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Preface

This text collects the papers ‘Vertical Vibration of Rigid Bodies on Deep Elastic Strata’ and ‘A
Stoneley-Gibson-Varga Elastic Stratum’ that have been published in the journal Heron (Volume
46, no. 1 (2001)).

The first chapter offers a survey of the vertical motion of rigid bodies resting on deep elastic
strata. Four strata are distinguished:
• deep water,
• the homogeneous isotropic elastic half-space,
• the water saturated homogeneous isotropic porous elastic half-space and
• the Gibson half-space.
Four types of footings are considered: the strip, the circular disk and the embedded semi-cylinder
and hemi-sphere.
In particular attention has been given to the distinction between compressible and incompressible
strata, and to the distinction between low and high frequency factors of the oscillatory motion.

The second chapter provides a geometrically non-linear generalization of the Gibson soil. Some
remarkable solutions concerning excavations and indented rigid punches are presented.
The results provide a first approximation of the behaviour of foundations on real soils in the case
of small soil strains.

The author is indebted to Prof dr Ton Vrouwenvelder of Delft University of Technology and to
Jacques Schievink, publisher of text books at VSSD. They provided indispensible encourage-
ment, helpful criticism, cooperation and assistance in preparing the final text and illustrations.

Voorburg, November 2002
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1. A comparative treatise on the vertical
vibration of rigid bodies on deep elastic strata

Deep water, Gibson soil, Homogeneous ( water saturated porous ) isotropic elastic half-space

Compressible versus incompressible strata

Low frequency versus high frequency factors

Keywords: lumped parameters, dynamic subgrade reaction, floating bodies, resting footings.

1.1. Introduction

In soil mechanics a Gibson soil is defined as being an incompressible, isotropic, elastic half-space
X1 ≥ 0 in which the shear modulus µ increases linearly with depth X1 from zero on the upper
surface X1 = 0, according to the equation µ =  mX1 with m a positive constant.
In his famous 1967-paper Gibson showed that the upper surface of this elastic deep stratum reacts
under static normal loading like a uniform bed of springs, a so-called Winkler foundation (Gibson
(1967)).
Any point of the upper-surface X1 = 0 settles an amount w (X1 = 0), directly proportional to the
local intensity –q(X1 = 0) of applied normal stress according to the law w(X1 = 0) = q(X1 = 0)/(2m);
outside the loaded area the upper-surface does not settle.
It has been noticed that 1) the induced deformation at the locations X1 > 0 is irrotational, 2) the
state of stress on the location of the ( loaded ) upper surface X1 = 0 is purely isotropic and 3)  the
settlement w(X1) of a point at the level X1 > 0 is directly proportional to the all-round pressure
–p(X1) at that point according to w (X1) = p(X1)/(2m). These settlements at the levels X 1 > 0
decrease with increasing horizontal or vertical distances from the loaded surface area. Of course,
the state of stress on the planes X1 > 0 is not isotropic since the Gibson soil possesses shear
rigidity at planes X1 > 0. Further, it has been realized (Lekhnitski (1962) and Gibson (1967)) that
the stress distribution in the Gibson soil due to a static normal surface loading corresponds
exactly to the stress distribution in an incompressible homogeneous isotropic elastic half-space
due to the same surface loading.
When it is assumed that the Gibson soil  has been subjected initially to an hydrostatic stress
distribution due to its self-weight own weight, the quantity 2m must be replaced by (ρg+2m) with
ρ the uniform mass density and g the acceleration due to gravity.
It has been shown that the linear equations governing the dynamics of the Gibson soil resemble
mathematically the linearized equations of the deep water motion (Kruijtzer (1976)). For example,
when we analyse a group of plane harmonic waves of wave length λ/2πκ travelling through the
Gibson soil in a horizontal direction with velocity c,  it is found that there exists irrotanional
surface waves with wave velocity c  = ((ρ g + 2m)/(ρκ))1/2. These irrotational waves are
mathematically similar to the (irrotational) gravitational deep water surface waves with velocity
c = (g/κ)1/2.
In a recent paper we have introduced the geometrically non-linear Gibson soil, the so-called
Stoneley-Gibson-Varga elastic half-space, in which the actual strees and the left stretch tensor are
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correlated (Kruijtzer (2001)). It was shown that the non-linear equations of the irrotaional
dynamics of this half-space resemble mathematically the classical non-linear equations of the
irrotanional deep water motion. Furthermore, it was shown that the settlement w(X1) of a point at
the level X1 > 0 is directly proportional to an all-round pressure –p(X1) at that point according to
w(X1) = p(X1)/(ρg+ 2m). These settlements at the levels X1 > 0 decrease with increasing horizontal
or vertical distances from the loaded surface area. Of course, the state of stress on the planes
X1 > 0 is not isotropic since the Gibson soil possesses shear rigidity at planes X1 > 0. It may be
noticed that the static stress distribution in the  Stoneley-Gibson-Varga elastic half-space  is not
similar to the stress distribution in the corresponding geometrically non-linear incompressible
homogeneous elastic half-space.
In this treatise we compare the responses of deep water, the Gibson soil and the homogeneous
isotropic elastic half-space on low and high frequency vertical surface loadings including the
effects of compressibility and incompressibility of these strata. Our comparative treatise reveals
not only various mathematical and physical resemblences or similarities,but also provides with
an application in soil mchanics.
In theoretical soil mechanics water saturated soils are often conceived to behave like water
saturated porous elastic strata (elastic skeletons). In the fully drained state there is no excess of
water pressure so that the stratum behaves like an ordinary elastic medium. In the fully  undrained

