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Foreword

This book is based on the lecture notes of the course Dynamic data processing as it has been
given by the Department of Mathematical Geodesy and Positioning (MGP) of the Delft
University of Technology since 1990. The prerequisites are a solid knowledge of adjustment
theory and geodetic positioning, together with linear algebra, statistics and calculus. The theory
and application of least-squares adjustment are treated in Adjustment theory (Delft University
Press, 2000). The material of the present course extends the theory to the recursive estimation
of time-varying or dynamic parameters. The time-varying parameters could for instance be
geometric parameters such as position, attitude and shape, physical parameters such as
temperature and humidity, or instrumental parameters such as clock drifts and biases. The
time-varying parameters are said to be determined recursively when the method of determination
enables sequential, rather than batch processing of the measurement data. The main goal is
therefore to convey the knowledge necessary to be able to process sequentially collected
measurement data in an optimal and efficient manner for the purpose of estimating time-varying
parameters.

Following the Introduction, the basic theory of least-squares estimation is reviewed in Chapter
1. This is done for the model of observation equations and for the model of condition equations.
In Chapter 2 the principle of recursive least-squares estimation is introduced. The recursive
principle allows one to update the least-squares solution for new observations without the need
to store all past observations. Two different forms of the measurement-update equations are
given. The results of Chapter 2, which hold true for time-invariant parameters, are generalized
in Chapter 3 to the case of time-varying parameters. The time-varying nature of the parameters
is assumed captured by means of polynomial equations of motion. The recursive solution now
consists of two types of update equations, the measurement-update equations and the time-update
equations. Since there still exist many dynamic systems for which the rather simple polynomial
model of Chapter 3 does not apply, a larger class of dynamic models is introduced in Chapter
4. These models are formulated using the state-space description of dynamic systems. In order
to include randomness in the state-space description of dynamic systems, some of the elementary
concepts of the theory of random functions are discussed in Chapter 5. This chapter also includes
a description of the propagation laws for linear, time-varying systems. The results of Chapter 5
are used in Chapter 6 to model possible uncertainties associated with the dynamic model. As a
result the update equations are obtained for the recursive least-squares filtering and prediction
of time-varying parameters.

Many colleagues of the Department of Mathematical Geodesy and Positioning whose assistance
made the completion of this book possible are gratefully acknowledged. The typing of the book
was done by Mrs. M.P.M. Scholtes, while C.D. de Jong took care of the editing. Various
lecturers have taught the book’s material over the past years. In particular the feedback and
valuable recommendations of the lecturers H.M. de Heus, C.D. de Jong and C.C.J.M. Tiberius
are acknowledged.

P.J.G. Teunissen
July, 2001
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Introduction

As in other physical sciences, empirical data are used in geodesy to make inferences so as to
describe physical reality. Many such problems involve the determination of unknown parameters
from a set of redundant measurements. Measurements are said to be redundant when they exceed
the minimum necessary for a unique determination of the parameters. There are two main reasons
for collecting redundant measurements. First the requirement to be able to check for mistakes
or errors. Second the wish to increase the accuracy of the results computed. As a consequence
of measurement uncertainty (exact measurements do not exist), the redundant data are usually
inconsistent in the sense that each sufficient subset yields results which will differ from the
results obtained from another subset. To obtain a unique solution, consistency needs to be
restored by applying corrections to the data. This computational process of making the
measurement data consistent with the model such that the unknown parameters can be
determined uniquely, is referred to as adjustment. Adjustment theory therefore deals with the
optimal combination of redundant measurements together with the estimation of unknown
parameters. An introductory course on adjustment was presented in Adjustment theory (Delft
University Press, 2000). This theory is extended in this book to the case of time-varying or
dynamic parameters with an emphasis on their recursive estimation.

Time-varying parameters occur in many geodetic models. They could be geometric parameters
such as position, attitude and shape, physical parameters such as temperature and humidity, or
instrumental parameters such as clock drifts and biases. When a body (e.g. satellite, aircraft, car,
or ship) is in motion, its position changes as function of time. Being able to track the position
of such a moving object is of importance, for instance for navigation and guidance. A moving
body may also change its attitude as function of time. Attitude determination is sometimes
needed as an aid to navigation and guidance, but it also applies, in case of earth rotation, to the
Earth as a whole. Objects that are subject to deformation change their shape as a function of
time. On a global scale, for instance, the earth deforms due to various geophysical processes. But
the earth’s surface may also change its shape on more local or regional scales. Subsidence due
to gas extraction is one such example. Apart from time-varying geometric parameters, also
physical and instrumental parameters may change as function of time. Atmospheric parameters
such as those of the ionosphere and troposphere, change on an hourly, daily and even seasonal
basis. Also the performance of instruments often displays a dependence on time. This is the
reason why calibrations are carried out, so as to keep the time-varying instrumental parameters
in control.

A parameter solution is said to be recursive when the method of determination enables
sequential, rather than batch processing of the measurement data. The need for a recursive
solution is usually driven by the efficiency with which such solutions can be computed. This
holds true in particular for applications in which the time-varying parameters need to be
determined instantly or in real-time. We speak of a (near) real-time determination when the time
of determination (almost) coincides with the time the parameter takes on the value to be
determined. Such applications can typically be found in the area of navigation and guidance. In
the case of navigation, for instance, it does not make sense to determine one’s position with a
too long time delay. In these applications there is therefore a real need to have a computational
cycle time of the position determination that is as short as possible. This is feasible when
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recursive methods are used. But even in case real-time solutions are not an important issue, the
use of recursive methods can still be attractive due to their computational efficiency.

