
Testing theory
P.J.G. Teunissen

Series on Mathematical Geodesy and Positioning

an introduction



Testing theory
an introduction





Testing theory
an introduction

P.J.G. Teunissen

Delft University of Technology

Department of Mathematical Geodesy and Positioning

VSSD



Series on Mathematical Geodesy and Positioning
http://www.vssd.nl/hlf/a030.htm

Adjustment Theory
P.J.G. Teunissen
2003 / 201 p. / ISBN 90-407-1974-8

Dynamic Data Processing
P.J.G. Teunissen
2001 / 241 + x p. / ISBN 90-407-1976-4

Testing Theory
P.J.G. Teunissen
2000 / 147+viii p. / ISBN 90-407-1975-6

Hydrography
C.D. de Jong, G. Lachapelle,  S. Skone, I.A. Elema
2003 / x+351 pp. / ISBN  90-407-2359-1 / hardback

© VSSD

First edition 2000-2006

Published by:
VSSD
Leeghwaterstraat 42, 2628 CA Delft, The Netherlands
tel. +31 15 278 2124, telefax +31 15 278 7585, e-mail: hlf@vssd.nl
internet: http://www.vssd.nl/hlf
URL about this book: http://www.vssd.nl/hlf/a030.htm

A collection of digital pictures and an elctronic version can be made available
for lecturers who adopt this book. Please send a request by e-mail to
hlf@vssd.nl

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

Printed version: ISBN 978-90-407-1975-2  Ebook: ISBN 978-90-6562-216-7
NUR 930

Keywords: testing theory, geodesy



Foreword

This book is based on the lecture notes of the course ’Testing theory’ (Inleiding Toetsingstheorie)
as it has been offered since 1989 by the Department of Mathematical Geodesy and Positioning
(MGP) of the Delft University of Technology. This course is a standard requirement and is given
in the second year. The prerequisites are a solid knowledge of adjustment theory together with
linear algebra, statistics and calculus at the undergraduate level. The theory and application of
least-squares adjustments are treated in the lecture notes Adjustment theory (Delft University
Press, 2000). The material of the present course is a follow up on this course on adjustment
theory. Its main goal is to convey the knowledge necessary to be able to judge and validate the
outcome of an adjustment. As in other physical sciences, measurements and models are used in
Geodesy to describe (parts of) physical reality. It may happen however, that some of the
measurements or some parts of the model are biased or in error. The measurements, for instance,
may be corrupted by blunders, or the chosen model may fail to give an adequate enough
description of physical reality. These mistakes can and will occasionally happen, despite the fact
that every geodesist will try his or her best to avoid making such mistakes. It is therefore of
importance to have ways of detecting and identifying such mistakes. It is the material of the
present lecture notes that provides the necessary statistical theory and testing procedures for
resolving situations like these.

Following the Introduction, the basic concepts of statistical testing are presented in Chapter 1.
In Chapter 2 the necessary theory is developed for testing simple hypotheses. As opposed to its
composite counterpart, a simple hypothesis is one which is completely specified, both in its
functional form as well as in the values of its parameters. Although simple hypotheses rarely
occur in geodetic practice, the material of this chapter serves as an introduction to the chapters
following. In Chapter 3, the generalized likelihood ratio principle is used to develop the theory
for testing composite hypotheses. This theory is then worked out in detail in Chapter 4, for the
important case of linear(ized) models. Both the parametric form (observation equations) and the
implicit form (condition equations) of linear models are treated. Five different expressions are
given for the uniformly, most powerful, invariant teststatistic. As an additional aid in
understanding the basic principles involved, a geometric interpretation is given throughout. This
chapter also introduces the important concept of reliability. The internal and external reliability
measures given, enable a user to determine in advance (i.e. at the designing stage, before the
actual measurements are collected) the size of the minimal detectable biases and the size of their
potential impact on the estimated parameters of interest.

