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Preface

On all levels of society systems have been introduced that deal with the
transmission, storage and processing of information. We live in what is
usually called the infomation society. Information has become a key word
in our society. It is not surprising therefore that from all sorts of quarters
interest has been shown in what information really is and consequently in
acquiring a better knowledge as to how information can be dealt with as
efficiently as possible.

Information theory is characterized by a quantitative approach to the notion
of information. By means of the introduction of measures for information
answers will be sought to such questions as: How to transmit and store
information as compactly as possible? What is the maximum quantity of
information that can be transmitted through a channel? How can security
best be arranged? Etcetera. Crucial questions that enable us to enhance the
performance and to grasp the limits of our information systems.

This book has the purpose of introducing a number of basic notions of
information theory and clarifying them by showing their significance in
present applications. Matters that will be described are, among others:
Shannon’s information measure, discrete and continuous information
sources and information channels with or without memory, source and
channel decoding, rate distortion theory, error-correcting codes and the
information theoretical approach to cryptology. Special attention has been
paid to multiterminal or network information theory; an area with still lots
of unanswered questions, but which is of great significance because most of
our information is transmitted by networks.
All chapters are concluded with questions and worked solutions. That
makes the book suitable for self study.



x Preface

The content of the book has been largely based on the present lectures by
the author for students in Electrical Engineering, Technical Mathematics
and Informatics, Applied Physics and Mechanical Engineering at the Delft
University of Technology, as well as on former lecture notes by Profs.
Ysbrand Boxma, Dick Boekee and Jan Biemond. The questions have been
derived from recent exams.

The author wishes to express his gratitude to the colleagues mentioned
above as well as the other colleagues who in one way or other contributed
to this textbook. Especially I wish to thank E. Prof. Ysbrand Boxma, who
lectured on information theory at the Delft University of Technology when
I was a student and who introduced me to information theory. Under his
inspiring guidance I received my M.Sc. in Electrical Engineering and my
Ph.D. in the technical sciences. In writing this book his old lecture notes
were still very helpful to me. His influence has been a determining factor in
my later career.

Delft, December 1996 Jan C.A. van der Lubbe



1

1
Discrete information

1.1  The origin of information theory

Information theory is the science which deals with the concept ‘informa-
tion’, its measurement and its applications. In its broadest sense distinction
can be made between the American and British traditions in information
theory.

In general there are three types of information:
– syntactic information, related to the symbols from which messages are

built up and to their interrelations,
– semantic information, related to the meaning of messages, their

referential aspect,
– pragmatic information, related to the usage and effect of messages.
This being so, syntactic information mainly considers the form of
information, whereas semantic and pragmatic information are related to the
information content.

Consider the following sentences:
(i) John was brought to the railway station by taxi.
(ii) The taxi brought John to the railway station.
(iii) There is a traffic jam on highway A3, between Nuremberg and Munich

in Germany.
(iv) There is a traffic jam on highway A3 in Germany.
The sentences (i) and (ii) are syntactically different. However, semantically
and pragmatically they are identical. They have the same meaning and are
both equally informative.
The sentences (iii) and (iv) do not differ only with respect to their syntax,
but also with respect to their semantics. Sentence (iii) gives more precise
information than sentence (iv).



2 Discrete Information

The pragmatic aspect of information mainly depends on the context. The
information contained in the sentences (iii) and (iv) for example is relevant
for someone in Germany, but not for someone in the USA.

The semantic and pragmatic aspects of information are studied in the British
tradition of information theory. This being so, the British tradition is closely
related to philosophy, psychology and biology. The British tradition is
influenced mainly by scientists like MacKay, Carnap, Bar-Hillel, Ackoff
and Hintikka.
The American tradition deals with the syntactic aspects of information. In
this approach there is full abstraction from the meaning aspects of informa-
tion. There, basic questions are the measurement of syntactic information,
the fundamental limits on the amount of information which can be trans-
mitted, the fundamental limits on the compression of information which can
be achieved and how to build information processing systems approaching
these limits. A rather technical approach to information remains.
The American tradition in information theory is sometimes referred to as
communication theory, mathematical information theory or in short as
information theory. Well-known scientists of the American tradition are
Shannon, Renyi, Gallager and Csiszár among others.
However, Claude E. Shannon, who published his article “A mathematical
theory of communication” in 1948, is generally considered to be the founder
of the American tradition in information theory. There are, nevertheless, a
number of forerunners to Shannon who attempted to formalise the efficient
use of communication systems.

In 1924 H. Nyquist published an article wherein he raised the matter of how
messages (or characters, to use his own words) could be sent over a
telegraph channel with maximum possible speed, but without distortion. The
term information however was not yet used by him as such.

It was R.V.L. Hartley (1928) who first tried to define a measure of
information. He went about it in the following manner.
Assume that for every symbol of a message one has a choice of s
possibilities. By now considering messages of l  symbols, one can
distinguish sl messages. Hartley now defined the amount of information as
the logarithm of the number of distinguishable messages. In the case of
messages of length l  one therefore finds

HH(sl) = log{sl} = l log{s}. (1.1)

For messages of length 1 one would find
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HH(s1) = log{s}

and thus

HH(sl) = l HH(s1).

This corresponds with the intuitive idea that a message consisting of l
symbols, by doing so, contains l  times as much information as a message
consisting of only one symbol. This also accounts for the appearance of the
logarithm in Hartley’s definition.

It can readily be shown that the only function that satisfies the equation

f{sl} = l f{s}

is given by

f{s} = log{s}, (1.2)

which yields Hartley’s measure for the amount of information. Note that the
logarithm also guarantees that the amount of information increases as the
number of symbols s  increases, which is in agreement with our intuition.

The choice of the base of the logarithm is arbitrary and is more a matter of
normalisation. If the natural logarithm is used, the unit of information is
called the nat  (natural unit). Usually 2 is chosen as the base. The amount of
information is then expressed in bits (derived from binary unit, i.e. two-
valued unit). In the case of a choice of two possibilities, the amount of
information obtained when one of the two possibilities occurs is then equal
to 1 bit. It is easy to see that the relationship between bit and nat is given by

1 nat = 1.44 bits.

In Hartley’s approach as given above, no allowance is made for the fact that
the s symbols may have unequal chances of occurring or that there could be
a possible dependence between the l  successive symbols.

Shannon’s great achievement is that he extended the theories of Nyquist and
Hartley, and laid the foundation of present-day information theory by
associating information with uncertainty using the concept of chance or
probability. With regard to Hartley’s measure, Shannon proposed that it
could indeed be interpreted as a measure for the amount of information,
with the assumption that all symbols have an equal probability of occurring.
For the general case, Shannon introduced an information measure based on
the concept of probability, which includes Hartley’s measure as a special
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case. Some attention will first be paid to probability theory, during which
some useful notations will be introduced, before introducing Shannon’s
definition of information.