When determining time-varying parameters from sequentially collected measurement data, one
can discriminate between three types of estimation problems (see Figure 0.1). When the time at
which a parameter estimate is required coincides with the time the last measurements are
collected, the problem is referred to as filtering. When the time of interest falls within the time
span of available measurement data, the problem is referred to as smoothing, and when the time
of interest occurs after the time the last measurements are collected, the problem is called
prediction. Thus filtering aims at the determination of current parameter values, while smoothing
and prediction aim respectively at the determination of past and future parameter values. The
emphasis in this book will be on recursive filtering.

Figure 0.1: Prediction, filtering and smoothing.

The essence of a recursive method is that it enables one to update the parameter estimates for
new measurements without the need to store all past measurements. Assume, for example, that
one has collected at epoch t-1 a redundant set of measurements yt-1 which bears a linear
relationship with an unknown parameter vector x. The measurements yt-1 can then be used to
obtain a linear least-squares estimate of the unknown parameter vector x. Now assume thatx̂t 1

at the next epoch t a new set of measurements yt becomes available which also bears a linear
relationship to the same unknown parameter vector x. Since these additional measurements also
contain information about the unknown parameter vector x, they can be used to improve the
estimate of x. One approach would be to use both and yt and to repeat the least-squaresx̂t 1 yt 1

adjustment. As a result one obtains the improved least-squares estimate of x. Although thisx̂t

approach is valid, it requires that one saves the past measurements yt-1. In some cases this may
be a too heavy computational burden, in particular if there are many past measurements or many
epochs that precede the current epoch. Fortunately there is an alternative approach available, the
recursive solution. It can be shown (under some mild restrictions) that the same improved
least-squares estimate of x, can also be computed from and yt instead of from and yt.x̂t x̂t 1 yt 1

The solution will then have the recursive structure:



Introduction 3

in which Kt and At are matrices. This recursive equation, which holds true for any epoch t, is
referred to as the measurement-update equation: the new measurements yt are used to update the
previous parameter estimate so as to obtain the current parameter estimate .x̂t 1 x̂t

Some elements of recursive estimation were already briefly introduced in Adjustment theory
(Chapter 6, Section 3). However, just as in the above example, this brief introduction only dealt
with models in which the parameter vector remained constant in time. In this book we will
extend the theory to the case of time-varying parameters. This implies that some additional
modeling needs to be done, namely one that describes the time-dependence of the parameter
vector. Depending on the application at hand, these equations of motion can be of a kinematic
or of a dynamic nature. Kinematics is used to relate position, velocity, acceleration and time
without reference to the cause of motion, whereas dynamics also includes an explicit description
of the forces responsible for the motion. As a consequence of having incorporated the
time-varying nature of the parameter vector into the model, the recursion will now consist of two
different update equations, the time-update (TU) and the measurement update (MU):

with the transition matrix. The time-update uses the filtered estimate of epoch t-1Φt,t 1 x̂t 1 t 1

to predict the parameter vector of the next epoch, xt, as . This predicted estimate togetherx̂t t 1

with the new measurements yt are then combined in the measurement update to obtain the filtered
estimate of xt as .x̂t t





1 Least-squares: a review

1.1 The linear A-model

1.1.1 Consistency and inconsistency

Assume that we want to determine n parameters . An m-number ofxα∈ , α 1,...,n
measurements , are carried out to determine these parameters. If theyi∈ , i 1,...,m
measurements bear a known linear relationship with the unknown parameters, we may write the
model of observation equations as:

(1)

In this equation the known scalars model the assumed linear relationships between theaiα
measurements and the parameters . By introducing the matrix and vectors:yi xα

equation (1) can be written in matrix-vector form as:

This is a system of an m-number of linear equations in an n-number of unknown parameters. It

(2)

is now of interest to know under what conditions a solution to the linear system (2) exists and
if a solution exists, whether it is unique or not. It will be clear that a solution to (2) exists if and
only if the vector y can be written as a linear combination of the column vectors of matrix A.
If this is the case the vector y is an element of the column space or range space of matrix A.
This space is denoted as . Thus a solution to (2) exists if and only if:R(A)

Systems for which this holds are called consistent systems. A system is said to be inconsistent

(3)

if and only if:

In this case the vector y cannot be written as a linear combination of the column vectors of

(4)

matrix A and hence no vector x exists such that (2) holds. The difference between consistency
and inconsistency is depicted geometrically in Figure 1.1.
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Figure 1.1: .



(a) consistency : y∈R(A)⊂ m

(b) inconsistency : y∉R(A)⊂ m

Since , it follows from (3) that consistency is guaranteed if . But onlyy∈ m R(A) m R(A) m

holds if the dimension of equals the dimension of . Hence, if dim . It followsR(A) m R(A) m
therefore, since dim equals the rank of matrix A (= number of linear independent columnsR(A)
or rows of A), that consistency is guaranteed if and only if:

In all other cases, rank A < m, the linear system may or may not be consistent. Assuming

(5)

consistency, the next question one can ask is whether the solution to (2) is unique or not. That
is, whether the information content of the measurements collected in the vector y is sufficient
for determining the parameter vector x uniquely. The solution is unique only if all the columns
of matrix A are linearly independent. Hence, the solution is unique if the rank of matrix A equals
the number of unknown parameters:

To clarify this, assume x and to be two different solutions of (2). Then

(6)

x ≠ x
must hold. But this can only be the case if some of the columns ofAx Ax or A (x x ) 0

matrix A are linearly dependent, which contradicts the assumption of full column rank (6). In all
other cases, rank A < n, there will be more than one solution to a consistent system. In this book
we will always assume that (6) holds. The case that rank A < n is treated elsewhere [Teunissen,
1985a]. With rank A = n and the fact that the rank of matrix A is always equal to or less than
the number of rows or columns of A, it follows that two cases can be distinguished:

In the first case, both (5) and (6) are satisfied, implying that the linear system (2) is consistent

(7)

and that a unique solution exists. The unique solution, denoted by , is found through anx̂
inversion of the matrix A:

(8)

In the second case, only (6) is satisfied, implying that a unique solution to (2) exists provided
that the system is consistent. Consistency in this case is however not guaranteed. But if we
assume the system to be consistent, that is , one way to obtain the unique solution is toy∈R(A)
invert n out of the m > n linear equations:
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(9)

Since the columns of matrix A are linearly independent, it is possible to find a matrix forA1

which the columns are linearly independent as well, implying that the inverse of the square
matrix exists. Note that is not used in computing . This is allowed in the presentA1 y2 x̂
situation since is consistent with and hence does not contain any additional information.y2 y1

Example 1

Consider the linear system:

In this case we have: m = 2, n = 2 and rank A = 2. Thus, the system is consistent since rank A

(10)

= m = 2, and the system has a unique solution since rank A = n = 2. The unique solution of (10)
reads: .x̂ (5/7 , 3/7)

Example 2

A particle is moving with constant velocity along a straight line. If we denote the position of the
particle as function of time as , we have:u(t)

with being the initial position and initial velocity respectively of the particle atu(t0) and u̇(t0)
time . It is assumed that the initial position and initial velocity of the particle are unknown.t0
The unknown parameters can then be determined from two measurements ofu(t0) and u̇(t0)
position at times . This results in the following linear system (see Figure 1.2):t1 and t2≠t1

(11)
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Figure 1.2: Position as function of time.

In this case we have: m = 2, n = 2 and rank A = 2. Thus, the system is consistent since rank A
= m = 2, and the system has a unique solution since rank A = n = 2. With

the unique solution follows as:

or as:

(12)

Note that rank A = 1 if . In this case no unique solution exists.t2 t1

Example 3

Consider the linear system:

In this case we have: m = 3, n = 2 and rank A = 2. Since m = 3 > rank A = 2, consistency of

(13)

the system is not automatically guaranteed. A closer look at the measurement vector y of (13)
shows however that:
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This shows that y can be written as a linear combination of the column vectors of A. Therefore
, showing that the system is consistent. And since n = rank A = 2, its solution is alsoy∈R(A)

unique. If we partition (13) as:

the unique solution follows as:

The system (13) may of course also be partitioned as:

(14)

The unique solution follows then as:

(15)

Example 4

Consider again the situation of a particle moving along a straight line with constant velocity. But
now assume that three measurements of position are carried out at the three different times

. The linear system reads then:t1 , t2 and t3

With the times , and the position measurements

(16)

t0 0 , t1 1 , t2 2 and t3 3 u(t1 1) 3,
system (16) becomes:u(t2 2) 4, u(t3 3) 5
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In this case we have: m = 3, n = 2 and rank A = 2. Since m = 3 > rank A = 2, consistency of

(17)

the system is not automatically guaranteed. But a closer look at the measurement vector of (17)
shows that:

Thus the measurement vector y can be written as a linear combination of the column vectors of
matrix A. Therefore , showing that (17) is consistent. And since n = rank A = 2 itsy∈R(A)
solution is also unique. If we partition (17) as:

the unique solution follows as:

(18)

In this case the solution for is found from fitting the lineu(t0) , u̇(t0) u(t) u(t0) u̇(t0)(t t0)
through the two points and ( ). See Figure 1.3a. We may of(t1 1 , u(t1) 3) t2 2, u(t2) 4
course partition (17) also as:

the unique solution follows then as:

(19)

In this case the solution for is found from fitting the lineu(t0) , u̇(t0) u(t) u(t0) u̇(t0)(t t0)
through the two points . See Figure 1.3b. Since the(t2 2 , u(t2) 4) and (t3 3 , u(t3) 5)
linear system (17) is consistent, which means that all three points (t1 , u(t1)),

lie on the same line (see Figure 1.3c), the two solutions (18) and (19)(t2 , u(t2)) and (t3 , u(t3))
are of course identical.
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Figure 1.3: Fitting a straight line through consistent measurements.