state the water velocity  equals the solid velocity. In this case the medium behaves as being an
elastic medium but the modulus of compression of the medium depends mainly on the elasticity
of water volume and scantly on the bulkmodulus of the elastic skeleton (ensemble of packed
grains).
The fundamental 1956-paper of G. de Josselin de Jong is our guide in considering the
corresponding responses of a water saturated porous isotropic elastic half-space.
Finally we notice that the truncated semi-infinite cone-model of the elastic half-space for vertical
vibrations (J.P.Wolf (1985)) is based on the results of the classical half-space theory.

1.2. Motion of footings and floating bodies

Linear dynamics

We want to compare the vertical motion of a rigid footing resting on the surface of a Gibson soil
or a homogeneous incompressible isotropic deep elastic stratum with the corresponding heave
motion of a rigid floating body on deep water (Figure 1.1). We did not find non-linear solutions,
so we restrict ourselves necessarily to solutions of the linearised equations of motion. In the
linearised theories the difference between the gradients with respect to the material coordinates
and the gradients with respect to the spatial coordinates is disregarded. Further, particular stress
distributions due to special external loadings may be superposed.
In general, the behavior of linear systems can be described in either the time domain or the
frequency domain. It may be well-known that the characteristics of the high frequency steady
state motion of such systems due to external periodic loading may be obtained from the initial
motion of these systems due to an impulsive external loading (Maskell and Ursell (1970) in Ursell
(1994), Cummings (1962) and Ogilvie (1964)).
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Figure 1.1. Footing on an elastic subgrade or floating body on deep water.

Single degree of freedom model

In engineering mechanics the vertical motion of footings and floating bodies is often described by
a lumped-parameter-system with a single-degree-of-freedom. With w0  = w0(t) the vertical
displacement of the rigid body and P P t0 0= ( )  the external vertical centric loading the equation of
motion of the body reads

  ( ) ˙̇ ( ) ˙ ( ) ( ) ( )*M M w t Cw t Kw t P t° + + + =0 0 0 (1.2.1)

with M° the footing mass, M *  the added (in-phase) subgrade mass, C  the coefficient of damping
due to wave radiation through the subgrade, and K  the coefficient of the subgrade restoring
force.
The value of M * , C  and K  depend on the induced subgrade motion.
With   P t P ei t

0 0( ) ˆ= ω  and w t w ei t
0 0( ) ˆ= ω  the steady state motion of the linear system is given by the

equation

–  ( + ( )) 2M M w i C w K w P° + + =* ˆ ( ) ˆ ( ) ˆ ˆω ω ω ω ω0 0 0 0 (1.2.2)

with M*(ω) the added mass, C(ω) the damping factor and K(ω) the restoring coefficient. These
quantities, M*(ω), C(ω) and K(ω) are frequency dependent.
We consider the cases in which a weightless rigid circular disk or infinitely long rigid strip, an
embedded rigid hemisphere or infinitely long semi-cylinder are attached to the upper surface of
the subgrade (Figure 1.1) and are loaded by a vertical centric force P0 = P0(t), so that the rigid
bases undergo a vertical displacement w0 = w0(t) according to

w0(t) = F(t) P0(t) (1.2.3)

with F(t) the response function. If P0(t) =  P̂0 eiωt and w0(t) =   ŵ0 eiωt then the equation (1.2.3) of the
steady state motion takes the form

  ŵ0 eiωt = – (f1 +if2)   P̂0 eiωt (1.2.4)

with f1  and f2 two functions of frequency being effectively the in-phase and out-phase
components of the displacement w(t). In Appendix 1.1 the results of Bycroft are schematically
presented and completed.
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Deep water

The incompressible inviscid fluid subgrade is assumed to be intially, at time t = 0, at a state of
rest. We suppose that at time t = 0+ the upper surface has been subjected to an impulsive pressure
–p0(t = 0+). According to the linearized theory this impulsive pressure is represented by the value
–ρϕ0(t = 0+), where ϕ0 is the value of the velocity potential at the loaded area at time t = 0+ (Stoker
(1957), p. 150, Lamb (1945), p. 384):

p0(r,t = 0+) = –ρϕ0(r,t = 0+) (1.2.5a)

with ρ the water mass density and r the radius of the loaded area. (We may notice that a
permanent flow passing an obstacle generates at each instant of time an impulsive pressure on
the obstacle).
We now consider the case in which a thin weightless rigid circular disk with radius r0 at the
upper surface is loaded by a vertical and centric impulsive force P̃0 . Then (Lamb (1945), p. 120
and p. 138)

p0(r,t=0+) = –ρ 
2
π ·  ̇w0 (t = 0+)·(r0

2 – r2)1/2   (0 ≤ r < r0)

                 = 0                                                (r > r0)

  (1.2.5b)

where   ̇w0  (t = 0+) is the initial velocity of the disk.
Integration of (1.2.5b) with respect to r gives

P̃0  = 

  

p

r

0
0

0

∫  2πr dr = 
4
3  ρr0

3   ̇w0 (t =  0+) (1.2.5c)

It follows that high frequency added mass M*is given by M* = (4/3)ρr0
3.