1.2  The concept of probability

Probability theory is the domain dealing with the concept of probability.
The starting point of probability theory is that experiments are carried out
which then yield certain outcomes. One can also think in terms of an
information source which generates symbols. Every occurrence of a symbol
can then be regarded as an event. It is assumed that one is able to specify
which possible outcomes or events can occur. The collection of all possible
outcomes or events is called the sample space. It is now possible to speak of
the probability that an experiment has a certain outcome, or of the
probability that an information source will generate a certain symbol or
message. Each event or outcome has a number between 0 and 1 assigned to
it, which indicates how large the probability is that this outcome or event
occurs. For simplicity it is assumed that the sample space has a finite
number of outcomes.

Consider a so-called probabilistic experiment X with possible outcomes/
events xi, with xi Œ X and X the probability space as defined by

X = {x1,…,xi,…,xn}. (1.3)

If we think of throwing a die, then x1 could be interpreted as the event that
“1” is thrown, x2 the event that  “2” is thrown, etc. In the case of the die it is
obvious that n = 6.
Each event will have a certain probability of occurring. We denote the
probability related to xi by p(xi) or simply pi. The collection of probabilities
with regard to X is denoted by

P = {p1,…,pi,…,pn}, (1.4)

and is called the probability distribution. The probability distribution
satisfies two fundamental requirements:

(i) pi ≥ 0, for all i.

(ii) Â
i=1

n
  pi = 1.
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That is, no probability can take on a negative value and the sum of all the
probabilities is equal to 1.
Sometimes we can discern two types of outcomes in one experiment, such
that we have a combination of two subexperiments or subevents. When
testing IC’s for example, one can pay attention to how far certain
requirements are met (well, moderately or badly for example), but also to
the IC’s type number. We are then in actual fact dealing with two sample
spaces, say X and Y, where the sample space Y, relating to experiment Y, is
in general terms defined by

Y = {y1,…,yj,…,ym}, (1.5)

and where the accompanying probability distribution is given by

Q = {q1,…,qj,…,qm}, (1.6)

where q(yj) = qj is the probability of event yj. We can now regard (X,Y) as a
probabilistic experiment with pairs of outcomes (xi,yj), with xi Œ X and yj Œ
Y. The probability r(xi,yj), also denoted by rij or p(xi,yj), is the probability
that experiment (X,Y) will yield (xi,yj) as outcome and is called the joint
probability . If the joint probability is known, one can derive the
probabilities pi and qj, which are then called the marginal probabilities. It
can be verified that for all i

pi = Â
j=1

m
  rij, (1.7)

and for all j

qj = Â
i=1

n
  rij. (1.8)

Since the sum of all the probabilities pi must be equal to 1 (and likewise the
sum of the probabilities qj), it follows that the sum of the joint probabilities
must also be equal to 1:

Â
i=1

n
  Â
j=1

m
  rij = 1.

Besides the joint probability and the related marginal probability, there is a
third type, namely the conditional probability. This type arises when a
probabilistic experiment Y is conditional for experiment X. That is, if the



6 Discrete Information

probabilities of the outcomes of X are influenced by the outcomes of Y. We
are then interested in the probability of an event, xi for example, given that
another event, yj for example, has already occurred.

Considering the words in a piece of English text, one may ask oneself, for
example, what the probability is of the letter “n” appearing if one has
already received the sequence “informatio”. The appearances of letters in
words often depend on the letters that have already appeared. It is very
unlikely, for example, that the letter “q” will be followed by the letter “t”,
but much more likely that the letter “u” follows.

The conditional probability of xi given yj is defined as

p(xi/yj) = 
r(xi,yj)
q(yj)

 , provided q(yj) > 0,

or in shortened notation

pij = 
rij

qj
 , provided qj > 0. (1.9)

The conditional probability of yj given xi can be defined in an analogous
manner as

q(yj/xi) = 
r(xi,yj)
p(xi)

 , provided p(xi) > 0,

or simply

qji = 
rij

pi
 , provided pi > 0. (1.10)

From the definitions given it follows that the joint probability can be written
as the product of the conditional and marginal probabilities:

r(xi,yj) = q(yj) p(xi/yj) = p(xi) q(yj/xi). (1.11)

The definition of conditional probability can be simply extended to more
than two events. Consider xi, yj and zk for example:

p(xi,yj,zk) = r(yj,zk) p(xi/yj,zk)

= p(zk) p(yj/zk) p(xi/yj,zk),
hence

p(xi/yj,zk) = p(xi,yj,zk) / r(yj,zk).
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Returning to the conditional probability, summation over the index i with yj

given yields

Â
i=1

n
  p(xi/yj) = 1. (1.12)

Whenever an event yj has occurred, one of the events in X must also occur.
Thus, summation will yield 1. Note that the converse is not true. It is
generally true that

Â
j=1

m
  p(xi/yj) π 1. (1.13)

A handy aid which will be of use in the following is Bayes’ theorem. It is
often the case that the conditional probability q(yj/xi) is known, but that we
want to determine the conditional probability p(xi/yj). One can do this by
making use of the following relations:

r(xi,yj) = p(xi) q(yj/xi) = q(yj) p(xi/yj).

Hence, if q(yj) > 0,

p(xi/yj) = 
p(xi) q(yj/xi)

q(yj)
 ,

or also

p(xi/yj) = 
p(xi) q(yj/xi)

Â
i=1

n
  p(xi) q(yj/xi)

 . (1.14)

We are thus able to calculate p(xi/yj) with the help of q(yj/xi).

Finally, a comment about the concept of independence. The situation can
arise that

p(xi/yj) = p(xi).

That is, the occurrence of yj has no influence on the occurence of xi. But it
then also follows that

r(xi,yj) = p(xi) q(yj)
and

q(yj/xi) = q(yj).
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In this case one says that the events are independent of each other. The
reverse is also true, from r(xi,yj) = p(xi) q(yj) it follows that q(yj/xi) = q(yj)
and p(xi/yj) = p(xi). Two experiments X  and Y  are called statistically
independent if for all i and j

r(xi,yj) = p(xi) q(yj). (1.15)

An experiment X is called completely dependent on another, Y, if for all j,
there is a unique i, say k, such that

p(xk /yj) = 1, (1.16)
or

p(xk,yj) = p(yj). (1.17)

1.3  Shannon’s information measure

As we saw in Section 1.1, Hartley’s definition of information did not take
the various probabilities of occurrence of the symbols or events into
account. It was Shannon who first associated information with the concept
of probability.

This association is in actual fact not illogical. If we consider a sample space
where all events have an equal probability of occurring, there is great
uncertainty about which of the events will occur. That is, when one of these
events occurs it will provide much more information than in the cases where
the sample space is structured in such a way that one event has a large
probability of occurring. Information is linked to the concept of chance via
uncertainty.
Before considering to what extent Shannon’s information measure satisfies
the properties one would in general expect of an information measure, we
first give his definition.