Example 5

Consider the situation of Example 4. But now assume that the position measurements read:

The linear system (16) then becomes:

(20)

In this case the measurement vector y cannot be written as a linear combination of the column
vectors of matrix A. Hence , showing that the system is inconsistent. This inconsistencyy∉R(A)
can clearly be seen from Figure 1.4a. Figure 1.4a shows clearly that no straight line
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exists that passes through all three measurement points. In order to findu(t) u(t0) u̇(t0) (t t0)
a solution one could disregard measurement and solve the system:u(t3 3) 6

The solution of this system reads (see Figure 1.4b):

(21)

But instead of disregarding one could also opt for disregarding measurementu(t3 3) 6
or measurement . In case of disregarding measurement ,u(t1 1) 3 u(t2 2) 5 u(t1 1) 3

one has to solve the system:

The solution of this system reads (see Figure 1.4b):

(22)

This solution differs however from solution (21) (see also Figure 1.4b). So, which solution
should we accept? The problem with the above approach is the arbitrariness in disregarding
measurements. Why should we disregard measurement and completely rely on theu(t3 3) 6
measurements ? It seems more appropriate to have a solutionu(t1 1) 3 and u(t2 2) 5
method which somehow takes all measurements into account. In case of the present example one
could for instance think of computing the line such that it fits all threeu(t) u(t0) u̇(t0)(t t0)
measurement points as closely as possible (see Figure 1.4c). A method that accomplishes this
task in a predefined way, is the method of least-squares. This method will be introduced in the
next section.
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Figure 1.4: Fitting a straight line through inconsistent measurements.

1.1.2 Least-squares estimates

An inconsistent system, that is, a system for which holds, can be made consistent byy∉R(A)
introducing an error vector e as (see Figure 1.5):m×1

(23)
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Figure 1.5: The geometry of .y Ax e

In (23), y and A are given, whereas x and e are unknown. From the geometry of Figure 1.5 it
seems intuitively appealing to estimate x as such that A is as close as possible to the givenx̂ x̂
measurement- or observation vector y. In other words, the idea is to find that value of x that
minimizes the length of the vector . This idea leads to the following minimizatione y Ax
problem:

(24) .

From calculus we know that is a solution of (24) if statisfies:x̂ x̂

where is given as:

(25)

E(x)

Taking the first-order and second-order partial derivatives of gives:

(26)

E(x)

Equating the first equation of (27) to zero shows that satisfies the normal equations:

(27)

x̂

Since rank , the system is consistent and has a unique solution. Through an

(28)

A A rank A n
inversion of the normal matrix the unique solution of (28) is found as:A A

(29) .

That this solution is the minimizer of (26) follows from the fact that the matrix ofx̂ ∂2E/∂x 2

(27) is indeed positive-definite. The vector is known as the least-squares estimate of x, sincex̂
it produces the smallest possible value of the sum-of-squares function . From the normalE(x)
equations (28) it follows that . This shows that the vector , which isA (y Ax̂) 0 ê y Ax̂
the least-squares estimate of e, is orthogonal to the range space of matrix A (see Figure 1.6):

(30) .
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Figure 1.6: The geometry of least-squares: .y Ax̂ ê

Example 6

Consider again the situation of a particle moving with constant velocity along a straight line. We
assume that three observations of position are carried out at three different times

. We also assume that the time instances are equidistant:t1, t2 and t3 : u(t1), u(t2) and u(t3)
. The linear system reads then:t1 t0 t2 t1 t3 t2 T

If the system is inconsistent, it can be made consistent by introducing an error vector e as:

(31)

The least-squares solution of (31) follows now from minimizing as function of thee e
3

i 1

e 2
i

parameters . Withu(t0) and u̇(t0)

and
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the least-squares estimate of follows as:x (u(t0), u̇(t0))

This may be rearranged to give:

This result shows that the slope of the straight line, (= velocity of particle), is determined

(32)

u̇(t0)
from the two outer points , and that the intercept of the straight line,(t1, u(t1)) and (t3, u(t3))

(= initial position of particle), equals the average of .u(t0) u(ti) û.(t0)iT, i 1, 2, 3

So far we have discussed the unweighted least-squares principle. The least-squares principle can
be generalized, however, by introducing a positive-definite weight matrix W. This is donem×m
by replacing (24) by the following minimization problem:

(33) .

The solution of (33) can be derived along lines which are similar to the ones used for solving
(24). The solution of (33) reads:

(34) .

This is the weighted least-squares estimate of x. In case of weighted least-squares the normal
equations read: . This shows that the vector , which is the weightedA WAx̂ A Wy ê y Ax̂
least-squares estimate of e, satisfies:

(35) .

If the inner product of the observation space is defined as , (35) canm (a,b) a Wb, ∀a,b∈ m

also be written as . This shows that also in the case of weighted least-squares,(Ax,ê) 0, ∀x∈ n

the vector can be considered to be orthogonal to the range space of A. A summary of the least-ê
squares algorithm is given in Table 1.1.



Least-squares: a review 17

Inconsistent linear system

y Ax e, y, e∈ m, x∈ n, m>n rank A

Weighted least-squares principle

minimize
x

(y Ax) W(y Ax), W positive definite

Weighted least-squares estimates

parameter vector : x̂ (A WA) 1A Wy
observation vector : ŷ Ax̂
error vector : ê y ŷ

Table 1.1: Weighted least-squares.