Many colleagues of the Department of Mathematical Geodesy and Positioning whose assistance
made the completion of this book possible are greatly acknowledged. C.C.J.M. Tiberius took care
of the editing, while the typing was done by Mrs. J. van der Bijl and Mrs. M.P.M. Scholtes. The
drawings were made by Mr. A.B Smits and the statistical tables were generated by Mrs. M.
Roselaar. Various lecturers have taught the book’s material over the past years. In particular the
feedback and valuable recommendations of G.J. Husti, F. Kenselaar and N.F. Jonkman are
acknowledged.

P.J.G. Teunissen
June, 2000





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Basic concepts of hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Statistical hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Test of statistical hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Two types of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 A testing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 General steps in testing hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Testing of simple hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 The simple likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Most powerful tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 The -teststatistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35w
2.4 The -teststatistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48v

3 Testing of composite hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 The generalized likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Uniformly most powerful tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Hypothesis testing in linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 The models of condition and observation equations . . . . . . . . . . . . . . . 71
4.2 A geometric interpretation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79T

q
4.3 The case q = 1: the -teststatistic . . . . . . . . . . . . . . . . . . . . . . . . . . . 86w
4.4 The case q = m−n: the -teststatistic . . . . . . . . . . . . . . . . . . . . . . . . . 90σ̂2

4.5 Internal reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 External reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.7 Reliability: an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A Some standard distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B Statistical tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C Detection, identification and adaptation . . . . . . . . . . . . . . . . . . . . . . . 132
D Early history of adjusting geodetic and astronomical observations . . . . 137

Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147





Introduction

The present lecture notes are a follow up on the book Adjustment theory (Delft University Press,
2000). Adjustment theory deals with the optimal combination of redundant measurements
together with the estimation of unknown parameters. There are two main reasons for performing
redundant measurements. First, the wish to increase the accuracy of the results computed.
Second, the requirement to be able to check for mistakes or errors. The present book addresses
this second topic.

In order to be able to adjust redundant observations, one first needs to choose a mathematical
model. This model consists of two parts, the functional model and the stochastic model. The
functional model contains the set of functional relations the observables are assumed to obey.
For instance, when the three angles of a triangle are observed and when it is assumed that the
laws of planar Euclidean geometry apply, the three angles should add up to π. However, since
measurements are intrinsically uncertain (perfect measurements do not exist), one should also
take the unavoidable variability of the measurements into account. This is done by means of a
stochastic model in which the measurement uncertainty is captured through the use of stochastic
(or random) variables. In most geodetic applications it is assumed that the results of
measurement, the observations, are independent samples drawn from a normal (or Gaussian)
distribution.

Once the mathematical model is specified, one can proceed with the adjustment. Although
different methods of adjustment exist, one of the leading principles is the principle of
least-squares (for a brief account on the early history of adjustment, see Appendix D). Apart
from the fact that (linear) least-squares estimators are relatively easy to compute, they also
possess two important properties, namely the property of unbiasedness and the property of
minimum variance. In layman terms one could say that least-squares solutions coincide with their
target value on the average (property of unbiasedness), while the sum of squares of their
unavoidable, individual variations about this target value will be the smallest possible on the
average (property of minimum variance). These two properties only hold true, however, under
the assumption that the mathematical model is correct. They fail to hold in case the mathematical
model is misspecified. Errors or misspecifications in the functional model generally result in
least-squares estimators that are biased (off target). Similarly, misspecifications in the stochastic
model will generally result in least-squares estimators that are less precise (larger variations).