Definition 1.1
Let X be a probabilistic experiment with sample space X and probability
distribution P, where p(xi) or pi is the probability of outcome xi Œ X. Then
the average amount of information is given by

H(X) = – Â
i=1

n
   p(xi) log p(xi) = –Â

i=1

n
   pi log pi. (1.18)

●

Other notations for Shannon’s information measure are H(X), H(P) and
H(p1,…,pn). All of these notations will be used interchangeably in this text.
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Figure 1.1. H(P) = H(p,1 – p) as a function of p.

Because this measure for the amount of information is attended with the
choice (selection) from n possibilities, one sometimes also speaks of the
measure for the amount of selective information.
Because 2 is usually chosen as the base, the unit of information thereby
becoming the bit, this will not be stated separately in future, but left out.
In the case of two outcomes with probabilities p1 = p and p2 = 1 – p we find

H(P) = –p log p – (1 – p) log (1 – p). (1.19)

Figure 1.1 shows how H(P) behaves as a function of p. It can be concluded
that if an outcome is certain, that is, occurs with a probability of 1, the
information measure gives 0. This is in agreement with the intuitive idea
that certain events provide no information. The same is true for p = 0; in that
case the other outcome has a probability of 1.

When p = 0.5, H(P) reaches its maximum value, which is equal to 1 bit. For
p = 0.5, both outcomes are just as probable, and one is completely uncertain
about the outcome. The occurrence of one of the events provides the
maximum amount of information in this case.

As an aside, note that by definition 0·log(0) = 0.

Returning to the general case, we can posit that the information measure
satisfies four intuitive requirements :

I H(P) is continuous in p
II H(P ) is symmetric. That is, the ordering of the probabilities p1,…,pn
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does not influence the value of H(P).
III H(P) is additive. If X and Y are two sample spaces, where outcomes in X

are independent of those in Y, then we find for the information relating
to joint events (xi,yj)

H(p1q1,…, p1qm,…, pnq1,…, pnqm)

= H(p1,…, pn) + H(q1,…, qm). (1.20)

IV H(P) is maximum if all probabilities are equal. This corresponds with
the situation where maximum uncertainty exists. H(P) is minimum if
one outcome has a probability equal to 1.

A short explanation of a number of the above requirements follows.

Ad  II. That Shannon’s information measure is symmetric means that
changing the sequence in which one substitutes the probabilities does not
change the amount of information. A consequence of this is that different
sample spaces with probability distributions that have been obtained from
the permutations of a common probability distribution will result in the
same amount of information.

Example 1.1
Consider the experiments X and Y with the following sample spaces:

X = {it will rain tomorrow, it will be dry tomorrow}
where P = {0.8,  0.2}

and
Y = {John is younger than 30, John is at least 30}
where Q = {0.2,  0.8}.

The amount of information with relation to X is

H(X) = – 0.8 log 0.8 – 0.2 log 0.2 = 0.72 bit

and with relation to Y

H(Y) = – 0.2 log 0.2 – 0.8 log 0.8 = 0.72 bit
and thus

H(X) = H(Y). ▲

From this example, it can be concluded that Shannon’s information measure
is not concerned with the contents of information. The probabilities with
which events occur are of importance and not the events themselves.



1.3  Shannon’s information measure 11

A d  III. That Shannon’s information measure satisfies the property
formulated in equation (1.20), follows directly by writing it out in terms of
the probabilities. The property of additivity is best illustrated by the
following example. Consider 2 dice. Because the outcomes of the 2 dice are
independent of each other, it will not make any difference whether the dice
are thrown at the same time or one after the other. The information related
to the dice when thrown together will be the same as the successive
information that one obtains by throwing one dice and then the other.
If H(X) is the amount of information in relation to throwing one die and
H(Y) the amount of information in relation to throwing the other die (note
that in this case H(X) = H(Y)) while H(X,Y) is the information in relation to
two dice thrown at the same time, then it must follow that

H(X,Y) = H(X) + H(Y). (1.21)

This is exactly what the additivity property asserts.

Ad IV. That the amount of information will be maximum in the case of
equal  probabilities is obvious, in view of the fact that the uncertainty is the
greatest then and the occurrence of one of the events will consequently yield
a maximum of information.
In the following theorem, not only the maximum amount of information but
also the minimum amount of information will be determined.

Theorem 1.1
Let X = (x1,…,xn) be the sample space of experiment X, while P = (p1,…,pn)
is the corresponding probability distribution. We then find that

(i) H(P) £ log n, (1.22)
with equality if and only if pi = 1/n for all i = 1,…,n.

(ii) H(P) ≥ 0, (1.23)
with equality if and only if there is a k such that pk = 1 while for all
other i π k  pi = 0.

Proof
(i)  During this proof, use will be made of the following inequality (compare
Figure 1.2):

ln a £ a – 1. (1.24)
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Figure 1.2. Graphical representation of ln a £ a – 1.

Now consider H(P) – log(n):

H(P) – log n = –Â
i=1

n
   pi log pi – log n  =  –Â

i=1

n
   pi{log pi + log n}

= Â
i=1

n
   pi log{

1
pi n

 }.

From the inequality  ln a £ a – 1 it follows that

log a = 
ln a
ln 2  £ (a – 1) 

ln e
 ln 2  = (a – 1) log e. (1.25)

Using this inequality leads to

H(P) – log n £ Â
i=1

n
   pi 

 Ó
Ì
Ï

 ̨
˝
¸

 
1

pi n
  – 1  log e  =  

 Ó
Ì
Ï

 ̨
˝
¸Â

i=1

n
   
1
n  – Â

i=1

n
  pi  log e

= 
 Ó
Ì
Ï

 ̨
˝
¸

n  
1
n  – 1  log e = 0. (1.26)

It has thus been proven that

H(P) £ log n,

with equality if and only if 1/(pi n) = 1, which corresponds with a = 1 in
Figure 1.2. This means that pi = 1/n for all i = 1,…,n.
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(ii)  Because pi and –log pi cannot both be negative, the amount of infor-
mation is always positive or equal to zero. Hence

H(P) ≥ 0.

It can readily be seen that H(P) can only become equal to 0 if there is one
probability in P equal to 1, while all other probabilities are zero. ■

The maximum amount of information is therefore equal to log n. In order to
get an impression of the amount of information that an information system
delivers, we consider the following example.