Example 7

The elements of the weight matrix W can be chosen to emphasize (or de-emphasize) the
influence of specific observations upon the estimate . In this way different levels of importancex̂
may be attached to the different observations. This is of importance if one believes that some
observations are more trustworthy than other observations. For instance, some observations may
be more trustworthy than others if they are obtained from more accurate measurement
instruments. In order to illustrate the influence of the weight matrix, we consider a stationary
particle with unkown position . We assume that two observations of position are carried outu(t0)
at times . The linear system reads then:t1 and t2

A diagonal matrix is taken as weight matrix:

(36)

Then

(37)

or
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This shows that equals the average of (see Figure 1.7a). In this

(38)

û(t0) u(ti), i 1, 2, if w11 w22

case both observations have the same influence on . However, if then less weightû(t0) w22<w11

is attached to the second observation and is closer to , see Figure 1.7b.û(t0) u(t1)

Figure 1.7: Weighted least-squares estimate of u(t0)
(a) ; (b) .w11 w22 w11>w22

1.1.3 A stochastic model for the observations

In the previous section the principle of least-squares was introduced. The least-squares principle
enables us, in case of inconsistent systems, to obtain an intuitively appealing estimate of thex̂
parameter vector x. But although the least-squares estimate is intuitively appealing, no qualityx̂
measures as yet can be attached to the estimate. That is, we know how to compute the estimate
, but we are not able yet to say how good the estimate really is. Of course, the numerical valuex̂

of the sum of squares, , does indicate something about the quality of . If is smallê Wê x̂ ê Wê
one is inclined to have more confidence in the estimate , than if is large. But how smallx̂ ê Wê
is small? Besides, is identically zero if the linear system is consistent. Would this thenê Wê
automatically imply that the estimate has good quality? Not really, since the observations mayx̂
still be subject to measurement errors. In order to obtain quality measures for the results of least-
squares estimation, we start by introducing a qualitative description of the input, that is of the
observations. This description will be of a probabilistic nature. The introduction of a probabilistic
description is motivated by the experimental fact that the variability in the outcome of
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measurements, when repeated under similar circumstances, can be described to a sufficient
degree by stochastic or random variables. We will therefore assume that the observation vector
y, which contains the numerical values of the measurements, constitutes a sample of the random
vector of observables (note: the underscore indicates that we are dealing with a randomy
variable). It is furthermore assumed that the vector of observables can be written as the sumy
of a deterministic functional part Ax and a random residual part :e

(39) .

Although a random vector is completely described by its probability density function, we will
restrict ourselves for the time being to the first two moments of random variables. That is, we
will restrict ourselves to the mean and to the variance matrix. If we assume that models thee
probabilistic nature of the variability in the measurements, it seems acceptable to assume that this
variability is zero on the average and therefore that the mean of is zero:e

where stands for the mathematical expectation operator. The measurement variability itself

(40)

E .
is modelled through the dispersion or variance matrix of . We will assume that this matrix ise
known and denote it by :Qy

where stands for the dispersion operator. It is defined in terms of

(41)

D . E . as D .
. With (40) and (41) we are now in the position to determine the mean andE (. E . )(. E . )

variance matrix of the vector of observables . Application of the law of propagation of meansy
and the law of propagation of variances to (39) gives with (40) and (41):

(42) .

This will be our model of observation equations for the vector of observables . As the resultsy
of the next section show, model (42) enables us to describe the quality of the results of least-
squares estimation in terms of the mean and the variance matrix.

1.1.4 Least-squares estimators

Functions of random variables are again random variables. It follows therefore, that if the vector
of observables is assumed to be a random vector and substituted for y in the formulae of Tabley
1.1 in Section 1.1.2 the results are again random variables:

(43)

These random vectors will be called least-squares estimators. And if is replaced by its sampley
or measurement value y, we speak of least-squares estimates. The quality of the above estimators
can now be deduced from the first two moments of .y



20 Dynamic data processing

The first moment: the mean

Together with , application of the propagation law of means to (43) gives:E y Ax

(44)

This important result shows that under the assumption that (42) holds, the least-squares
estimators are unbiased estimators. Note that this property of unbiasedness is independent of the
choice for the weight matrix W.

The second moment: the variance matrix and covariance matrix

Together with , application of the propagation law of variances and covariances to (43)D y Qy

gives:

and

(45)

(46)

The above variance matrices enable us now to give a complete precision description of any
arbitrary linear function of the estimators. Consider for instance the linear function .θ̂ a x̂
Application of the propagation law of variances gives then for the precision of .θ̂: σ2

θ̂ a Qx̂a
The above results enable us to describe the quality of the results of least-squares estimation in
terms of the mean and the variance matrix. The introduction of a stochastic model for the vector
of observables enables us however also to judge the merits of the least-squares principle itself.y
Recall that the least-squares principle was introduced on the basis of intuition and not on the
basis of probabilistic reasoning. With the mathematical model (42) one could now however try
to develop an estimation procedure that produces estimators with certain well-defined
probabilistic optimality properties. One such procedure is based on the principle of Best Linear
Unbiased Estimation (BLUE), [Teunissen, 2000]. Assume that we are interested in estimating a
parameter θ which is a linear function of x:

The estimator of θ will be denoted as . Then according to the BLUE’s criteria, the estimator

(47)

θ̂
of θ has to be a linear function of :θ̂ y
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such that it is unbiased:

(48)

and such that it is best in the sense of minimum variance:

(49)

The objective is thus to find a vector such that with (48), the conditions (49) and (50) are

(50)

l∈ m

satisfied. From Adjustment theory, [Teunissen, 2000] we know that the solution to the above
problem is given by:

If we substitute this into (48) we get:

This is the best linear unbiased estimator of θ. The important result (51) shows that the best

(51)

linear unbiased estimator of x is given by:

A comparison between (43) and (52) shows that the BLUE of x is identical to the weighted least-

(52)

squares estimator of x if the weight matrix W is taken to be equal to the inverse of the variance
matrix of :y

This is an important result, because it shows that the weighted least-squares estimators are best

(53)

in the probabilistic sense of having minimal variance if (53) holds. The variances and covariances
of these estimators follow if the weight matrix W is replaced in (45) and (46) by . From nowQ 1

y

on we will always assume, unless stated otherwise, that the weight matrix W is chosen to be
equal to . Consequently no distinction will be made anymore in this book between weightedQ 1

y

least-squares estimators and Best Linear Unbiased Estimators. Instead we will simply speak of
least-squares estimators.