In the case of an infinitely long weightless rigid strip of width 2d0 the added mass M* is given by
M* = (1/2)πρd0

2 (Lamb (1945), p. 85).
In the theory of linearized ship motion the rigid disk is replaced by a semi-submerged sphere and
the rigid strip is replaced by a semi-submerged infinitely long cylinder. The vertical impulsive
force P̃0  on a floating sphere of radius r0 and with mass M° = (2/3)πρr0

3 gives rise to the high
frequency added mass M* = M°/2 = (1/3)πρr0

3. The vertical impulsive line-force on a floating
cylinder of mass M° = (1/2)πρr0

2 per unit length, gives rise to the high frequency added mass
M* = M° (Ursell (1994)), Lamb (1945), pp. 80 and 124). These reults may be proved as follows.
We consider the translational motion of weightless rigid sphere in an infinite incompressible in-
viscid fluid. At each instant of time the moving sphere generates an instantaneous fluid motion.
The fluid pressure contains a linear portion and a non-linear portion (Lamb (1945), p. 124). The
non-linear portion generates a zero resulting force on the sphere. At the location of a plane
through the center of the sphere perpendicular to the direction of motion of the sphere, the linear
portion of the pressure vanishes while the non-linear portion does not vanish. The kinetic energy
of the fluid in given by (2/3)πρr0

3
  ẇ0

2  with ρ the fluid mass density,r0 the radius of the sphere
and   ẇ0  the velocity of the sphere. The resultant effect of the fluid pressure in the direction of the
motion is given by –(2/3)πρr0

3
  ̇ẇ0 , so that M * = (2/3)πρr0

3 is the added in-phase mass. Since
according to the linearised theory at the plane through the center of the sphere and pendicular in
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the direction of the motion of the sphere the pressure vanishes, we are lead into the following
result.
When a rigid floating hemisphere of radius r0 is subjected to a vertical centric impulsive force P̃0

at time t = 0 (Figure 1.1) the sphere gets the downward initial velocity w0(t = 0+) according to

P̃0  = (M° + M*) w0(t = 0+) (1.2.6)

with M° is the mass of the semi-sphere and M* is the added in-phase fluid mass: M° = (2/3)πρr0
3

and M* = (1/3)πρr0
3 = M °/2. In the case of an infinitely long circular semi-cylinder M° = M* =

(1/2)πρ r0
2 (Lamb (1945), p. 77).

The analysis by Newman (1969) gives rise to a quantification of the high frequency added mass
and to an indication of the low frequency added mass as follows.
The forced motion of a floating body resting on deep water generates surface waves due to
gravity. On the free surface the pressure –p0 is equal to zero, so that at this location the linearised
condition ω2ϕ  – g ẇ  = 0 must be satisfied, with ϕ the velocity potential, ẇ  the vertical surface
velocity and g the acceleration due to gravity (Lamb (1945), p. 363).

in-phase

(a)

out-phase

(b)

free surface

Figure 1.2. Method of images.

In the case of very high frequencies   ω ϕ2 >> gẇ , so that the potential ϕ vanishes on the free
surface (short waves). By the ‘method of images’ (Figure 1.2a) an upper hemisphere can be added
to the lower hemisphere. When the upper and lower hemisphere move in-phase, the normal
velocities on the upper and lower hemisphere are opposite in sign, so that the potential ϕ is equal
to zero on the ‘free surface’. This corresponds indeed to the problem of a sphere moving in a fluid
of infinite extent, so that the high frequency mass added to the hemisphere is equal to
M* = (π/3)ρr0

3 = M°/2.
In the case of very low frequencies ω we have ω ϕ2 << gẇ  on the free surface so that the normal
surface velocity vanishes (long waves). When an image hemisphere is added to the submerged
hemisphere and the upper and lower hemisphere move 180° ot of phase (Figure 1.2b), the vertical
velocity at the original free surface is zero. In fact there is no longer a free surface problem, but
the problem of pulsation of a dilitating ‘sphere’ of changing volume. From the litterature on ship
motions it appears that the low frequency added mass is equal to about (3/2) times the high
frequency added mass (compare the purely radial expansion motion of a sphere in a infinite
incompressible fluid in which case ϕ does not vanish at the ‘free surface’ and the added mass is
equal to 4·(3/2)(2/3)πρr0

3  (Lamb (1945), p. 122)., but is smaller than twice the high frequency
mass (Appendix 1.3). It is noticed that in two-dimensional problems the low frequency added
mass becomes mathematically infinite, because from the continuity of finite flux of fluid,
oscillating back and forth, there is only the way out at infinity. In three dimensions this infinity
does not occur because the fluid flux can distribute itself spatially in all three directions. On the
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other hand, long waves generate the influence of the ‘bottom’ of ‘deep water’ so that an infinite
added mass does not arise.
In Figure 1.3 we present a schematic indication of the added mass M* and the damping coefficient
C.

10

3
4

1
2

M

M

*

°
M r° = ( / )2 3 0

3πρ

′ =ω ω( / ) /r g0
1 2 10

1
2

′ =ω ω( / ) /r g0
1 2

C

M g r°( / ) /
0

1 2

Figure 1.3. Schematic indication of the added mass M* and coefficient of damping C.