Example 1.2
A television image consists of 576 lines, each built up from 720 picture
elements. One single television screen image therefore consists of 414 720
picture elements in total. Under the assumption that we are dealing with a
grey scale image, where each picture element can display one of 10 intensity
intervals, there are 10414720 different TV images possible. If each of these
images has an equal probability of occurring, the amount of information
contained in an image is equal to

H(P) = log n = log(10414720) ª 1.4·106 bits. ▲

Above we have considered a few properties of Shannon’s information
measure. There are of course still other properties which can be derived
regarding this information measure. These will be considered in the coming
chapters.

∑ We have seen that the amount of information does not change if the
probabilities are substituted in a different order. Let us now consider the
following two probability distributions:

P = {0.50,  0.25,  0.25}
and

Q = {0.48,  0.32,  0.20}.

When we calculate the corresponding amount of information for both cases,
we find

H(P) = H(Q) = 1.5 bits.

It appears that different probability distributions can lead to the same
amount of information: some experiments can have different probability
distributions, but an equal amount of information. Figure 1.3 shows
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Figure 1.3. Curves with an equal amount of information in the case of a sample
space of 3.

0.4

0.6
0.8

1.0
1.1

1.3

1.4

1.5

1.585

geometrically which probability distributions lead to the same amount of
information for 3 probabilities (n = 3).
The closed curves indicate the probability distributions that lead to the same
amount of information. The corresponding values of the probabilities for
each arbitrary point on a curve can be found by projection on the lines of p1,
p2 and p3.

It is easy to verify that the maximum amount of information for n = 3 is
equal to

H(P) = log 3 = 1.58 bits.

Since there is but one probability distribution that can lead to the maximum
amount of information, namely P = { 13

, 1
3
, 1

3}, we find in that case precisely
one point in Figure 1.3 instead of a closed curve.

∑ In order to get more insight into what Shannon’s information measure
represents, we consider the following two examples.

Example 1.3 
Suppose we have a graphical field consisting of 16 regions, one of which is
shaded (see Figure 1.4).
By asking questions which can only be answered with a yes or a no, we
have to determine where the shaded region is situated. What is the best
strategy? One can guess, but then one takes the risk of having to ask 16
questions before finally finding the shaded region. It is better to work
selectively. The question and answer game could then end up looking like
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Figure 1.4. Question and answer
game: finding the shaded region.

Figure 1.5. Example of a tree structure
for a question and answer game.

1 to 8?
yes

9 to 16?
no

1, 2, 5, 6?
yes

3, 4, 7, 8?
no

1, 2?
no

5, 6?
yes

5?
no

6?
yes

the following, for example (see also Figure 1.5):

1. Is the shaded region one of the bottom eight regions?
Answer: “no”, thus regions 9 to 16 can be dismissed.

2. Is the shaded region one of the four regions remaining to the left?
Answer: “yes”, thus the shaded region is 1, 2, 5 or 6.

3. Is the shaded region one of the bottom two of the four remaining
regions?
Answer: “yes”, thus the shaded region is 5 or 6.

4. Is it the left region?
Answer: “no”, so the shaded region is 6.

There are therefore four questions necessary in total to determine which of
the 16 regions is shaded.
If we now consider the amount of information regarding this problem we
find, as all 16 regions are equally probable, that

H(P) = –Â
i=1

16
  
1
16 log 1

16  = log(16) = 4 bits.

The amount of information apparently corresponds with the minimum
number of questions that one must ask to determine which outcome (the
shaded region in this case) has occurred. ▲

In the following example, we examine if the interpretation of Example 1.3 is
also valid when dealing with probability distributions where not all proba-
bilities are equal.
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Example 1.4
A sample space X is given by X = {x1, x2, x3}, while the accompanying
probability space is given by P = {1/2, 1/4, 1/4}. Playing the “yes” and “no”
game again, it seems obvious to ask for x1 first, as this outcome has the
greatest probability.
If the answer is “yes”, then we have found the outcome in one go. If the
answer is “no”, then the outcome is obviously x2 or x3. To determine if it is
x2 or x3 costs another question, so that we need to ask two questions in total
to know the outcome.
One must therefore ask either one question or two questions, with equal
probabilities, hence the average is 1.5 questions.
If we calculate the amount of information according to Shannon, then we
find:

H(P) = – 12 log 12 – 14 log 14 – 14 log 14 = 1.5 bits.

The previously given interpretation is therefore also valid for unequal
probabilities. ▲

1.4  Conditional, joint and mutual information measures

In Section 1.2 we referred to a probabilistic experiment (X,Y) with possible
outcomes (xi, yj), where (xi,yj) Œ (X,Y).

On the basis of the size of the sample space (X,Y) it can be concluded that
experiment (X,Y) has nm possible joint outcomes in total. If we now want to
define the amount of information with regard to (X,Y), then the following
course can be followed.

There are nm joint events (xi,yj), with probabilities of occurring r(xi,yj) or rij

(see Section 1.2 for notation). Now suppose that we write the nm joint
events as events z1,z2,…,znm and the corresponding probabilities as
p(z1),p(z2),…,p(znm). We then in actual fact have a one-dimensional sample
space again, and with the definition of the marginal information measure we
find

H(Z) = –Â
k=1

nm
   p(zk) log p(zk). (1.27)

But because each p(zk) will be equal to one of the probabilities r(xi,yj),
summation over k will yield the same as summation over i and j. In other
words:
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H(Z) = –Â
i=1

n
  Â
j=1

m
  r(xi,yj) log [r(xi,yj)].

This leads to the following definition of the joint information measure.

Definition 1.2
Consider a probabilistic experiment (X,Y) with two-dimensional sample
space (X,Y), where rij or r(xi,yj) is the probability of xi and yj, then the joint
information measure  is defined as

H(X,Y) = –Â
i=1

n
  Â
j=1

m
  r(xi,yj) log [r(xi,yj)]. (1.28)

●

We will use the alternative notations H(R) and H(r11,…,rnm), as well as
H(X,Y), interchangeably.

So far we have seen that the marginal information measure can be defined
on the basis of marginal probabilities and that joint probabilities lead to the
introduction of the joint information measure. We will now consider if a
conditional information measure can be defined in relation to conditional
probabilities.

The probabilistic experiments X and Y are being considered again. Now
suppose that we are interested in the amount of information with regard to Y
under the condition that outcome xi has already occurred. We then have
probabilities q(yj/xi), j = 1,…,m, instead of  probabilities q(yj), j = 1,…,m,
but with the sum still equal to 1.

The amount of information with regard to Y given outcome xi can then, in
analogy with the marginal information measure, be defined as

H(Y/xi) = –Â
j=1

m
  q(yj/xi) log[q(yj/xi)]. (1.29)

By now averaging over all values xi, the average amount of information of Y
given foreknowledge of X is found:

Â
i=1

n
   p(xi)H(Y/xi) = Â

i=1

n
   p(xi) Ó

Ì
Ï

 ̨
˝
¸

–Â
j=1

m
   q(yj/xi) log[q(yj/xi)] 

= –Â
i=1

n
   Â
j=1

m
  p(xi) q(yj/xi) log[q(yj/xi)]
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= –Â
i=1

n
   Â
j=1

m
   r(xi,yj) log[q(yj/xi)].