Example 8

Consider again the situation of a stationary particle. Assume that it is required to determine its
position with a variance of . The position measurements are uncorrelated and all have aσ2/10
variance equal to . How many position measurements are then needed in order to estimate theσ2

particle’s position with sufficient precision?

In order to answer this question we first introduce our linear A-model:
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The variance of the least-squares estimators reads then:û(t0) of u(t0)

This result shows that m = 10 position measurements are needed to satisfy the requirements.

Example 9

Consider the situation of Example 2. The position observables are assumed to be uncorrelated
and to have the same variance . An interesting question is now how the times of measurementσ2

should be chosen, in order to minimize the variances of the least-squares estimatorst1 and t2
of initial position and initial velocity . In order to answer this question we firstu(t0) u̇(t0)
introduce our linear A-model:

Note that this model consists of two equations in two unknowns. Hence the redundancy m-n
equals zero, and matrix A is square and invertible (provided that ). In this case the least-t2 ≠ t1
squares estimator and its variance matrix simply reduce to:

With

this gives for the variance matrix:
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Let us now first consider the variance of the velocity estimator . It reads:

(54)

û.(t0)

This result shows that the variance of gets smaller, i.e. its precision gets better, if the timeû.(t0)
interval gets larger. Thus one can improve the precision of the velocity estimator byt2 t1
increasing the time interval between the two position measurements. This is also quite
understandable if one looks at Figure 1.2 in Section 1.1.1. A straight line can be fitted better
through two points that are far apart than through two points that are close together. And in fact
it becomes impossible to fit the line uniquely if the two points coincide, just like it is impossible
to estimate the velocity if . Let us now consider the variance of the position estimatort2 t1

. It reads (see (54)):û(t0)

Also this result shows that the variance of the initial position estimator gets smaller if the time
interval gets larger. Also note that in case , the variance of is always largert2 t1 t1 ≠ t0 û(t0)
than the variance of of the position observables. The smallest value of is obtained forσ2 σ2

û(t0)

. This shows that the precision of the initial position estimator is best if the first positiont1 t0
measurement is taken at the initial time .t0

1.1.5 Summary

In Table 1.2 an overview is given of the main characteristics of least-squares estimation.
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The linear A-model

Least-squares estimators

Mean

Variances and covariances

Table 1.2: Least-squares estimation.

1.2 The nonlinear A-model

1.2.1 Nonlinear observation equations

Up to this point the development of our estimation theory was based on the assumption that the
m-vector is linearly related to the n-vector of unknown parameters x. In geodeticE y
applications there are however only a few cases where this assumption truly holds. A typical
example is levelling. In the majority of applications, however, the m-vector is nonlinearlyE y
related to the n-vector of unknown parameters x. This implies that instead of the linear A-model
(42), we are generally dealing with a nonlinear model of observation equations:
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(55)

where A(.) is a nonlinear vector function from . The following two simple examplesn into m

will make this clear.

Example 10

Consider the configuration of Figure 1.8a. The x, y coordinates of the three points 1, 2 and 3 are
known and the coordinates of point 4 are unknown. The observables consist of thex4 and y4

three azimuth variates . Since azimuth and coordinates are related as (see Figurea
14
, a

24
and a

34
1.8b):

the model of observation equations for the configuration of Figure 1.8a reads:

This model consists of three nonlinear observation equations in the two unknown parameters
.x4 and y4

Figure 1.8: Azimuth resection.

Example 11

Consider the situation of Figure 1.9. It shows two cartesian coordinate systems: the x,y-system
and the u,v-system. The two systems only differ in their orientation. This means that if the
coordinates of a point i are given in the u,v-system, , a rotation by an angle α is needed(ui ,vi)
to obtain the coordinates of the same point i in the x,y-system, :(xi ,yi)
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(56)

Figure 1.9: A coordinate transformation.

Let us now assume that we have at our disposal the coordinate observables of two points in both
coordinate systems: Using (56), our model reads then:(x

i
, y

i
) and (u

i
, v

i
), i 1, 2 .

This model is however still not in the form of observation equations. If we consider the

(57)

orientation angle α and the coordinates of the two points in the u,v-system as the unknown
parameters, (57) can be written in terms of observation equations as:

This model consists of eight observations in five unknown parameters. Note that the first four

(58)

observation equations are nonlinear.
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1.2.2 The linearized A-model

We know how to compute least-squares estimators in case of a linear A-model. But how are we
now going to compute least-squares estimators if the model of observation equations is non-
linear? For the majority of nonlinear problems the solution is to approximate the originally
nonlinear A-model with a linear one. In order to show how this can be done, we first recall the
theorem of Taylor.

Taylor’s Theorem

Let f(x) be a function from . Let be an approximation to and definen into x0∈
n x∈ n

. Then a scalar exists such that:∆x x x 0, and θ x 0 t(x x 0) with t∈ t∈(0,1)

with the remainder:

(59)

In (59) and (60), denotes the qth-order partial derivative of f(x) evaluated at x. For the

(60)

∂q
α1..αq

f(x)
case q = 2, it follows from (59) and (60) that:

(61)

If we introduce the gradient vector and Hessian matrix of f(x) respectively as:

then equation (61) may be written in the more compact matrix-vector form as:

(62) .