Let A
–

 be the frequency dependent ‘wave-height ratio’, i.e., the ratio between the amplitude w* of
the outgoing waves and the amplitude ŵ0 of the oscillatory hemisphere:

A
–

 =  (w*/ŵ0) then C = ρ (g/ω)2 A
–

 2/ω.

with A
–

 = A
–

(ω) and A
–

(0) = 0.
We notice that it will appear that in the case of a rigid disk resting on a Gibson soil and an
incompressible homogeneous elastic half-space comparable results concerning the low and high
frequency added mass and damping coefficient arise.
Finally we notice that when a rigid weightless disk of radius r0 rests on the upper surface of deep
water and is subjected to a periodic displacement w0 = ŵ0 eiωt, the steady state stress distribution
under the disk is given by the dual integral equations (compare Kruijtzer (1976) and appendix
1.2).

  

ˆ ( ) ˆ ( ) ( ) ,  ˆ ( ) ˆ ( ) ( )p s p r rJ rs ds p r p s sJ sr ds0 0 0
0

0 0 0
0

= =
∞ ∞

∫ ∫

and

  

ˆ ( ) ( )
ˆ   ( )

p s s J sr

g
s

ds w r r0 0
2

0
0 00

⋅ ⋅

−
= ≤ <

∞

∫
ρ ω ρ

  

ˆ ( ) ˆ ( ) ( )   ( )p r p s s J sr ds r r0 0 0
0

00= ⋅ ⋅ = ≥
∞

∫
 (1.2.7a)

where we have used w0 (t) =   ŵ0 eiωt and p0(r,t) = p̂0(r)eiωt. Further, J0(α) is the Bessel function of
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zero order.
We notice that in the static case, ω = 0, the equations (1.2.7a) reduce to

  

ˆ ( ) ˆ ( ) ( )
ˆ   ( )

               ( )
p r p s s J sr ds

gw r r

r r0 0 0
0

0 0

0

0
0

= ⋅ ⋅ =
≤ <

>




∞

∫
ρ

(1.2.7b)

so that   ̂ ( )p r0  = ρg  ŵ0 .
Further we notice that the asymptotic development of (1.2.7a) for large values of ω gives rise to
the solution (Lamb (1945) p. 138)

ˆ ( )p r0  = –  
2 2

0
2 2 1 2

00π − ≤ <ω ρ{ }   ( )/r r r r

           = 0                             (r > 0) (1.2.7c)

so that

  P̂0  = –  
4
3 0

3 2
0ρ ωr ŵ (1.2.7d)

without coefficients of damping and restoring force.

(Incompressible) homogeneous isotropic elastic half-space

Firstly, we consider the case in which a weightless rigid circular disk of radius r0 is attached
frictionless to the horizontal upper surface of a homogeneous, isotropic, elastic half-space and is
asumed to undergo a vertical periodic displacement w0(t) = ŵ0 eiωt. The steady state solution of
this boundary value problem is given by Awojobi and Grootenhuis (1965):

  

α
ϕ

σ µ
ω

σ σ

1
0 0

0

2
2

0
0

0 0 0 0
0

0

0

( )
 ˆ ( ) ( )

ˆ
  ( )

ˆ ( ) ˆ ( ) ( )                  ( )

s
s sJ sr ds

w
r r

r s sJ sr ds r r

= < <

= = >

∞

∞

∫

∫
(1.2.8a)

with   ˆ ( )σ 0 r  the normal stress at the upper-surface with

ˆ ( ) ˆ ( ) ( )σ σ0 0 0
0

r s sJ sr ds=
∞

∫ ,  ˆ ( ) ˆ ( ) ( )σ σ0 0 0
0

s r rJ rs dr=
∞

∫ (1.2.8b)

and ϕ(s) the Rayleigh function

ϕ ω ω ω( ) ( ) ( ) ( )/ /s s s s s= − − − −2 42
2

2 2 2 2
1

2 1 2 2
2

2 1 2 (1.2.8c)

with
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ω ω ω ω

1
1

2
2

= =
c c

,  (1.2.8d)

  α ω1
2 2

1
2= −s (1.2.8e)

and

c1
2 = 

2(1 – ν)µ
(1 – 2ν)ρ  ,   c2

2 = 
µ
ρ ,  

c1

c2
 = {2(1 – ν)

(1 – 2ν)}
1
2 = β* (1.2.8f)

with c1 and c2 the velocity of the irrotational waves and equivoluminal waves, respectively.
Further, µ is the shear modulus and ν is Poisson’s ratio. c1 is also the velocity of wave propagation
in a laterally constrained bar. Awojobi (1971) considered the high frequency solution of (1.2.8). He
showed that for the compressible homogeneous half-space

σ̂0(r) ≈ –iβ* √µ·ρ ·ŵ0     (0 < r < r0)

         = 0                         (r > r0)
 (1.2.9a)

with {β* = {2(1 – ν)/(1 – 2ν)}1/2, (1.2.9b)
so that the theory of subgrade reaction is satisfied, this in contrast with low frequency factor and static

stress contribution. Thus we have

{–ω2M° + iβ*ωπ r0
2 √µρ }ŵ0 = P̂0 (1.2.9c)

without added mass and restoring force. This result corresponds to the case in which a laterally

constrained semi-infinite rod suddenly has a velocity w· 0 (t = 0+) applied to the free end, because at time t =

0+ no wave propagation can take place.

