squares principle can however be generalized by introducing a symmetric, positive-
definite weight matrix W so that:

The elements of the 2×2 matrix W can be chosen to emphasize (or de-emphasize) the influence
of specific observations upon the estimate x̂. For instance, if w11>w22, then more importance is
attached to the first observation, and the process of minimizing E(x) tries harder to make (y1-a1x)2

small. This seems reasonable if one believes that the first observation is more trustworthy than
the second; for instance if observation y1 is obtained from a more accurate instrument than
observation y2.

The solution x̂ of:

is called the weighted least-squares (WLSQ) estimate of x. As we know the solution can be
obtained by solving:

and checking whether:
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From:

follows:

and:

Since the weight matrix W is assumed to be positive-definite we have a*Wa>0 (recall from linear
algebra that a matrix M is said to be positive-definite if it is symmetric and z*Mz>0" z 0). From
the first equation we therefore get:

fl

"normal equation"
fl

"WLSQ-estimate of x"
fl

(7) "WLSQ-estimate of y"
fl

"WLSQ-estimate of e"
fl

"weighted sum of squares"

Compare this result with (2).

Example 3: Consider again the problem defined in section 1.1:

As weight matrix we take:

With a=(1 1)* the normal equation (a*Wa)x̂=a*Wy reads:
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Hence, the weighted least-squares estimate x̂=(a*Wa)-1a*Wy is:

Thus instead of the arithmetic average of y1 and y2, as we had with W=I, the above estimate is
a weighted average of the data. This average is closer to y1 than to y2 if w11>w22. The WLSQ-
estimate of the observations, ŷ=ax̂, is:

and the WLSQ-estimate of e, ê=y - ŷ, is:

Note that ê2 > ê1 if w11>w22.

Finally the weighted sum of squares ê*Wê is:

End of example.

In section 1.2 we introduced the least-squares principle by using the intuitively appealing
geometric principle of orthogonal projection. In this section we introduced the weighted least-
squares principle as the problem of minimizing the weighted sum of squares (y-ax)*W(y-ax). An
interesting question is now, whether it is also possible to give a geometric interpretation to the
weighted least-squares principle. This turns out to be the case. First note that the equation:

or:

describes an ellipse. If w11=w22 and w12=0, the ellipse is a circle. If w11 w22 and w12=0, the ellipse
has its major and minor axis parallel to the z1- and z2- axes, respectively. And if w12 0, the
ellipse may have an arbitrary orientation (see figure 1.6).
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Figure 1.6

If we define a function F(z) as F(z)=z*Wz, then we know from calculus that the gradient of F(z)
evaluated at z0 is a vector which is normal to the ellipse F(z)=c at z0. The gradient of F(z)
evaluated at z0 is:

This vector is thus normal or orthogonal to the ellipse at z0 (see figure 1.7).

Figure 1.7

From this follows that the tangent line of the ellipse z*Wz=c at z0 is given by:
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Comparing this evaluation with the first equation of (7) shows that the WLSQ-estimate of x is
given by that x̂ for which y-ax̂ is orthogonal to the normal Wa at a of the ellipse z*Wz=a*Wa.
Hence, y-ax̂ is parallel to the tangent line of the ellipse z*Wz=a*Wa at a (see figure 1.8). Note
that if W=I, the ellipse becomes a circle and the unweighted least-squares estimate is obtained
through orthogonal projection (see figure 1.9).

Figure 1.8

Figure 1.9

The matrices a(a*Wa)-1a*W and I-a(a*Wa)-1a*W that occur in (7) are known as oblique projectors.

We will denote them as:

(8)
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The matrix projects onto a line spanned by a and along a line orthogonal to Wa.

To see this, note that we can write Pa,(Wa)^y with the help of the cosine rule as (see figure 1.10):

Figure 1.10

In a similar way we can show that projects onto a line orthogonal to Wa and along a line

spanned by a (see figure 1.11).