This quantity is denoted by the conditional amount of information H(Y/X).
This leads to the following definition.

Definition 1.3
The conditional information measure with regard to experiment Y given X is
equal to

H(Y/X) = –Â
i=1

n
  Â
j=1

m
  r(xi,yj) log[q(yj/xi)]. (1.30)

In an analogous manner, one can define the amount of information that is
obtained on average with regard to X if Y is known as

H(X/Y) = –Â
i=1

n
  Â
j=1

m
  r(xi,yj) log[p(xi/yj)]. (1.31)

●

Instead of H(Y/X) and H(X/Y) we will also use the notations related to their
spaces: H(Y/X) and H(X/Y)
The following theorem gives the minimum and maximum values for
H(Y/X).

Theorem 1.2
Let H(Y/X) be the conditional information measure for Y given X, then

(i) H(Y/X) ≥ 0, (1.32)

(ii) H(Y/X) £ H(Y), (1.33)
with equality if X and Y are stochastically independent.

Proof
(i) Because q(yj/xi) £ 1 for all i and j, it follows that {–log p(yj/xi)} ≥ 0, so
that it follows directly from the definition that

H(Y/X) ≥ 0.

(ii) H(Y/X) – H(Y) = –Â
i=1

n
  Â
j=1

m
  r(xi,yj) log[q(yj/xi)] + Â

j=1

m
  q(yj) log q(yj)
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= Â
i=1

n
  Â
j=1

m
  r(xi,yj) log  Î

È
 ̊
˘q(yj)

q(yj/xi)
 .

Using the previously mentioned inequality ln(a) £ a – 1 (see Figure 1.2) it
follows that

H(Y/X) – H(Y) £ Â
i=1

n
  Â
j=1

m
  r(xi,yj)  Î

È
 ̊
˘q(yj)

q(yj/xi)
 – 1  log e.

The right-hand side of this inequality can be written as

Â
i=1

n
  Â
j=1

m
  p(xi)q(yj/xi)  

q(yj)
q(yj/xi)

  log e – Â
i=1

n
  Â
j=1

m
   r(xi,yj) log e

= log e – log e = 0.
Hence

H(Y/X) £ H(Y).

The two amounts of information are equal if q(yj) = q(yj/xi) for all i and j, as
is the case with stochastic independence. ■

The conclusion that can be attached to this theorem is that (on average) the
conditional amount of information is always less than or equal to the
marginal amount of information. In other words, information about  X will
generally lead to a reduction of uncertainty. This is in agreement with our
intuitive ideas about foreknowledge.

A direct relationship exists between the marginal, conditional and joint
information measures, as shown by the following theorem.

Theorem 1.3
For all experiments X and Y,

H(X,Y) = H(X) + H(Y/X)

= H(Y) + H(X/Y). (1.34)

Proof
We have

H(X,Y) = –Â
i=1

n
  Â
j=1

m
  r(xi,yj) log[p(xi) q(yj/xi)]
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= –Â
i=1

n
  Â
j=1

m
  r(xi,yj) log p(xi) –Â

i=1

n
  Â
j=1

m
  r(xi,yj) log[q(yj/xi)]

= H(X) + H(Y/X).

The proof of H(X,Y) = H(Y) + H(X/Y) proceeds in an analogous manner. ■

What the theorem is really saying is that the joint amount of information is
the sum of the amount of information with regard to X and the conditional
amount of information of Y given X.

On the basis of Theorem 1.2 and Theorem 1.3, it can furthermore be derived
that

H(X,Y) = H(X) + H(Y/X) £ H(X) + H(Y), (1.35)

with equality if X and Y are independent.

One can thus suppose that the joint amount of information is maximum if
the two probabilistic experiments are independent and decreases as the
dependence increases. With absolute dependence, the outcome of Y is
known if the outcome of X is known, so that H(Y/X) = 0. In that case H(X,Y)
= H(X).

One last definition now remains to be given in this section, that of the
mutual information measure, which will play an important role with respect
to the concept of the capacity of a communication channel as discussed
later.

Definition 1.4
The mutual information measure with regard to X and Y is defined by

I(X;Y) = H(Y) – H(Y/X)

= Â
i=1

n
  Â
j=1

m
  r(xi,yj) log  Î

È
 ̊
˘r(xi,yj)

p(xi) q(yj)
. (1.36)

●

I(X;Y) can be interpreted as a measure for the dependence between Y and X.
When X and Y are independent, I(X;Y) is minimum, namely

I(X;Y) = 0.

If Y is completely dependent on X, then H(Y/X) = 0 and I(X;Y) attains its
maximum value which is equal to
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Figure 1.6. Relationships between information measures: (a) the general case;
(b) the case of independence.

H(Y)
H(X)

H(X/Y)

H(Y/X)

I(X;Y)

H(X) H(Y)

(a)

(b)

I(X;Y) = H(Y).

It is left to the reader to show that for all X and Y

I(X;Y) = H(X) – H(X/Y)

= H(X) + H(Y) – H(X,Y), (1.37)

and that I(X;Y) is symmetric, that is for all X and Y

I(X;Y) = I(Y;X). (1.38)

In this section we have introduced three information measures, namely the
conditional, joint and mutual information measures. Some attention was also
paid to the different relationships between the measures themselves. These
are best illustrated and summarised by the Venn diagrams shown in Figure
1.6.
We have

I(X;Y) = H(X) « H(Y),

H(X,Y) = H(X) » H(Y).

From Figure 1.6(a), the most general case, it can be concluded that:

∑ H(X/Y) £ H(X)  and  H(Y/X) £ H(Y);

∑ I(X;Y) £ H(Y)  and  I(X;Y) £ H(X);
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∑ I(X;Y) = H(X) – H(X/Y) = H(Y) – H(Y/X);

∑ H(X,Y) = H(X/Y) + I(X;Y) + H(Y/X)

= H(Y) + H(X/Y) = H(X) + H(Y/X);

∑ H(X,Y) £ H(X) + H(Y).

In Figure 1.6(b), X and Y are independent. Note that now:

∑ I(X;Y) = 0;

∑ H(X,Y) = H(X) + H(Y);

∑ H(X) = H(X/Y) and H(Y) = H(Y/X).

The relationships between the various information measures derived in this
and previous sections can readily be demonstrated through the use of Venn-
diagrams.