Although one always will try one’s best to avoid making mistakes, they can and will occasionally
happen. It is therefore of importance to have ways of detecting and identifying such mistakes.
In this book we will restrict ourselves and concentrate only on developing methods for detecting
and identifying errors in the functional model. Hence, throughout this book the stochastic model
is assumed to be specified correctly. This restriction is a legitimate one for many geodetic
applications. From past experience we know that if modelling errors occur, they usually occur
in the functional model and not so much in the stochastic model. Putting the exceptions aside,
one is usually quite capable of making a justifiable choice for the stochastic model. Moreover,
mistakes made in the functional model usually have more serious consequences for the results
computed than errors made in the stochastic modelling.
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Mistakes or errors in the functional model can come in many different guises. At this point it
is of importance to realize, since every model is a caricature of reality, that every model has its
shortcomings. Hence, strictly speaking, every model is already in error to begin with. This shows
that the notion of a modelling error or a model misspecification has to be considered with some
care. In order to understand this notion, it helps if one accepts that the presence of modelling
errors can only be felt in the confrontation between data and model. We therefore speak of a
modelling error when the discrepancies between the observations and the model are such that
they can not be explained by, or attributed to, the unavoidable measurement uncertainty. Such
discrepancies can have many different causes. They could be caused by mistakes made by the
observer, or by the fact that defective instruments are used, or by wrong assumptions about the
functional relations between the observables. For instance, in case of levelling, it could happen
that the observer made a mistake when reading off the leveling rod, or in case of direction
measurements, it could happen that the observer accidentally aimed the theodolite at the wrong
point. These types of mistakes affect individual observations and are usually referred to as
blunders or gross errors. Instead of a few individual observations, whole sets of observations may
become affected by errors as well. This happens in case defective instruments are used, or when
mistakes are made in formulating the functional relations between the observables. Errors with
a common cause that affect whole sets of observations are sometimes referred to as systematic
errors.

The goal of this book is to convey the necessary knowledge for judging the validity of the model
used. Typical questions that will be addressed are: ’How to check the validity of a model? How
to search for certain mistakes or errors? How well can errors be traced? How do undetected
errors affect the final results?’ As to the detection and identification of errors, the general steps
involved are as follows:
(i) One starts with a model which is believed to give an adequate enough description of

reality. It is usually the simplest model possible which on the basis of past experience has
proven itself in similar situations. Since one will ordinarily assume that the measurements
and the modelling are done with the utmost care, one is generally not willing, at this
stage, to already make allowances for possible mistakes or errors. This is of course an
assumption or an hypothesis. This first model is therefore referred to as the null
hypothesis.

(ii) Since one can never be sure about the absence of mistakes or errors, it is always wise to
check the validity of the null hypothesis once it has been selected. Hence, one would like
to be able to detect an untrustworthy null hypothesis. This is possible in principle, when
redundant measurements are available. From the adjustment of the redundant
measurements, (least-squares) residuals can be computed. These residuals are a measure
of how well the measurements fit the model of the null hypothesis. Large residuals are
often indicative for a poor fit, while smaller residuals tend to correspond with a better fit.
These residuals are therefore used as input for deciding whether or not one is willing to
accept the null hypothesis.

(iii) Would one decide to reject the null hypothesis, one implicitly states that the
measurements do not seem to support the assumption that the model under the null
hypothesis gives an adequate enough description of reality. One will therefore have to
look for an alternative model or an alternative hypothesis. It very seldom happens
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however, that one knows beforehand which alternative to consider. After all, many
different errors could have led to the rejection of the null hypothesis. This implies that
in practice, instead of considering a single alternative, usually various alternatives will
have to be considered. And since different types of errors may occur in different
situations, the choice of these alternatives very much depends on the particular situation
at hand.

(iv) Once it has been decided which alternatives to consider, one can commence with the
process of identifying the most likely alternative. This in fact boils down to a search of
the alternative hypothesis which best fits the measurements. Since each alternative
hypothesis describes a particular mistake or modelling error, the most likely mistake
corresponds with the most likely hypothesis. Once one is confident that the modelling
errors have been identified, the last step consists of an adaptation of the data and/or
model. This implies either a re-measurement of the erroneous data or the inclusion of
additional parameters in the model such that the modelling errors are accounted for.