Figure 1.11

Above we have denoted the vector orthogonal to Wa as (Wa)^ ; thus ((Wa)^)*(Wa)=0. With the
help of the vector b, which is defined in section 1.2 as being orthogonal to a, thus b*a=0, we can
write instead of (Wa)^ also W -1b, because (W -1b)*(Wa)=0 (the inverse W -1 of W exists, since
we assumed W to be positive-definite). With the help of W -1b we can now represent the two
projectors of (8) alternatively as:
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(9)

To see this, consult figure 1.12 and note that with the help of the cosine rule we can write:

or:

Figure 1.12

Note that if W=I, then W -1=I and equations (8) and (9) reduce to equations (3) and (4)
respectively. In section 1.2 we showed that for W=I the representations of (9) correspond to
solving equation (5) in an unweighted least-squares sense. We will now show that the
representations of (9) correspond to solving (5) in a weighted least-squares sense. From the
equivalence of the following minimization problems:

subject to

subject to

subject to

follows that the weighted least-squares estimate of e is given by that ê on the line b*y=b*e for
which e*We is minimal. We know that e*We = constant = c is the equation of an ellipse. For
different values of c we get different ellipses and the larger the value of c is, the larger the
ellipse (see figure 1.13).
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Figure 1.13 c3>c2>c1

The solution ê is therefore given by the point of tangency of the line b*y=b*e with one of the
ellipses e*We=c (see figure 1.14).

Figure 1.14

At this point of tangency the normal of the ellipse is parallel to the normal of the line b*e=b*y.
But since the normal of the line b*e=b*y is given by b, it follows that the normal of the ellipse
at ê is also given by b. From this we can conclude that ê has to be parallel to W -1b. Hence we
may write:

The unknown scalar a may now be determined from the fact that ê has to lie on the line
b*e=b*y. Pre-multiplying ê=W -1ba with b* gives for a
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Substituting this in the equation ê=W -1ba shows that the weighted least-squares estimates of
equation (5) read:

Compare this result with equation (6).

(10)

Example 4: Consider again the problem defined in section 1.1:

The form corresponding to (5) is:

thus the vector b is given as:

As weight matrix we take:

Its inverse reads therefore:

The two projectors and can now be computed as:

and
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The weighted least-squares estimates ê and ŷ read therefore:

and

These results are identical to the results obtained in example 3. End of example.

1.4 Weighted least-squares is also orthogonal projection

In the previous two sections we have seen that unweighted and weighted least-squares estimation
could be interpreted as orthogonal and oblique projection respectively (see figure 1.15).

Figure 1.15

It is important to realize however that these geometric interpretations are very much dependent
on the choice of base vectors with the help of which the vectors y, a and e are constructed. In
all the cases considered so far we have implicitly assumed to be dealing with the orthogonal base
vectors (1,0)* and (0,1)*. That is, the vectors y, a and e of the equation:

were constructed from the scalars y1, y2, a1, a2, e1 and e2 as:
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(11)

Let us now investigate what happens if instead of the orthonormal set (1,0)* and (0,1)*, a
different set, i.e. a non-orthonormal set, of base vectors is chosen. Let us denote these new base
vectors as d1 and d2. With the help of the base vectors d1 and d2, the vectors y, a and e can then
be constructed from the scalars y1, y2, a1, a2, e1 and e2 as:

,

(12) ,

.

Again the equation y=ax+e holds. This is shown in figure 1.16a. Note that the vectors of (12)
are not the same as those of (11). They do however have the same components.

Figure 1.16a Figure 1.16b

Looking at figure 1.16 it seems again, like in section 1.2, intuitively appealing to estimate x as
x̂ such that ax̂ is as close as possible to given vector y. This is the case if the vector y-ax̂ is
orthogonal to the vector a; that is, if:

(13) "orthogonality"

With (12) this gives:

or

or
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(14)

with

The matrix D*D of (14) is symmetric, since (D*D)*=D*D, and it is positive-definite, since z*D*Dz
= (Dz)*(Dz)>0 for all z 0. Hence, the matrix D*D may be interpreted as a weight matrix. By
interpreting the matrix D*D of (14) as a weight matrix we see that the solution of (13) can in fact
be interpreted as a weighted least-squares solution, i.e. a solution of the minimization problem:

We have thus shown that if in a weighted least-squares problem the weight matrix W can be
written as the product of a matrix D* and its transpose D, then the weighted least-squares
estimate ŷ=ax̂ can be interpreted as being obtained through orthogonal projection of y=y1d1+y2d2

onto the line with direction vector a=a1d1+a2d2, where d1 and d2 are the column vectors of matrix
D (see figure 1.17).