This important result shows that a nonlinear function f(x) can be written as a sum of three terms.
The first term in this sum is the zero-order term . The zero-order term depends on butf(x 0) x 0

is independent of x. The second term in the sum is the first-order term . It depends on∂xf(x
0) ∆x x 0

and is linearly dependent on x. Finally, the third term in the sum is the second-order remainder
. An important consequence of Taylor’s theorem is that the remainder can beR2(θ,∆x) R2(θ,∆x)

made arbitrarily small by choosing the approximation close enough to x. Now assume thatx 0
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the approximation is chosen such that the second-order remainder can indeed be neglected.x 0

Then, instead of (62) we may write to a sufficient degree of approximation:

(63) .

Hence, if is sufficiently close to x, the nonlinear function f(x) can be approximated to ax 0

sufficient degree by the function which is linear in x. This function is thef(x 0) ∂x f(x
0) ∆x

linearized version of f(x). A geometric interpretation of this linearization is given in Figure 1.10
for the case n = 1.

Figure 1.10: The nonlinear curve y = f(x) and its linear tangent .y f(x 0) d

dx
f(x 0)(x x 0)

Let us now apply the above linearization to our nonlinear observation equations:

Each nonlinear observation equation , can now be linearized according to (63).

(64)

ai(x), i 1, ,m
This gives:

If we denote the matrix of (65) as , and substitute (65) into (64) we get:

(65)

m×n ∂xA(x
0)

If we bring the constant m-vector to the left-hand side of the equation and defineA(x 0)
, we finally obtain our linearized model of observation equations:∆y y A(x 0)

(66) .

This is the linearized A-model. Compare (66) with (55) and (42). Note when comparing (66)
with (42) that in the linearized A-model takes the place of takes the place of A∆y y, ∂xA(x

0)
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and takes the place of x. Since the linearized A-model is linear in our standard∆x ∆x x x 0

formulae of least-squares can be applied again. This gives for the least-squares estimator
:x̂ x 0 ∆x̂ of x

(67)

Application of the propagation law of variances to (67) gives:

(68)

It will be clear that the above results, (67) and (68), are approximate in the sense that the second-
order remainder is neglected. But these approximations are good enough if the second-order
remainder can be neglected to a sufficient degree. In this case also the optimality conditions of
least-squares (unbiasedness, minimal variance) hold to a sufficient degree. A summary of the
linearized least-squares estimators is given in Table 1.3.

The nonlinear A-model

The linearized A-model

Least-squares estimators

Variances

Table 1.3: Linearized least-squares estimation.
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Example 12

Consider the configuration of Figure 1.11a. The x, y coordinates of the three points 1, 2 and 3
are known and the two coordinates of point 4 are unknown. The observables consistx4 and y4

of the three distance variates . Since distance and coordinates are related as (seel
14
, l

24
and l

34
Figure 1.11b):

the model of observation equations for the configuration of Figure 1.11a reads:

(69)

This model consists of three nonlinear observation equations in the two unknown parameters
.x4 and y4

Figure 1.11: Distance resection.

In order to linearize (69) we need approximate values for the unknown coordinates .x4 and y4

These approximate values will be denoted as . With these approximate values ax 0
4 and y 0

4

linearization of (69) gives:

where:

(70)
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Model (70) is the linearized version of the nonlinear A-model (69).

Example 13

Consider the nonlinear A-model (58) of Example 11. The unknown parameters are α and
. The approximate values of these parameters will be denoted asui, vi for i 1,2

. Linearization of (58) gives then:α0 and u 0
i , v 0

i for i 1,2

(71)

where:

Example 14

Consider the situation of Figure 1.12. A satellite orbiting the earth is assumed to have a circular
orbit with unknown radius R. Distance measurements from two known points 1 and 2 on the
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earth surface are carried out to the two satellite positions 3 and 4. It is assumed that the earth
is a non-rotating body.

Figure 1.12: Distance measurement to a satellite orbiting the earth.

The distance between two points i and j can be parameterized in terms of cartesian coordinateslij

as:

(72)

The circular satellite orbit itself can be parameterized in terms of polar coordinates as:

With (72) and (73) the nonlinear model of observation equations becomes:

(73)

(74)

The unknowns in these observation equations are besides the orbital radius R also the coordinates
. The approximate values of these parameters are denoted as .φ3 and φ4 R 0, φ0

3 and φ0
4

Linearization of (74) gives then:
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(75)

1.2.3 Least-squares iteration

Up to this point it was assumed that the second-order remainder was sufficiently small and that
was a good enough approximation for x. If this is not the case, then as computed by (67)x0 x̂

is not the least-squares estimate and hence an unacceptable error is made. In order to repair this
situation, we need to improve upon the approximation . It seems reasonable to expect that thex 0

estimate:

is a better approximation than . That is, it seems reasonable to expect that is closer to thex 0 x 1

true least-squares estimate than . In fact one can show that this is indeed the case for mostx 0

practical applications. But if is a better approximation than , a further improvement canx 1 x 0

be expected if we replace by in the linearization of the nonlinear model. The recomputedx 0 x 1

linearized least-squares estimate reads then:
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Table 1.4: Least-squares iteration.