For the case of an incompressible subgrade Awojobi obtained

σ̂0(r) ≈ − 2
π

 ρ·ŵ0ω2(r0
2 – r2)1/2     (0 < r < r0)

         = 0                                        (r > r0)

 (1.2.10a)

like in the case of deep water (compare (1.2.5b)). We notice that the static stress distribution is
given by

σ0s(r) = 
2µw0

π(1 – ν) {r0
2 – r2}–1/2).

Integration of (1.2.10a) over the loaded area πr0
2 gives ultimately rise to

–ω2(M° + M*) ŵ0 = P̂0    , M* = 
4
3 ρr0

3 (1.2.10b)

For the case of an infinitely long rigid strip base of width 2d0 we have for the compressible
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subgrade

(–ω2M° + iβ*ω·2d0 √µρ } ŵ0 = P̂0 (1.2.11)

and for the incompressible subgrade

–ω2(M° + M*)ŵ0 = P̂0    , M* = 
π
2 ρd0

2 (1.2.12)

Bycroft (1977) slightly amended Awojobi’s results. He writes for the cases of a weightless rigid
circular base of radius r0:

ŵ0 = 
–P̂0
µr0

 (f1 + if2),  P̂0 = –µr0 
f1 – if2

f1
2 + f2

2 · ŵ0 (1.2.13a)

He shows that for large values of

a0 = 
 



 

ρr0

3ω2

µr0

1/2
 (1.2.13b)

in the case of a compressible subgrade

f1 ≈ – 
κv

a0
2    , f2 = 

1
πa0

  
1

β* (1.2.13c)

with κv varies from +0.09 to +0.06 as ν varies from ν  = 0 to ν = 0.333, and in the case of an
incompressible subgrade

f1 ≈ 
3

4a0
2    , f2 ≈ 

1.2.93
a0

3   (1.2.13d)

Thus, for the compressible subgrade we obtain (compare (1.2.9c))

{–ω2M° + iπβ*r0
2ω·√µρ} ŵ0 + (β*π) 2µr0κvŵ0 = P̂0 (1.2.14)

and for the incompressible subgrade (compare (1.2.10b))

[–ω2(M° + 
4
3 ρr0

3) + i 3.43 r0
2 √µρ  ω]ŵ0 = P̂0 (1.2.15)

For the case of low frequencies we have the following results. In the case of an incompressible

elastic subgrade the low frequency added mass of a rigid disk is about (3/2) times the high
frequency added mass, and in the case of a compressible elastic half-space the low frequency added
mass is about (1/2) times the high-frequency incompressible added mass (Bycroft (1956) and
Awojobi and Grootenhuis (1965)). In Appendix 1.2 the reciprocity between the corresponding
problems of a vertically loaded rigid strip (plane strain) and a rigid disk (axial symmetric) is
presented.
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The above results show that the high frequency added mass is only sigificant for incompressible
subgrades (compare Wolf (1985)).

Finally, we consider the case in which a rigid sphere of radius r0 is surrounded by a compresible,
homogeneos, isotropic elastic medium of infinite extent with mass density ρ, shear modulus µ
and Poisson’s ratio ν.

We suppose that the rigid sphere is subjected to a vertical centric periodic force P0(t) = P̂0eiωt, so
that at the steady state the sphere undergoes a rigid displacement w0(t) = ŵ0eiωt. It is assumed that
at the location of the surface of the sphere the displacement of the surrounding elastic space
equals the displacement of the sphere. At this location the horizontal displacement is equal to
zero and the vertical displacement is constant and equals ŵ0. With

α = iω{(1 – 2ν)ρ/2(1 – ν)µ)}1/2 ,  β = iω{ρ/µ}1/2, αβ = { 1 – 2ν
2(1 – ν)}

1
2 = 

1
β*

de Josselin de Jong (1956) finds that

2µŵ0 = 
P̂

4π(1 – ν)r0
  · 

{(1 – 2ν)[3 + 3βr0 + β2r0
2] + 4(1 – ν)[3 + 3αr0 + α2r0

2]}
{(1 + αr0)[3 + 3βr0 + β2r0

2] + 2(1 + βr0)[3 + 3αr0 + α2r0
2]}

 (1.2.16a)

P̂0 = 4πµr0ŵ0  
 



 

1 + αr0

α2

β2  + 
2(3 + 3αr0 + α2r0

2)
3 + 3βr0 + β2r0

2

 + 
2(1 + βr0)

α2

β2  · 
3 + 3βr0 + β2r0

2

3 + 3αr0 + α2r0
2 + 2 (1.2.16b)

Now it is noteworthy (de Josselin de Jong (1956)) that the first term between the brackets at the
right hand of (1.2.16b) represents the contribution I (say) of the irrotational wave (involving
dilatation and distortion) and the second term the contribution R (say) of the equivoluminal
(involving distortion and rotation) to the bearing power of the surrounding elastic space. In the
case of high frequency (I/R) = β*/2, and in the case of low frequency (I/R) = 1/2. In soils the low
frequency (long) waves are destructive.
The classical solution to the problem of a vibrating rigid sphere surrounded by a compressible

inviscid fluid, can be discovered from (1.2.16b) with µ = 0, β → ∞ but µβ2 = –ω2ρ and β*2µ = Ew,
the elasticity of fluid volume (Lamb (1945) p. 510)) (term I):