Figure 1.17

The crucial question is now whether every weight matrix W, i.e. every symmetric and positive-
definite matrix, can be written as a product of a matrix and its transpose, i.e. as W=D*D. If this
is the case, then every weighted least-squares problem can be interpreted as a problem of
orthogonal projection! The answer is: yes, every weight matrix W can be written as W=D*D. For
a proof, see the intermezzo at the end of this section.
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The weight matrix W=D*D can be interpreted as defining an inner product (Strang, 1988). In the
unweighted case, W=I, the inner product of two vectors u and v with components u1,u2 and v1,v2

respectively, is given as:

This is the so-called standard inner product, where the inner product is represented by the unit
matrix I. The square of the length of the vector u reads then:

In the weighted case, W=D*D, the inner product of u and v is given as:

The square of the length of the vector u reads then:

(15)

Note that the two ways in which (u,v)W is written in (15) correspond with the two figures 1.17a
and 1.17b respectively. In figure 1.17a orthonormal base vectors are used and the metric is
visualized by the ellipse:

In figure 1.17b however, the ellipse is replaced by a circle:

and the metric is visualized by the non-orthonormal base vectors d1 and d2.

Now that we have established the fact that weighted least-squares estimation can be interpreted
as orthogonal projection, it must also be possible to interpret the oblique projectors of equation
(8) as orthogonal projectors. We will show that the matrix Pa,(Wa)^ of (8) can be interpreted as the
matrix which projects orthogonally onto a line spanned by the vector a, where orthogonality is
measured with respect to the inner product defining weight matrix W. From figure 1.18 follows
that:

or
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or

and in this expression we recognize indeed the matrix of equation (8). From now on we
will assume that it is clear from the context which inner-product is taken and therefore also
denote the matrix as Pa.

Figure 1.18

Intermezzo: Cholesky decomposition:

If W is an n×n symmetric positive definite matrix, there is a nonsingular lower triangular matrix
L with positive diagonal elements such that W=LL*.

Proof: The proof is by induction. Clearly, the result is true for n=1 and the induction hypothesis
is that it is true for any (n-1)×(n-1) symmetric positive definite matrix.

Let

where A is a (n-1)×(n-1) matrix. Since W is symmetric positive definite, it will be clear that A
is also symmetric positive definite. Thus, by the induction hypothesis, there is a nonsingular
lower triangular matrix Ln-1 with positive diagonal elements such that A=Ln-1L

*
n-1.

Let

where l and b are to be obtained by equating LL* to W:
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This implies that l and b must satisfy:

Since Ln-1 is nonsingular, the first equation determines l as l=L-1
n-1 a. The second equation allows

a positive b provided that bnn - l*l>0. In order to proof that bnn - l*l>0 we make use of the fact
that W is positive definite, i.e.:

Substitution of and x2=1 shows that bnn - l*l >0.

End of proof.

A simple example of a Cholesky decomposition is:

1.5 The mean and covariance matrix of least-squares estimators

From now on we shall make no distinction between unweighted and weighted least-squares
estimation, and just speak of least-squares estimation. From the context will be clear whether
W=I or not.

In our discussions so far no assumptions regarding the probabilistic nature of the observations
or measurement errors were made. We started by writing the two equations:

in vector notation as:

and showed that the least-squares estimates of x, y and e follow from solving the minimization
problem:
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as:

(16)

Vector ê contains the least-squares residuals. Since functions of random variables are again
random variables, it follows that if the observation vector is assumed to be a random vector y
(note: the underscore indicates that we are dealing with random variables) and substituted for y
in (16), the left-hand sides of (16) also become random variables:

(17)

These random variables are called least-squares estimators, whereas if y is replaced by its sample
value y one speaks of least-squares estimates.