1.5  Axiomatic foundations

In Section 1.3, Shannon’s information measure was introduced and some
properties of the information measure were derived. These properties
appeared to correspond with the properties that one would intuitively expect
of an information measure. In the uniform case Shannon’s information
measure equals the information measure of Hartley, which is the logarithm
of the number of messages (compare equation (1.1)). Shannon’s information
measure based on probabilities can be derived directly from the uniform
case and the measure of Hartley.
Assume that an information measure should satisfy the following three
requirements.
(i) If all outcomes are split up into groups, then all the values of H for the

various groups, multiplied by their statistical weights, should lead to
the overall H.

(ii) H should be continuous in pi.
(iii) If all p i’s are equal, i.e. for all i p i = 1

n
, then H  will increase

monotonically as a function of n. That means the uncertainty will
increase for an increasing number of equal probabilities.

For n equally probable outcomes H should satisfy H = log n according to
Hartley and requirement (iii). For unequal probabilities consider the follow-
ing case. Assume probabilities 36 , 2

6 and 1
6 . Figure 1.7(a) gives the decision

tree for which H should be computed.
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Figure 1.7. Decision trees related to unequally probable outcomes.
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The value of H with respect to the decision tree of Figure 1.7(c) should be
equal to H c = log 6 (compare requirement (iii)). However, since both
decision trees of Figure 1.7(b) and 1.7(c) are fundamentally identical, the
value with respect to the decision tree of Figure 1.7(b) should also be equal
to log 6; Hb = log 6. On the basis of requirement (i) this value should equal
the uncertainty concerning the choice between the branches denoted by 36 , 2

6
and 1

6 in Figure 1.7(b) (i.e. the Ha searched for) plus the uncertainties with
respect to the subbranches multiplied by their weights.
It follows that

Ha + 36 log 3 + 26 log 2 + 16 log 1 = log 6

and

Ha = – 12 log 12 – 13 log 13 – 16 log 16.

More generally it follows that

H(X) = –Â
i=1

n
  pi log pi.

Chaundy and McLeod (1960) have given the following characterisation
theorem which uniquely determines Shannon’s information measure.

Theorem 1.4
Consider a function f(X) = f(P ) = f(p1,…,pn) and a function g(.), which
satisfy the following properties:

(i) f(P) = Â
i=1

n
  g(pi),

(ii) f(.) is continuous in the interval [0,1],

(iii) f(P) is additive,
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f(p1q1,…,pnqm) = f(p1,…,pn) + f(q1,…,qm),

(iv) f(1
2, 12 ) = 1;

then

f(P) = H(P) = – Â
i=1

n
  pi log pi. ■

It can be derived from the theorem that it is actually the additivity property
that uniquely determines Shannon’s information measure.

As an aside, note that since Shannon introduced his information measure in
1948, a variety of research has been carried out searching for alternatives to
Shannon’s information measure. Particular mention must be made here of
the works of Renyi (1960), Daroczy (1970) and Azimoto (1971). With
regard to the latter two, the strong requirement of additivity is replaced by a
weaker form of additivity. In Van der Lubbe (1981) all of these measures
have been brought together in one unifying framework.

1.6  The communication model

The information of a source will generally not in itself be further used. For
historical reasons, it is common practice to speak of the manner in which
information is used in terms of a communication model. In the case of the
communication model, the emphasis lies on the transport of information, as
generated by a source, to a destination. The storage of information in a
memory is likewise of great importance nowadays and although this is not a
transmission problem, it can be described in those terms.
During the transport of information, communication takes place between the
source which generates information, often called the transmitter or sender,
on one side and the destination or receiver on the other side. The basic
model is depicted in Figure 1.8. A fundamental problem with the communi-
cation between sender and receiver is that errors or distortions can arise
during transport through the communication channel as a result of e.g. noise
which acts upon the channel. The transport of information must be error-
free to a certain degree, depending on the requirements imposed by the
receiver. It must therefore be possible to correct errors, or the transport must
be good enough that certain errors which are considered to be less serious
can be tolerated.
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Figure 1.8. Elementary communication model.
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A perfect, i.e. error-free, transmission is not really possible when trans-
mitting such signals as speech, music or video, and one will only be able to
impose requirements on the extent to which the received signal differs from
the transmitted signal. The required quality leads to the choice of a suitable
transmission medium, but especially imposes boundary conditions on the
adaptation of this channel to the sender and receiver.

A more detailed description of the communication model is given in Figure
1.9. The communication system should transmit the information generated
by the source to the destination as accurately as possible. It is assumed that
the information source and the destination as well as the channel are all
given. The noise source acting upon the channel is also regarded as given.
We assume that the continuous channel transmits signals the nature of
which depends on the available physical transmission or storage medium
(electric, magnetic, optic) and on the chosen method of modulation. The
physical characteristics of a continuous channel such as bandwidth and
signal-to-noise ratio are also regarded as given. The purpose of the sender is
to make the information from the information source suitable for transport-
ation through the communication channel, while the receiver attempts to
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correct distortions and errors arising in the channel and subsequently
transforms the information into a form suitable for the destination.
A subdivision of the sender’s functions leads to four sub-aspects. First of
all, it will become apparent that not all of the information generated by the
information source is relevant for the destination. Due to efficiency
considerations, this had best be removed. This is called data reduction. The
remaining information is called the effective information.
This effective information will often have to be processed in another
(numerical) way, in binary form for example, and will still contain much
internal structure. Through the application of source coding, sometimes also
called data compression, the effective information is represented as
compactly as possible.
More and more often it proves to be desirable to secure the resulting
information to prevent possible improper use. A solution is to encipher  the
information with the help of secret codes.
The protection of the information against possible errors which can arise in
the channel comes forth as the fourth element of the sender. To achieve this,
extra information is added which can later be used to reconstruct the
original information if any errors have occurred. We speak of channel
coding when we use codes that detect and/or correct errors.

The information so delivered by the sender is subsequently offered to the
channel. We speak of a discrete channel  if we abstract the channel to a
level where it is offered information well separated at the input side and
after transmission also produces symbols again at the output side. Internally,
this transmission should take place via signals that must be transmitted
through a physical medium (the continuous channel). The conversion of the
offered symbols into suitable signals takes place via modulation. These
signals are distorted, in the communication model under consideration, with
noise. The thus arisen mixture of signal and noise is subsequently converted
into symbols again by demodulation. Any coincidentally present noise
however can have as a result that a presented symbol results in another,
incorrect symbol after transmission. The information originating from the
channel is now checked for errors and possibly corrected through the use of
channel decoding.
The resulting information is successively decrypted and decoded in the
decoder. The information is finally brought to the desired form for the
destination by means of data reconstruction.
The processing steps mentioned here can largely be viewed as deterministic
transformations in the sense that the forward and backward transformations
yield exactly the original result again. The exceptions to this are data
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reduction and data reconstruction and the discrete channel wherein
presumed stochastic noise appears.

In the following chapters, these aspects of the communication channel will
be further worked out and the boundaries wherein one should work in order
to achieve efficient and error-free transmission or storage of information
will be indicated.