P̂0 = 
4
3 πr0

3ρω2 
 



 

– 

2 + κ2r0
2

4 + κ4r0
4  + i 

κ3r0
3

4 + κ4r0
4  ŵ0 (1.2.16c)

with wave number κ  = ω/cw, wave velocity cw = (Ew/ρ)1/2 of the irrotational waves with wave
length λ = 2π/κ.
In the cases of long waves and incompressibility (κ  r0 →  0) there is the added mass effect
(M* = (2/3)πr0

3) and the damping vanishes. At high frequencies the damping dominates:
C = (4/3)πr0

2ρcw.

Let us return to the formulae (1.2.16a) and (1.2.16b).
In the static case, ω = 0,
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P0 = 24πµr0 
(1 –ν)

(5 – 6ν) w0 (1.2.17a)

In the case of large frequency oscillations, i.e., ω → ∞, α → ∞ and β → ∞ it follows that

P̂0 = 4πr0
2 { 13 (2(1 – ν)

1 – 2ν )1/2 (µρ)
1
2 + 

2
3 (µρ)1/2} iω ŵ0 (1.2.17b)

with no added mass (compare (1.2.16c)).
For the case of an incompressible medium we have ν = 12 ,  so that α = 0. Then the expression
(1.2.16a) reduces to

2µŵ0 = 
P̂0

2πr0
 

6
{9 + 9βr0 + β2r0

2}
 (1.2.18a)

or

P̂0 = 
2πµr0

3   {9 + 9βr0 + β2r0
2}ŵ0 ,  β = iω{ρ/µ}1/2 (1.2.18b)

In the case of high frequency oscillations it follows that

P̂0 = – 
2πρr0

3

3   ω2ŵ0  , M* = 
2πρr0

3

3   (1.2.19)

This value of the added mass corresponds to the value of the added mass of a sphere moving
through an incompressible perfect fluid of infinite extent. In the static case, ω = 0, we have

P0 = 6πµr0w0 (1.2.20)

The static stress distribution corresponds with the stress distribution belonging to the slow steady
flow of an incompressible viscid fluid past a sphere under no-slipping conditions. With w the
uniform fluid velocity at infinity and µ the viscosity, the drag force on the sphere is given by P  =
6πµr0w into the direction of the flow (Lamb (1945), p. 597).
We notice that at the location of a horizontal plane through the center of the rigid sphere the
stress component in the horizontal radial direction, the stress component in the horizontal
circumferential direction and the stress component in the vertical direction are equal to zero.
Unfortunately, on that plane the shear stress is not equal to zero. At that plane simple shear
occurs (compare the slow motion of a sphere through incompresible viscid fluid). However, at
large values of the frequency ω this shear stress may be disregarded since it behaves as (1/ω)
when ω → ∞, and the stress at the surface of the sphere becomes isotropic.
As a consequence of the zero normal stresses at the location of the horizontal plane through the
center of the sphere, and the vanishing of the shear stress on that plane for large values of the
frequency, we may obtain the following result.
When a rigid hemisphere of radius r0 is embedded in an incompressible homogeneous elastic half-
space such that the upper-surface is flat (Figure 1.1) and is loaded by a vertical impulsive force P

~
(t
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= 0)  the hemisphere obtains the initial velocity

P
~

(t = 0+)  = (M* + M°)w0(t = 0+),  M° = (π/3)ρr0
3 (1.2.21)

For the case of an infinitely long semi-cylinder the added mass M° is given by (π/2)ρd0
2 per unit

length of the cylinder.
When we divide the left-hand of the expression (1.2.16a) by 2, we obtain the expression of the
high-frequency motion of an embedded hemisphere, a result that holds even as to a first
approximation for low frequencies (compare F. Medina in Gazetas (1985)).

Gibson soil

As a consequence of the mathematical analogy between the equations of the irrotational deep
water motions and the equations of the irrotational Gibson soil motion, we have the following
results.
The high frequency isotropic stress distribution under a rigid disk (a rigid strip) at the upper
surface of the Gibson soil has exactly the same form as the pressure distribution under a rigid
disk (a rigid strip) at the upper surface of deep water (and an incompressible homogeneous
elastic half-space). Therefore, the high frequency oscillation of a rigid disk with radius r0 (a rigid
strip) generates a high frequency added mass M* = (4/3)ρr0

3 (M* = (π/2)ρr0
2).