By repeating this process a number of times, one can expect that finally the solution converges
to the actual least-squares estimate . This is called the least-squares iteration process. Thex̂
iteration is usually terminated if the difference between successive solutions is negligible. A flow
diagram of the least-squares iteration process is shown in Table 1.4. For more details on the
numerical properties of the iteration process and on the probabilistic properties of nonlinear least-
squares estimators the reader is referred to the theory as developed in [Teunissen, 1985b].
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1.3 The B-model

1.3.1 The linear B-model

In the previous sections we considered the model of observation equations. In this section and
the next we briefly review the model of condition equations. For more details the reader is again
referred to Adjustment theory, [Teunissen, 2000]. As our starting point we take the linear A-
model:

This linear model is uniquely solvable if m = n, i.e. if the number of observables equals the

(76)

number of unknown parameters. In this case A is a square matrix which is invertible because of
rank A = n. If m = n, the redundancy equals zero, and no conditions can be imposed on the
observables. If m > n = rank A, then more observables are available than strictly needed for the
determination of the n unknown parameters. In this case an ( )-number of redundantm n
observables exist. Each separate redundant observable gives rise to the possibility of formulating
a condition equation. Thus the total number of independent condition equations that can be
formulated equals:
(77) .

We will now show how one can construct the condition equations, given the linear A-model (76).
Each of the column vectors of matrix A is an element of the observation space . Together them

n-number of linearly independent column vectors of A span the range space of A. This range
space has dimension n and it is a linear subspace of . Since dim R(A) = n and dimm: R(A)⊂ m m

= m, exactly ( )-number of linearly independent vectors can be found that are orthogonal tom n
R(A). Let us denote these vectors as: . Then:bi∈

m, i 1,...,(m n)

From this it follows, if the ( )-number of linearly independent vectors are collected in anm n bi

matrix B as:m×(m n)

that
(78) .

This result may now be used to obtain the model of condition equations from (76).
Premultiplication of the linear system of observation equations in (76) by gives together withB
(78) the following linear model of condition equations:

(79) .
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Example 15

Consider the following linear A-model:

Since m = 3, n = 1 and rank A = 1 = n, the redundancy equals m−n = 2. Hence two linearly

(80)

independent condition equations can be formulated. The two vectors:

are linearly independent and are both orthogonal to the single column vector of matrix A in (80).
Hence the with (80) corresponding linear model of condition equations reads:

(81)

Example 16

Consider the linear A-model of Example 6 in Section 1.1.2:

Since m = 3, n = 2 and rank A = 2 = n, the redundancy equals m−n = 1. Hence, only one

(82)

condition equations can be formulated. The with (82) corresponding linear B-model reads:
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Verify that holds.

(83)

B A 0

Now that we have the linear B-model (79) at our disposal, how are we going to compute the
corresponding least-squares estimators? We know how to compute the least-squares estimators
for the linear A-model. The corresponding formulae are however all expressed in terms of the
A-matrix. What is needed therefore is to transform these formulae such that they are expressed
in terms of the B-matrix. This is possible with the following important matrix identity:

(84) .

The proof of this matrix identity is as follows. We define two matrices C and as:C

(85)

Since both matrices C and are of dimension and since both can be shown to be of fullC m×m
rank, it follows that they are invertible. From (85) it follows with the help of (78) that .CC Im

Hence and therefore . Substitution of (85) into this last expression provesC C 1 CC Im

(84). With (84) and the least-squares results of Table 1.2 of Section 1.1.5 we are now in the
position to derive the expressions for the least-squares estimators in terms of the matrix B. The
results are summarized in Table 1.5.
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The linear B-model

Least-squares estimators

Variances and covariances

Table 1.5: Least-squares estimation.

1.3.2 The nonlinear B-model

Just as in the case of the A-model, there are very few geodetic applications for which the model
of condition equations is linear. In most cases the model of condition equations is nonlinear. The
nonlinear B-model reads:

(86) .

Where is a nonlinear vector function from . The relationship between the non-B (.) m into m n

linear B-model and the nonlinear A-model is given by:

(87) .

This is the nonlinear generalization of (78). If we take the partial derivative with respect to x of
(87) and apply the chain rule, we get:

(88) .

This is the linearized version of (87). Compare (88) with (78). With (88) we are now in the
position to construct the linearized B-model from the linearized A-model (66). Premultiplication
of (66) with the matrix gives together with (88) the result:[∂yB(y

0)]
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(89) .

This is the linearized B-model. With (89) we are now in the position again to apply our standard
least-squares estimation formulae.

Example 17

The cartesian coordinates of three points 1, 2 and 3 are measured. The observables are therefore:
. The three points are assumed to lie on a circle with unknown radius R,x

1
, y

1
, x

2
, y

2
, x

3
and y

3
see Figure 1.13. Since the circle can be parameterized as:

the nonlinear A-model reads:

This model consists of six nonlinear observation equations in the four unknown parameters

(90)

. The approximate values of these parameters are denoted as .R, φ1, φ2 and φ3 R 0, φ0
1, φ0

2 and φ0
3

Linearization of (90) gives:
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(91)

Figure 1.13: Circle with radius R.

Instead of parameterizing the circle, one can alternatively describe the circle implicitly as:

This description leads to the following nonlinear model of condition equations:

(92)

The number of independent condition equations equals the redundancy, which is equal to
. If the approximate values are chosen such that:6 4 2
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linearization of (92) gives:

(93)

Verify yourself that holds for .[∂yB(y
0)] [∂xA(x

0)] 0 y 0 A(x 0)