It will be intuitively clear that not all errors can be traced equally well. Some errors are better
traceable than others. Apart from being able of executing the above steps for the detection and
identification of modelling errors, one would therefore also like to know how well these errors
can be traced. This depends on the following factors. It depends on the model used (the null
hypothesis), on the type and size of the error (the alternative hypothesis), and on the decision
procedure used for accepting or rejecting the null hypothesis. Since these decisions are based on
uncertain measurements, their outcomes will be to some degree uncertain as well. As a
consequence, two kinds of wrong decisions can be made. One can decide to reject the null
hypothesis, while in fact it is true (wrong decision of the 1st kind), or one can decide to accept
the null hypothesis, although it is false (wrong decision of the 2nd kind). In the first case, one
wrongly believes that a mistake or modelling error has been made. This might then lead to an
unnecessary re-measurement of the data. In the second case, one wrongly believes that mistakes
or modelling errors are absent. As a consequence, one would then obtain biased adjustment
results. These issues and how to cope with them, will also be discussed in this book. Once
mastered, they will enable one to formulate guidelines for the reliable design of measurement
set-ups.





1 Basic concepts of hypothesis testing

1.1 Statistical hypotheses

Many social, technical and scientific problems result in the question whether a particular theory
or hypothesis is true or false. In order to answer this question one can try to design an
experiment such that its outcome can also be predicted by the postulated theory. After performing
the experiment one can then confront the experimental outcome with the theoretically predicted
value and on the basis of this comparison try to conclude whether the postulated theory or
hypothesis should be rejected. That is, if the outcome of the experiment disagrees with the
theoretically predicted value, one could conclude that the postulated theory or hypothesis should
be rejected. On the other hand, if the experimental outcome is in agreement with the theoretically
predicted value, one could conclude that as yet no evidence is available to reject the postulated
theory or hypothesis.

Example 1

According to the postulated theory or hypothesis the three points 1, 2 and 3 of Figure 1.1 lie on
one straight line. In order to test or verify this hypothesis we need to design an experiment such
that its outcome can be compared with the theoretically predicted value.

Figure 1.1: Three points on a straight line.

If the postulated hypothesis is correct, the three distances l12, l23 and l13 should satisfy the
relation:

Thus, under the assumption that the hypothesis is correct we have:

(1) .

To denote a hypothesis, we will use a capital H followed by a colon that in turn is followed by
the assertion that specifies the hypothesis. As an experiment we can now measure the three
distances l12, l23 and l13, compute l12 + l23 − l13 and verify whether this computed value agrees or
disagrees with the theoretically predicted value of H. If it agrees, we are inclined to accept the
hypothesis that the three points lie on one straight line. In case of disagreement we are inclined
to reject hypothesis H.
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It will be clear that in practice the testing of hypotheses is complicated by the fact that
experiments (in particular experiments where measurements are involved) in general do not give
outcomes that are exact. That is, experimental outcomes are usually affected by an amount of
uncertainty, due for instance to measurement errors. In order to take care of this uncertainty, we
will, in analogy with our derivation of estimation theory in "Adjustment theory", model the
uncertainty by making use of the results from the theory of random variables. The verification
or testing of postulated hypotheses will therefore be based on the testing of hypotheses of
random variables of which the probability distribution depends on the theory or hypothesis
postulated. From now on we will therefore consider statistical hypotheses.

A statistical hypothesis is an assertion or conjecture about the probability distribution of one or
more random variables, for which it is assumed that a random sample (mostly through
measurements) is available.

The structure of a statistical hypothesis H is in general the following:

This statistical hypothesis should be read as follows: According to H the scalar or vector

(2)

observable random variable has a probability density function given by . The scalar,
vector or matrix parameter used in the notation of indicates that the probability density
function of is known except for the unknown parameter . Thus, by specifying (either fully
or partially) the parameter , an assertion or conjecture about the density function of is made.
In order to see how a statistical hypothesis for a particular problem can be formulated, let us
continue with our Example 1.