We notice that the exact solution to the rigid disk problem is given by Awojobi (1973, 1974) and
Kruijtzer (1976):

  

ˆ ( ) ( )

( )

ˆ   ( )
σ

ρ ρω
0 0

2
0

0 0

2
0

s J sr

g m
s

ds w r r

+ −
= − ≤ <

∞

∫

  

ˆ ( ) ˆ ( ) ( )   ( )σ σ0 0 0
0

00r s sJ sr ds r r= = ≥
∞

∫

with ˆ ( )σ 0 s  the Hankel transform of   ̂ ( )σ 0 r  (compare (1.2.7a)). (Awojobi did not take the gravity
into account). The upper limit of the low frequency added mass is given in Appendix 1.3.
In a recent paper (Kruijtzer (2001)) we have considered the case in which a semi-spherical (or
-cylindrical) rigid punch is pressed against the upper surface of a Gibson soil in such a way that
the resulting upper surface including the punch becomes flat. At the location of the deformed
upper surface the shear modulus is equal to zero, but the stress at this location is not isotropic. In
the linearized theory the principle of stress superposition is valid.
When we require that at the location of the surface of the hemisphere (semi-cylinder) the
displacement of the Gibson soil is equal to w0(t)  we have for large frequency factors the added
mass (1/3)πρr0

3 for the hemisphere and the added mass (π/2)ρd0
2 per unit length for the semi-

cylinder with an isotropic stress at the surface of the hemisphere or semi-cylinder.
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Figure 1.4. Pressed rigid punch.

Water saturated porous elastic space

It is assumed that the porous elastic space is homogeneous and isotropic. Further, it is assumed
that the solid material behaves as being  perfectly rigid under action of the all round water
pressure. In the fully undrained state the solid and the water possess equal velocities. The velocity
c1 of the irrotational waves and the velocity c2 the equivoluminal waves are given by

c1 = 
 



 

β∗2µ + Ew/n

(1 – n)ρs + nρw

1/2

 ,  c2 = 
 



 

µ

(1 – n)ρs + nρw

1/2

with n the solid porosity, ρs the solid mass density, ρw the water mass density. Further, Ew is the
elasticity of water volume, µ is the solid shear modulus and β*2µ the elasticity of a laterally
constrained solid volume.
When it is assumed that the water is incompressible, the undrained composite behaves as being an
incompressible elastic space. High frequency vibrations generate added mass showing that high
frequency pile driving is useless (de Josselin de Jong (1956)).
In the fully drained state there is no excess of water pressure and the elastic composition behaves
as being an elastic space. It should be noticed that the fully drained and undrained states must be
satisfied on the boundary.

1.3. Concluding remarks

The linear analysis of some footing and floating body problems shows the correspondence
between the high frequency added in-phase subgrade masses for the cases of deep water, a
Gibson soil and an incompressible homogeneous elastic half-space. High frequency states may
occur when the rigidity of the subgrade is small, the dimensions of the loaded surface area are
large, the weight of the foundation is large or the frequency input is high such as occurs on
impact, blast loading, vibrating machines, the deceleration of bodies hitting the ground, high
frequency components of earthquakes and running on a thin ice layer. With an increase of
frequency of a surface loading the depth of penetration of resulting effect in the subgrade
decreases. Furthermore, in the case of large frequency  factors, an increase of compressibility of
the subgrade decreases the effect of added mass and increases the effect of damping.
Furthermore, in the case of high-frequencies the compressible subgrade reacts like a uniform bed
of dashpots.
In the presentation of the solutions to different cases involving the motion of a rigid mass M°
connected with a massless Kelvin-Voigt element with spring constant K and the damping
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constant C, it is conventional to use the dimensionless parameters C/Cc and ω/ωn. Here ωn is the
eigenfrequency in the absence of damping, ωn = (Κ / M°)1/2, and Cc is the critical damping,
Cc = 2(Κ M °)1/2.. The parameters separate the effects of damping and frequency, but it is
cumbersome to determine the effects of changes in M° and Κ. Lysmer (Richart, Woods and Hall
(1970), p. 31) separated the effects of mass and frequency by introducing the dimensionless
parameters

a–0
2 = 

ω2·C2

Κ2  ,  b
–
 = 

M°Κ
C2  ;  b

–
a–0

2 = 
M0ω2

Κ  = ω2

ωn
2 (1.3.1a)

In the theory of vertical oscillation of footings with circular base resting on the surface of an
(incompressible) homogeneous elastic half-space the dimensionless parameters

a0
2 = 

ω2·ρr0
3

µr0
 ,  b0 = 

M°
ρr0

3 (1.3.1b)

appear in a natural way, with a0 is the dimensionless frequency and b0 is the mass ratio.
In the case of a Gibson soil we introduce the dimensionless quantities

u0
2 = 

ρr0
3ω2

(ρg + 2m)r0
2,   b0 = 

Μ°
ρr0

3 (1.3.1c)

with r0 the radius of the loaded area.
In the rather extensive litterature the differential equation of the vertical motion of a rigid footing
with a flat circular base of radius r0 attached to the horizontal upper surface of a compressible
homogeneous isotropic elastic half-space is presented in the form (Richart et al (1970), p. 208):

(M° + M*)ẅ(t) + 
3.46 r0

2

1 – ν  √ρµ w· (t) + 
4µr0

1 – ν w(t) = P0(t),   0 ≤ a0 < 1 (1.3.2a)

so that for the case of an incompressible half-space

(M° + M*)ẅ0(t) + 6.92r0
2√ρµ w· (t) + 8µr0w0(t) = P0(t)    0  ≤ a0 < 1 (1.3.2b)

With P0(t) = P̂0 eiωt and w0(t) = ŵ0eiωt  the equation (1.3.2b) reduces to the steady state equation of
motion

–ω2(M° + M*)ŵ0 + iω  6.92 r0
2 √µρ ŵ0 + 8µr0ŵ0 = P̂0, 0 ≤ a0 < 1 (1.3.2c)