1.7  Exercises
1.1. The sum of the faces of two normal dice when thrown is 7. How much
information does this fact supply us with? Explain your answer.
Note: Outcomes such as (6,1) and (1,6) are to be considered as being
different.

1.2. A vase contains m black balls and n minus m white balls. Experiment X
involves the random drawing of a ball, without it being replaced in the vase.
Experiment Y involves the random drawing of a second ball.
a. Determine the amount of information received from experiment X.
b. Determine the amount of information with respect to experiment Y if the

colour of the ball selected in experiment X is not known.
c. As question b, now with the assumption that the colour of the ball

selected in experiment X is known.

1.3. A roulette wheel is subdivided into 38 numbered compartments of
various colours. The distribution of the compartments according to colour
is:

  2 green,
18 red,
18 black.

The experiment consists of throwing a small ball onto the rotating roulette
wheel. The event, that the ball comes to rest in one of the 38 compartments,
is equally probable for each compartment.
a. How much information does one receive if one is only interested in the

colour?
b. How much information does one receive if one is interested in the colour

and the number?
c. What then follows for the amount of conditional information if the

colour is known?

1.4. An urn contains 5 black and 10 white balls. Experiment X involves a
random drawing of a ball. Experiment Y involves a random drawing of a
ball with the ball drawn in experiment X  not replaced in the urn. One is
interested in the colour of the drawn ball.
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a. How much uncertainty does experiment X contain?
b. How large is the uncertainty in experiment Y given that the first ball is

black?
c. How large is the uncertainty in experiment Y given that the first ball is

white?
d. How much uncertainty does experiment Y contain?

1.5. For a certain exam, 75% of the participating students pass, 25% do not
pass. Of the students who have passed, 10% own a car, of those who have
failed, 50% own a car.
a. How much information does one receive if one is told the result of a

student’s exam?
b. How much information is contained in the announcement of a student

who has passed that he does or does not have a car?
c. How much uncertainty remains concerning the car ownership of a

student if he announces the result of his exam?

1.6. In a certain region 25% of the girls are blond and 75% of all blond girls
have blue eyes. Also 50% of all girls have blue eyes. How much
information do we receive in each of the following cases:
a. if we know that a girl is blond and we are told the colour (blue/not blue)

of her eyes;
b. if we know that a girl has blue eyes and we are told the colour (blond/not

blond) of her hair;
c. if we are told both the colour of her hair and that of her eyes.

1.7. Of a group of students, 25% are not suitable for university. As the result
of a selection, however, only 75% of these unsuitable students are rejected.
50% of all students are rejected.
a. How much information does one receive if a student, who knows that he

is not suitable for university, hears the result of the selection.
b. Answer the same question if the selection is determined by tossing a

coin.
c. Compare the results of b with a and give an explanation for the

differences.

1.8. Two experiments, X and Y, are given. The sample space with regard to
X consists of x1, x2 and x3, that of Y consists of y1, y2 and y3. The joint
probabilities r(xi,yj) = rij are given in the following matrix R:
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a. How much information do you receive if someone tells you the outcome
resulting from X and Y?

b. How much information do you receive if someone tells you the outcome
of Y?

c. How much information do you receive if someone tells you the outcome
of X, while you already knew the outcome of Y?

1.9. A binary communication system makes use of the symbols “zero” and
“one”. As a result of distortion, errors are sometimes made during trans-
mission. Consider the following events:

u0 :   a “zero” is transmitted;
u1 :   a “one” is transmitted;
v0 :   a “zero” is received;
v1 :   a “one” is received.

The following probabilities are given:

p(u0) = 12 ,  p(v0/u0) = 34 ,  p(v0/u1) = 12 .

a. How much information do you receive when you learn which symbol has
been received, while you know that a “zero” has been transmitted?

b. How much information do you receive when you learn which symbol has
been received, while you know which symbol has been transmitted?

c. Determine the amount of information that you receive when someone
tells you which symbol has been transmitted and which symbol has been
received.

d. Determine the amount of information that you receive when someone
tells you which symbol has been transmitted, while you know which
symbol has been received.

1.8  Solutions

1.1. There are 62 = 36 possible outcomes when throwing two dice, each with
the same probability of occurring, namely 1/36. Each throw can therefore
deliver an amount of information equal to
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Figure 1.10. Conditional probabilities with respect to experiments X and Y of
Exercise 1.2.
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H(X) = log 36 = 2.48 bits/throw.

Since it is given that the sum of the faces is 7, of the 36 possibilities, 6
remain which can still occur, namely 1-6, 6-1, 2-5, 5-2, 3-4, 4-3. Thus, there
still exists a remaining uncertainty which can deliver an amount of
information equal to

H ¢(X) = log 6 = 1.24 bits/throw.

Because it is given that the sum of the faces is 7, the amount of information
that this fact gives us is equal to

H(X) – H ¢(X) = log 36 – log 6 = log 6 = 1.24 bits/throw.

1.2. a. The probabilities of drawing a white or a black ball are given by

p(w) = 
n – m

n  ,    p(bl) = 
m
n  .

The amount of information that is received from experiment X is therefore:

H(X) = –p(wX) log p(wX) – p(blX) log p(blX)

= – 
n – m

n  log  Î
È

 ̊
˘n – m

n  – 
m
n  log 

m
n  ,

where p(wX) and p(blX) are the probabilities that a white and a black ball are
drawn respectively.
b. A ball is drawn randomly without replacement, there are thus still n – 1
balls left over in the vase in the case of experiment Y. A distinction must
now be made between the possibilities that a black or a white ball is drawn
with experiment X . That is, the conditional probabilities must be
determined. These are
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p(wY/wX) = 
n – m – 1

n – 1  , p(blY/blX) = 
m – 1
n – 1  ,

p(wY/blX) = 
n – m
n – 1  , p(blY/wX) = 

m
n – 1 .

See Figure 1.10.
The colour of the ball involved in experiment X is not known, so that there
are two possibilities wX and blX. This leads to

p(wY) = p(wX) p(wY/wX) + p(blX) p(wY/blX)

= 
n – m

n  
n – m – 1

n – 1   + 
m
n  

n – m
n – 1   = 

n – m
n   = p(wX).

Similarly, it follows that p(blY) = p(blX). It therefore follows for the amount
of information resulting from this experiment that H(Y) = H(X). This can
also be seen by bearing in mind that experiment X  gives no factual
information that can decrease the uncertainty over experiment Y.
c. We can distinguish two cases. If a white ball is drawn in experiment X,
then the amount of information in experiment Y is

H(Y/wX) = –p(wY/wX) log p(wY/wX) – p(blY/wX) log p(blY/wX)

= – 
n–m–1

n–1  log  Î
È

 ̊
˘n–m–1

n–1  – 
m

n–1 log  Î
È

 ̊
˘m

n–1  .