Example 1 (continued)

We know from experience that in many cases the uncertainty in geodetic measurements can be
adequately modelled by the normal distribution. We therefore model the three distances between
the three points 1, 2 and 3 as normally distributed random variables 1. If we also assume that
the three distances are uncorrelated and all have the same known variance , the simultaneous
probability density function of the three distance observables becomes:

1 Note that strictly speaking distances can never be normally distributed. A distance is
always nonnegative, whereas the normal distribution, due to its infinite tails, admits
negative sample values.
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Statement (3) could already be considered a statistical hypothesis, since it has the same structure

(3)

as (2). Statement (3) asserts that the three distance observables are indeed normally distributed
with unknown mean, but with known variancematrix . Statement (3) is however not yet theQ
statistical hypothesis we are looking for. What we are looking for is a statistical hypothesis of
which the probability density function depends on the theory or hypothesis postulated. For our
case this means that we have to incorporate in some way the hypothesis that the three points lie
on one straight line. We know mathematically that this assertion implies that:

However, we cannot make this relation hold for the random variables . This is

(4)

l
12

, l
23

and l
13

simply because of the fact that random variables cannot be equal to a constant. Thus, a statement
like: is nonsensical. What we can do is assume that relation (4) holds for thel

12
l
23

l
13

0
expected values of the random variables :l

12
, l

23
and l

13

For the hypothesis considered this relation makes sense. It can namely be interpreted as stating

(5)

that if the measurement experiment were to be repeated a great number of times, then on the
average the measurements will satisfy (5). With (3) and (5) we can now state our statistical
hypothesis as:

(6)

This hypothesis has the same structure of (2) with the three means playing the role of the
parameter .x

In many hypothesis-testing problems two hypotheses are discussed: The first, the hypothesis
being tested, is called the null hypothesis and is denoted by . The second is called theH0

alternative hypothesis and is denoted by . The thinking is that if the null hypothesis isHA H0

false, then the alternative hypothesis is true, and vice versa. We often say that is testedHA H0

against, or versus, . In studying hypotheses it is also convenient to classify them into one ofHA

two types by means of the following definition: if a hypothesis completely specifies the
distribution, that is, if it specifies its functional form as well as the values of its parameters, it
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is called a simple hypothesis (enkelvoudige hypothese); otherwise it is called a composite
hypothesis (samengestelde hypothese).

Example 1 (continued)

In our example (6) is the hypothesis to be tested. Thus, the null hypothesis reads in our case:

(7)

Since we want to find out whether or not, we could take as alternativeE l
12

E l
23

E l
13

0
the inequality . However, we know from the geometry of our problemE l

12
E l

23
E l

13
≠ 0

that the left hand side of the inequality can never be negative. The alternative should therefore
read: . Our alternative hypothesis takes therefore the form:E l

12
E l

23
E l

13
> 0

(8)

When comparing (7) and (8) we see that the type of the distribution of the observables and their
variance matrix are not in question. They are assumed to be known and identical under bothH0

and . Both of the above hypotheses, and , are examples of composite hypotheses. TheHA H0 HA

above null hypothesis would become a simple hypothesis if the individual expectations ofH0

the observables were assumed known.

1.2 Test of statistical hypotheses

After the statistical hypotheses and have been formulated, one would like to test themH0 HA

in order to find out whether should be rejected or not.H0

A test of a statistical hypothesis:

is a rule or procedure, in which a random sample of is used for deciding whether to reject ory
not reject . A test of a statistical hypothesis is completely specified by the so-called criticalH0

region (kritiek gebied), which will be denoted by .K
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The critical region K of a test is the set of sample values of for which is to be rejected.y H0

Thus, is rejected if .H0 y ∈ K

It will be obvious that we would like to choose a critical region so as to obtain a test with
desirable properties, that is, a test that is "best" in a certain sense. Criteria for comparing tests
and the theory for obtaining "best" tests will be developed in the next and following sections.
But let us first have a look at a simple testing problem for which, on more or less intuitive
grounds, an acceptable critical region can be found.