From your lecture notes in statistics you know how to derive the probability density functions
of the estimators of (17) from the probability density function of y. You also know that
if the probability density function of y is "normal" or "Gaussian", then also x̂, ŷ and ê are
normally distributed. This follows, since x̂, ŷ and ê are linear functions of y. You know
furthermore how to compute the means and covariance matrices of y. This is particularly straight-
forward in case of linear functions (see also appendix E and F).

Application of the "propagation law of means" to (17) gives:

(18)

where E{.} denotes mathematical expectation. The result (18) holds true irrespective the type of
probability distribution one assumes for y. Let us now, without assuming anything about the type
of the probability distribution of y, be a bit more specific about the mean E{y} of y. We will
assume that the randomness of the observation vector y is a consequence of the random nature
of the measurement errors. Thus we assume that y can be written as the sum of a deterministic,
i.e. non-random, component ax and a random component e:

(19)

Furthermore we assume that the mean E{e} of e is zero. This assumption seems acceptable if
the measurement errors are zero "on the average".
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With (19) the assumption E{e}=0 implies that:

(20)

Substitution of (20) into (18) gives then:

(21)

This important result shows that if (19) with (20) holds, the least-squares estimators x̂, ŷ and ê
are unbiased estimators. Note that this unbiasedness property of least-squares estimators is
independent of the choice for the weight matrix W ! Let us now derive the covariance matrices
of the estimators x̂, ŷ and ê. We will denote the covariance matrix of y as Qy, the variance of x̂
as sx̂

2 and the covariance matrices of ŷ and ê as Qŷ and Qê respectively. Application of the
"propagation law of covariances" to (17) gives:

(22)

As you know from your lecture notes in Statistics, the variance of a random variable is a
measure for the spread of the probability density function around the mean value of the random
variable. It is a measure of the variability one can expect to see when independent samples are
drawn from the probability distribution. It is therefore in general desirable to have estimators
with small variances. This is particularly true for our least-squares estimators. Together with the
property of unbiasedness, a small variance would namely imply that there is a high probability
that a sample from the distribution of x̂ will be close to the true, but unknown, value x. Since
we left the choice for the weight matrix W open up till now, let us investigate what particular
weight matrix makes sx̂

2 minimal. Using the decomposition Qy=D*D, it follows from (22) that
sx̂

2 can be written as:

where a is the angle between the two vectors DWa and (D *)-1a. From this result follows that
the variance sx̂

2 is minimal when the angle a is zero; that is, when the two vectors DWa and
(D*)-1a are parallel. The variance sx̂

2 is therefore minimal when DWa=(D*)-1a or D*DWa=a or
QyWa=a. Hence, the variance is minimal when we choose the weight matrix W as:
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(23)

With this choice for the weight matrix, the variance sx̂
2 becomes:

(24)

1.6 Best Linear Unbiased Estimators (BLUE’s)

Up till now we have been dealing with least-squares estimation. The least-squares estimates were
derived from the deterministic principles of "orthogonality" and "minimum distance". That is,
no probabilistic considerations were taken into account in the derivation of least-squares
estimates.
Nevertheless, it was established in the previous section that least-squares estimators do have
some "optimal properties" in a probabilistic sense. They are unbiased estimators independent of
the choice for the weight matrix W, and their variance can be minimized by choosing the weight
matrix as the inverse of the covariance matrix of the observations. Moreover, they are linear
estimators, i.e. linear functions of the observations.

Estimators which are linear, unbiased and have minimum variance are called best linear unbiased
estimators or simply BLUE’s. "Best" in this case means minimum variance. Thus least-squares
estimators are BLUE’s in case the weight matrix equals the inverse of the covariance matrix of
the observations. In order to find out how large the class of best linear unbiased estimators is (is
there only one? or are there more than one?), we will now derive this class. Thus instead of
starting from the least-squares principle of "orthogonality" we start from the conditions of
linearity, unbiasedness and best. Again we assume that the mean of y satisfies:
(25)

Our problem is to find an estimator x̂ of the unknown parameter x, where x̂ is a function of y.
Since we want the estimator x̂ to be a linear function of y, x̂ must be of the form:

(26) "L-property"

Furthermore, we want x̂ to be an unbiased estimator of x for all the values x may take. This
means that:

(27) "U-property"

And finally, we want to find those estimators x̂, which in the class of estimators that satisfy (26)
and (27), have minimum variance:

(28) minimal in the class of LU-estimators "B-property"

It will be clear that the class of linear estimators is infinite. Let us therefore look at the class of
linear and unbiased estimators.
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From taking the expectation of (26) follows, with (25) and (27) that:

or

(29)

Thus for LU-estimators the vector l has to satisfy (29) (see figure 1.19).

Figure 1.19:

It will be clear that, although the class of permissable vectors l has been narrowed down to the
line l*a=1, the class of LU-estimators is still infinite. For instance, every vector l of the form:

where c is arbitrary, is permitted.

Let us now include the "B-property". The variance of the estimator x̂ follows from applying the
"propagation law of variances" to (26). This gives:

(30)

The "B-property" implies now that we have to find the vectors l, let us denote them by l̂, that
minimize sx̂

2 of (30) and at the same time satisfy (29). We thus have the minimization problem:

(31)

With the decomposition Qy=D*D, this can also be written as:

or as:
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(32)

where:

(33)

Geometrically, the minimization problem (32) boils down to finding those vectors
ˆ

whose
endpoints lie along the line l̄*(D*)-1a=1 and who have minimum length (see figure 1.20).

Figure 1.20: l̄*(D*)-1a = l̄ (D*)-1a cos a=1

From figure 1.20 it is clear that there is only one such vector
ˆ

. This vector lies along vector
D*-1a and has length (D*)-1a -1. Thus:

(34)
ˆ

where the positive scalar b follows from:
ˆ * ˆ

as:
(35)

Substitution of (35) into (34) gives with (33):

or:

(36)

The best linear unbiased estimator x̂ of x follows therefore with (26) as:

(37)
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From this result we can draw the important conclusion that the best linear unbiased estimator is
unique and equal to the least-squares estimator if W=Qy

-1 !

We will now give an alternative derivation of the solution (37). Equation (29) is the equation
of a line with a direction vector orthogonal to a (see figure 1.20a). Since the vector b

Figure 1.20a: l*a=1 is equivalent to l=lo+ba

was defined as being orthogonal to a, b*a=0, the line a*l=1 can be represented parametrically
as:

(37a)

where lo is a particular solution of (29). Hence, the condition a*l=1 in (31) may be replaced by
l=lo+ba:

This may also be written as:

The solution of this minimization problem is:

(37b)

This is easily verified by using an algebraic proof like the one given in section 1.2. Substitution
of (37b) into (37a) gives:
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The best linear unbiased estimator x̂ of x follows therefore with (26) as:

(37c)

From equations (8) and (9) in section 1.3 we know that:

Substitution in (37c) gives therefore:

or:

since lo
*a=1. This concludes our alternative derivation of (37).

1.7 The Maximum Likelihood (ML) method

In the previous sections we have seen the two principles of least-squares estimation and best
linear unbiased estimation at work. The least-squares principle is a deterministic principle where
no probability assumptions concerning the vector of observations is made. In case y=ax+e, the
least-squares principle is based on minimizing the quadratic form (y-ax)* W(y-ax), with the
weight matrix W.

In contrast with the least-squares principle, the principle of best linear unbiased estimation does
make use of some probability assumptions. In particular it is based on assumptions concerning
the mean and covariance matrix of the random vector of observables y. However, only the mean
and covariance matrix of y need to be specified, not its complete probability distribution. We will
now present a method of estimation that in contrast with the BLUE’s method needs the complete
probability distribution of y.