Our collected and derived results show that these lumped equations are not valid in the case of
high frequency factors. In the case of a compressible subgrade the damping term is dominant and
in the case of an incompressible subgrade the mass term is dominating at large forced
frequencies.
We notice that for values of (((1 – ν)b0/4) > 2 the equation (((1 – ν)b0/4)a0

2 = 1 determines with
sufficient accuracy the value of the resonance frequency ωn. Further, we notice that the
equalization b

–
 = b0(1 – ν)/4 and  a–0 = a0 (compare (1.1a) and (1.1b) gives rise to an indication of the

value of the damping coefficient.
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In the subjoined table the results of this treatise have been summarized. It should be noticed that
the displacement ŵ0eiωt due to the additional loading P̂0eiωt  must be added to the initial static
diplacement due to the own weight (and other initially static loadings) of the footing or the
floating body. Further, it should be noticed that the given low frequency added mass represents
only an indicative estimation. The corresponding plane strain (2D) results may be found in the
text.

Table. Summary of the results.

Vertical motion of a footing or floating body with mass M°:

(M° + M– *) w·· 0(t) + C– w· 0(t) + K– w0(t) = P0(t)

with P0(t) = P̂0eiωt , w(t) = ŵ0eiωt  –ω2(M° + M*(ω))ŵ0 + i ω C(ω) ŵ0+ K(ω) ŵ0= P̂0

M
– *, M*(ω) = added mass; C–, C(ω) = coefficient of geometrical damping (wave radiation); K–, K(ω)
= coefficient of restoring force

Reaction of a homogeneous, isotropic, elastic half-space;
shear modulus µ, Poisson’s ratio ν, mass density ρ.

incompressible compressible β* = 
 



 

2(1 – ν)

(1 – 2ν)

1/2

κν < 0.1

weightless disk
high frequency

M* = (4/3) ρr0
3

C = 3,43 r0
2 √µρ

K ≈ 0

M* = 0
C = πβ*r0

2 √µρ
K = κν(πβ*)2 µr0

weightless disk
low frequency

M* = (3/2)(4/3) ρr0
3

C = 6.92 r0
2 √µρ

K = 8µr0 (static)

M* = (1/2)(4/3) ρr0
3 (ν = 0)

C = 3.46 r0
2 √µρ  (ν = 0)

K = 4µr0 (static)  (ν = 0)

weightless hemisphere
high frequency

M* = (π/3) ρr0
3

C = 3π r0
2 √µρ

K ≈ 0

M* ≈ 0
C = (2π/3)r0

2(β* + 2) √µρ
K ≈ 0

Reaction of deep water; mass density ρ, acceleration due to gravity g.

weightless disk (shallow
pontoon)
high frequency

M* = (4/3) ρr0
3, M° = ρπr0

2·h, h draft of pontoon at rest
C ≈ 0
K ≈ 0

weightless disk (shallow
pontoon)
low frequency

M* ≈ (3/2)(4/3) ρr0
3, M° = ρπr0

2·h
C ≈ 0
K ≈ πr0

2 ρg

hemisphere
high frequency

M* = (π/3) ρr0
3, M° = (2π/3)ρr0

3

C ≈ 0
K ≈ 0

hemisphere
low frequency

M* = (3/2)(π/3) ρr0
3, M° = (2π/3)ρr0

3

C ≈ 0
K ≈ πr0

2ρg

Reaction of a Gibson soil; shear modulus m times depth, mass density ρ.
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weightless disk
high frequency

M* = (4/3) ρr0
3

C ≈ 0
K ≈ 0

weightless disk
low frequency

M* ≈ (3/2)(4/3) ρr0
3

C ≈ 0
K ≈ πr0

2 (ρg + 2m)

pressed hemisphere
high frequency

M* = (π/3) ρr0
3

C ≈ 0
K ≈ 0

Added mass, coeffcient of geometrical damping and coeffcient of restoring force for the
additional vertical motion of footings and floating bodies, which motion should be added to
the static initial state.

Our results hopefully bridge the gap between the mechanics of deep water and of an elastic
substratum, and the gap between low frequency and high frequency problems with respect to the
compressibility of the substrata.

Appendix 1.1

G.N. Bycroft (1956) showed that in the case the upper surface of a homogeneous incompressible
isotropic elastic half-space is subjected by an almost uniform displacement over a circular loaded
area with radius ro, the relationship between the exciting force P(t) = P̂eiωt and the vertical
displacement w(t) is given by

w = w(t) = – 
P̂eiωt

µr0
 (f1 + if2) (a.1.1)

where f1 and f2 are two functions of frequency being effectively the in-phase and out-phase
components of the displacement w of the weightless disk of radius r0 (Figure a.1). In the case of
very high frequencies ω (Awojobi (1971), Bycroft (1977)):

f1 ≈ 
µr0

4
3ρr0

3ω2
 ,  f2 ≈ 

1.93
r0

3·ω3·(ρ/µ)3/2 (a.1.2)

or with

a0 = r0(ω √ρ/µ)  (a.1.3)

f1 ≈ 
3

4a0
2 ,  f2 ≈ 

1.93
a0

3 (a.1.4)

It is noticed that the asymptotic expression of f2 has been given by Bycroft (1977).
Further, in the static case, i.e. ω = 0, we have