Example 2

Let us assume that a geodesist measures a scalar variable, and that this measurement can be
modelled as a random variable with density function:y

Thus, it is assumed that has a normal distribution with unit variance. Although this assumption

(9)

y
constitutes a statistical hypothesis, it will not be tested here because the geodesist is quite certain
of the validity of this assumption. The geodesist is however not certain about the value of the
expectation of . His assumption is that the value of is . This assumption is the statisticaly E y x0

hypothesis to be tested. Denote this hypothesis by . Then:H0

Let denote the alternative hypothesis that . Then:

(10)

HA E y ≠ x0

Thus the problem is one of testing the simple hypothesis against the composite hypothesis

(11)

H0

. To test , a single observation on the random variable is made. In real-life problems oneHA H0 y
usually takes several observations, but to avoid complicating the discussion at this stage only one
observation is taken here. On the basis of the value of obtained, denoted by , a decision willy y
be made either to accept or reject it. The latter decision, of course, is equivalent to acceptingH0

. The problem then is to determine what values of should be selected for accepting andHA y H0

what values for rejecting . If a choice has been made of the values of that will correspondH0 y
to rejection, then the remaining values of will necessarily correspond to acceptance. As definedy
above, the rejection values of constitute the critical region K of the test. Figure 1.2 shows they
distribution of under and under two possible alternatives and .y H0 HA1

HA2
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Figure 1.2: .

Looking at this figure, it seems reasonable to reject if the observation is remote enoughH0 y
from . If is true, the probability of a sample of falling in a region remote fromE y x0 H0 y

is namely small. And if is true, this probability may be large. Thus the criticalE y x0 HA

region K should contain those sample values of that are remote enough from . Also,y E y x0

since the alternative hypothesis can be located on either side of , it seems obvious toE y x0

have one portion of K located in the left tail of and one portion of K located in the right tailH0

of . Finally, one can argue that since the distribution is symmetric about its mean value, alsoH0

the critical region K should be symmetric about . This as a result gives the form of theE y x0

critical region K as shown in Figure 1.3. Although this critical region has been found on more
or less intuitive grounds, it can be shown that it possesses some desirable properties. We will
return to this matter in a later section.

Figure 1.3: Critical region K for testing

1.3 Two types of errors

We have seen that a test of a statistical hypothesis is completely specified once the critical region
K of the test is given. The null hypothesis is rejected if the sample value or observation ofH0

falls in the critical region, i.e. if . Otherwise the null hypothesis is accepted, i.e. ify y∈K H0

. With this kind of thinking two types of errors can be made:y∉K

Type I error: Rejection of when in fact is true.H0 H0

Type II error: Acceptance of when in fact is false.H0 H0
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Table 1.1 shows the decision table with the type I and II errors.

trueH0 falseH0

Reject H0

y∈K
Wrong

Type I error
Correct

Accept H0

y∉K
Correct

Wrong
Type II error

Table 1.1: Decision table with type I and type II error.

The size of a type I error is defined as the probability that a sample value of falls in they
critical region when in fact is true. This probability is denoted by α and is called the size ofH0

the test or the level of significance of the test (onbetrouwbaarheid van de test). Thus:

or

α P (type I error) P (rejection of H0 when H0 true)

(12) .

The size of the test, α, can be computed once the critical region K and the probability density
function of is known under . The size of a type II error is defined as the probability thaty H0

a sample value of falls outside the critical region when in fact is false. This probabilityy H0

is denoted by β. Thus:

β = P(type II error) = P(acceptance of when is false)H0 H0

or

(13) .

The size of a type II error, β, can be computed once the critical region K and the probability
density function of is known under .y HA

Example 3

Assume that is distributed as:y

with known variance .

(14)

σ2
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The following two simple hypotheses are considered:

and

(15)

The situation is sketched in Figure 1.4.