Let p(y;x) denote the probability density function of y. For a fixed value of x the function p(y;x)
is a function of y and for different values of x the function p(y;x) may take different forms (see
figure 1.21).
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Figure 1.21: Two one-dimensional probability density functions p(y;x1), p(y;x2)

Our objective is now to determine or estimate the parameter x on the basis of the observation
vector y. That is, we wish to determine the correct value of x that produced the observed y. This
suggests considering for each possible x how probable the observed y would be if x were the true
value. The higher this probability, the more one is attracted to the explanation that the x in
question produced y, and the more likely the value of x appears. Therefore, the expression p(y;x)
considered for fixed y as a function of x has been called the likelihood of x. Note that the
likelihood of x is a probability density or a differential probability. The estimation principle is
now to maximize the likelihood of x, given the observed value of y:

(38)

Thus in the method of maximum likelihood we choose as an estimate of x the value which
maximizes p(y;x) for the given observed y. Note that in the ML-method one needs to know the
complete mathematical expression for the probability density function p(y;x) of y. Thus it does
not suffice, as is the case with the BLUE’s method, to specify only the mean and covariance
matrix of y.

As an important example we consider the case that p(y;x) is the probability density function of
the normal distribution. Let us therefore assume that y is normally distributed with mean
E{y}=ax and covariance matrix Qy. The probability density function of y reads then in case it
is a two-dimensional vector:

(39)

As it is often more convenient to work with ln p(y;x) then with p(y;x) itself, the required value
for x is found by solving:
(40)
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this is permitted since ln p(y;x) and p(y;x) have their maxima at the same values of x. Taking
the logarithm of (39) gives:

(41)

Since the first two terms on the right-hand side of (41) are constant, it follows that maximization
of ln p(y;x) amounts to maximization of -1/2(y-ax)*Qy

-1(y-ax). But this is equivalent to
minimization of (y-ax)*Qy

-1(y-ax). Hence we have obtained the important conclusion that
maximum likelihood estimators, in case p(y;x) is the normal distribution, are identical to least-
squares estimators for which the weight matrix is W=Qy

-1 !

Let us now exemplify the above discussion geometrically. From (39) follows that the contours
of constant probability density are ellipses:

For different values of c we get different ellipses. The smaller the probability density, the larger
the value of c and the larger the ellipses are (see figure 1.22).

Figure 1.22: Contours of p(y;x) = constant

By varying the values of x the family of contour lines centred at ax translate along the line with
direction vector a (see figure 1.23).

Figure 1.23

From the figure it is clear that the likelihood of x obtains its maximum there where the
observation point y is a point of tangency of one of the ellipses (see figure 1.24).
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Figure 1.24: The ML-estimate x̂

Hence, after translating the family of ellipses along the line with direction vector a such that y
becomes a point of tangency, the corresponding centre ax̂ of the ellipses gives the maximum
likelihood estimate x̂. At the point of tangency y, the normal to the ellipse is Qy

-1(y-ax̂) (see
figure 1.25).

Figure 1.25: The normal Qy
-1(y-ax̂)

The normal Qy
-1(y-ax̂) is orthogonal to the tangent line at y. But this tangent line is parallel to

the line with direction vector a. Thus we have a*Qy
-1(y-ax̂)=0, which shows once again that in

case of the normal distribution, ML-estimators and LSQ-estimators with W=Qy
-1 are identical!

1.8 Summary

In this chapter we have discussed three different methods of estimation: the LSQ-method, the
BLUE-method and the ML-method. For an overview of the results see table 1. The LSQ-method,
being a deterministic method, was applied to the model:

(42)
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In case the measurement errors are considered to be random, e , the observables also become
random, y , and (42) has to be written as:
(43)

With the assumptions that E{e}=0 and E{ee*}=Qy , we get with (43) the model:

(44)

These two assumption were the starting point of the BLUE-method. If in addition to (44), it is
also assumed that y is normally distributed then the model becomes:
(45)

It was shown that for this model the ML-estimator is identical to the BLU-estimator and the
LSQ-estimator if W=Qy

-1.

We have restricted ourselves in this introductory chapter to the case of two observations y1, y2

and one unknown x. In the next chapter we will start to generalize the theory to higher
dimensions. That is, in the next chapter we will start developing the theory for m observations
y1, y2,...,ym and n unknowns x1, x2,...,xn. In that case model (45) generalizes to:

(46)

where A is an matrix, i.e. it has m rows and n columns.
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