(16)

Figure 1.4: The two simple hypotheses:

Since the alternative hypothesis is located on the right of the null hypothesis , it seemsHA H0

intuitively appealing to choose the critical region K right-sided. Figure 1.5a and 1.5b show two
possible right-sided critical regions K.

Figure 1.5: Critical region K and size of test, α.

They also show the size of the test, α, which corresponds to the area under the graph of the
distribution of under for the interval of the critical region K.y H0
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The size of the test, α, can be computed once the probability density function of under isy H0

known and the form and location of the critical region K is known. In the present example the
form of the critical region has been chosen right-sided. Its location is determined by the value
of , the so-called critical value (kritieke waarde) of the test. Thus, for the present example thekα
size of the test can be computed as:

or, since:

as:

When one is dealing with one-dimensional normally distributed random variables, one can

(17)

usually compute the size of the test, α, from tables given for the standard normal distribution
(see appendix B). In order to compute (17) with the help of such a table, we first have to apply
a transformation of variables. Since is normally distributed under with mean andy H0 x0

variance , it follows that the random variable , defined as:σ2 z

is standard normally distributed under . And since:

(18)

H0

we can use the last expression of (19) for computing α. Application of the change of variables

(19)

(18) to (17) gives:

We can now make use of the table of the standard normal distribution. Table 1.2 shows some

(20)

typical values of the α and for the case that .kα x0 1 and σ 2
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α
kα x0

σ
kα

0.1
0.05
0.01
0.001

1.28
1.65
2.33
3.09

3.56
4.29
5.65
7.18

Table 1.2: Test size α, critical value for and .kα x0 1 σ 2

As we have seen the location of the critical region K is determined by the value chosen for ,kα
the critical value of the test. But what value should we choose for ? Here the geodesist shouldkα
base his judgement on his experience. Usually one first makes a choice for the size of the test,
α, and then by using (20) or Table 1.2 determines the corresponding critical value . Forkα
instance, if one fixes α at α = 0.01, the corresponding critical value (for the present examplekα
with ) reads The choice of α is based on the probability of a typex0 1 and σ 2 kα 5.65.
I error one is willing to accept. For instance, if one chooses α as α = 0.01, one is willing to
accept that 1 out of a 100 experiments leads to rejection of when in fact is true.H0 H0

Let us now consider the size of a type II error, β. Figure 1.6 shows for the present example the
size of a type II error, β. It corresponds to the area under the graph of the distribution of y
under for the interval complementary to the critical region K.HA

Figure 1.6: The sizes of type I and type II error, α and β, for testing
.H0: E y x0 versus HA: E y xA >x0

The size of a type II error, β, can be computed once the probability density function of undery HA

is known and the critical region K is known. Thus, for the present example the size of the type
II error can be computed as:

or since:
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as:

(21)

Also this value can be computed with the help of the table of the standard normal distribution.
But first some transformations are needed. It will be clear that the probability that a sample or
observation of falls in the critical region K when is true, is identical to 1 minus they HA

probability that the sample does not fall in the critical region when is true. Thus:HA

(22)

Since for the present example:

substitution into (22) gives:

(23)

This formula has the same structure as (17). The value 1−β can therefore be computed in exactly
the same manner as the size of the test, α, was computed. And from 1−β it is trivial to compute
β, the size of the type II error.

Figure 1.7 gives the probability 1−β of rejecting , when indeed is true, as function of theH0 HA

unknown mean under . When this probability is requested to be at least 1−β = 0.80, thexA HA

unknown mean under has to be at least . We return to the probability γ = 1−β, theHA xA 7.34
power, in Section 4.5 on reliability. The size of the test was fixed to α = 0.01.
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Fig. 1.7: Probability γ = 1−β as function of , for testingxA

, with and .H0: E y x0 versus HA: E y xA >x0 x0 1 σ 2

1.4 A testing principle

We have seen that two types of errors are involved when testing a null hypothesis againstH0

an alternative hypothesis : (1) The rejection of when in fact is true (type I error); (2)HA H0 H0

the acceptance of when in fact is false (type II error). One might reasonably use the sizesH0 H0

of the two types of errors, α and β, to set up criteria for defining a best test. If this is possible,
it would automatically give us a method of choosing a critical region K. A good test should be
a test for which α is small (ideally 0) and β is small (ideally 0). It would therefore be nice if we
could define a test, i.e. define a critical region K, that simultaneously minimizes both α and β.
Unfortunately this is not possible. As we decrease α, we tend to increase β, and vice versa. The
Neyman-Pearson principle provides a workable solution to this situation. This principle says that
we should fix the size of the type I error, α, and minimize the size of the type II error, β. Thus:

A testing principle (Neyman et al., 1933): Among all tests or critical regions possessing the same
size type I error, α, choose one for which the size of the type II error, β, is as small as possible.

The justification for fixing the size of the type I error to be α, (usually small and often taken as
0.05 or 0.01) seems to arise from those testing situations where the two hypotheses, ,H0 and HA

are formulated in such a way that one type of error is more serious than the other. The
hypotheses are stated so that the type I error is the more serious, and hence one wants to be
certain that it is small. Testing principles other than the above given one can of course easily be
suggested: for example, minimizing the sum of sizes of the two types of error, α + β. However,
the Neyman-Pearson principle has proved to be very useful in practice. In this book we will
therefore base our method of finding tests on this principle. Now let us consider a testing
problem from the point of view of the Neyman-Pearson principle.
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Example 4

Assume that has the following probability density function:y

(24) .2

The following two simple hypotheses are considered:

(25)

Figure 1.8 shows the density function of under .y H0 and HA

Figure 1.8: The function .xe yx, x>0, y≥0 for x 2 and x 1

Contrary to our Example 3, it is now not that obvious how to choose the form of the critical
region K. Let us first consider the case of a right-sided critical region K. Thus:

In order to compute α and β we need to evaluate an integral of the type:

(26)

For the right-sided critical region (26) this gives for the size of the type I error:

(27)

The corresponding size of the type II error is:

(28)

2 Prove yourself that this function is indeed a probability density function.
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Now let us consider a left-sided critical region as alternative. Thus:

(29)

K

For this critical region the size of the type I error becomes:

(30)

And the corresponding size of the type II error is given by:

(31)

Let us now compare the two tests, that is, the one with the right-sided critical region K with the

(32)

one with the left-sided critical region . We will base this comparison on the Neyman-PearsonK
principle. According to this principle, both tests have the same size of type I error. Thus:

(33)

With (28) and (31) this gives or:

Using (29) and (32) this equation can be expressed in terms of and β as:

(34)

β

Hence:

Figure 1.9 shows the graph of this function. It clearly shows that:

(35)

(36)

The conclusion reads therefore that of the two tests the one having the right-sided critical region
K is the best in the sense of the Neyman-Pearson principle.
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Figure 1.9: The function .β (2β β2)
1

2

1.5 General steps in testing hypotheses

Thus far we have discussed the basic concepts underlying most of the hypothesis-testing
problems. The same concept and guidelines will provide the basis for solving more complicated
hypothesis-testing problems as treated in the next chapters. Here we summarize the main steps
on testing hypotheses about a general probability model.

(a) From the nature of the experimental data and the consideration of the assertions that are
to be examined, identify the appropriate null hypothesis and alternative hypothesis:

(b) Choose the form of the critical region K that is likely to give the best test. Use the
Neyman-Pearson principle to make this choice.

(c) Specify the size of the type I error, α, that one wishes to assign to the testing process.
Use tables to determine the location of the critical region K from:

(d) Compute the size of the type II error:

to ensure that there exists a reasonable protection against type II errors.

(e) After the test has been explicitly formulated, determine whether the sample or observation
y of falls in the critical region K or not. Reject if , and accept if .y H0 y∈K H0 y∉K
Never claim however that the hypotheses have been proved false or true by the testing.