If a black ball is drawn, then

H(Y/blX) = –p(wY/blX) log p(wY/blX) – p(blY/blX) log p(blY/blX) =

= – 
n – m
n – 1  log  Î

È
 ̊
˘n – m

n – 1  – 
m – 1
n – 1  log  Î

È
 ̊
˘m – 1

n – 1  .

1.3. a. If we observe the colour of the compartment where the ball comes to
rest, the experiment can have three possible outcomes, namely green, red
and black, with probabilities of occurring p(green) = 2/38 = 1/19, p(red) =
18/38 = 9/19, p(black) = 18/38 = 9/19.
If we are only interested in the colour, we come to an amount of information

H(colour) = –Â
i

 
   pi log pi

= – 1
19 log 1

19 – 2  9
19 log 9

19 = – 36
19 log 3 + log 19 = 1.24 bits.
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b. We can determine the amount of information by bearing in mind that the
compartment is completely determined by giving the number. There are 38
compartments, each occurring with equal probability, thus

H(colour,number) = H(number) = log 38 = 5.25 bits.

The amount of conditional information H(colour/number) is obviously zero,
which is clearly because the colour is automatically known for a given
number.
c. The conditional information, if the colour is known, is

H(number/colour) = H(colour,number) – H(colour)

= 5.25 – 1.24 = 4.01 bits.

1.4. a. The probabilities of drawing a black or a white ball are p(blX) = 1/3,
p(wX) = 2/3.
When randomly drawing a ball, we receive an amount of information or
uncertainty

H(X) = – 13 log 13 – 23 log 23 = 0.92 bit.

b. For experiment Y, the probabilities if the outcome of X is black are
p(blY/blX) = 4/14 = 2/7 and p(wY/blX) = 10/14 = 5/7,  so that

H(Y/blX) = – 27 log 27  –  57 log 57  = 0.86 bit.

c. If the outcome of X is white, then it similarly follows that p(blY/wX) =
5/14,  p(wY/wX) = 9/14, and

H(Y/wX) = – 9
14 log 9

14  – 5
14 log 5

14  = 0.94 bit.

d. The uncertainty in experiment Y is the weighted sum of the results b and
c, namely

H(Y/X) = p(blX) H(Y/blX) + p(wX) H(Y/wX)

= 13  0.86 + 23  0.94 = 0.91 bit.

1.5. a. The four possible situations, passing, not passing, owning a car, not
owning a car, are denoted by s, 

_
s , c and 

_
c, respectively. When the result of

an exam is announced, this delivers an amount of information
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H(result) = –p(s) log p(s) – p(
_
s ) log p(

_
s )

= – 34 log 34  – 14 log 14   = 0.81 bit.

b. If a student, who has passed, announces whether or not he has a car, then
there are two possibilities c and 

_
c with the given probabilities. Thus

H(car owner/passed) = –p(c/s) log p(c/s) – p(
_
c /s) log p(

_
c /s)

= – 1
10 log 1

10  – 9
10 log 9

10  = 0.47 bit.

c. There are four possibilities in total. The corresponding probabilities are

p(s,c) = 34  1
10  = 3

40 ,

p(s,
_
c ) = 34  9

10  = 27
40 ,

p(
_
s ,c) = 14  12   = 18 ,

p(
_
s ,

_
c ) = 14  12   = 18 .

The amount of information that is delivered by announcing the result of the
exam as well as possible car ownership is then

H(car ownership,result) = – 3
40 log 3

40  – 27
40 log 27

40  – 2 ¥ 18 log 18

= 1.41 bits.

The remaining uncertainty about car ownership, if the result of the exam is
given, is then

H(car ownership/result) = H(car ownership,result) – H(result)

= 1.41 – 0.81 = 0.60 bit.

One can also obtain this result by calculating the conditional amount of
information directly as per the definition for the conditional amount of
information.
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H(car ownership/result) = 3
4 ( )– 1

10 log 1
10 – 9

10 log 9
10

+ 14 ( )– 1
2 log 1

2 – 1
2 log 1

2  = 0.60 bit.

1.6. a. If she is blond, there are two possible eye colours, namely blue and
not blue with probabilities 3

4 and 1
4 respectively. One therefore receives a

conditional amount of information, that is under the condition that she is
blond,

H(colour eyes/blond) = – 34 log 34  – 14 log 14  = 0.81 bit.

b . To be able to answer this question we must first determine the
probabilities p(blond/blue) and p(not blond/blue). This can be done with the
help of Bayes’s formula, giving

p(blond/blue) = 
p(blond) p(blue/blond)

p(blue)   = 

1
4  3

4
1
2

  = 38.

Because a girl is either blond, or not blond, we have

p(blond/blue) + p(not blond/blue) = 1

which gives

p(not blond/blue) = 58.

The conditional amount of information that one receives is then

H(colour hair/blue) = – 38 log 3
8  – 58 log 5

8 = 0.95 bit.

c. If the colour of her hair is given as well as that of her eyes, one speaks of
a joint event with four possible outcomes. Using the results of the previous
sub-questions, we find for the probabilities of these outcomes that
p(blond,blue) = 3/16, p(blond,not blue) = 1/16, p(not blond,blue) = 5/16,
p(not blond,not blue) = 7/16.
One receives an amount of information equal to

H(colour eyes, colour hair)

  = – 3
16 log 3

16  – 1
16 log 1

16  – 5
16 log 5

16 – 7
16 log 7

16  =

  = 1.75 bits.
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1.7. a. The four possible situations, namely the combinations of being
suitable or not and being rejected or not, can be taken as starting point. If we
denote these situations by s, 

_
s , r, 

_
r then the following is given:

p(
_
s ) = 14 ,         p(r/

_
s ) = 34 ,         p(r) = 12 .

Hence

p(s) = 1 – p(
_
s ) = 34 ,

p(
_
r/

_
s ) = 1 – 34  = 14 ,

p(
_
r ) = 1 – p(r) = 12 .

Furthermore, according to Bayes,

p(
_
s /r) = 

p(r/
_
s ) p(

_
s )

p(r)   = 

3
4  14

1
2

  = 38 .

Since p(
_
s /r) + p(s/r) = 1, it follows that

p(s/r) = 1 – 38  = 58 .

Likewise, it can be calculated that

p(
_
s /

_
r ) = 

p(
_
r /

_
s ) p(

_
s )

p(
_
r )

  = 

1
4  14

1
2

  = 18 ,

p(s/
_
r ) = 1 – p(

_
s /

_
r ) = 78 .

Finally, the combined probabilities of each of the four combinations can be
determined from the general relation

rij = piqji = qjpij.

Thus we find

p(s,r) = p(r) p(s/r) = 12  58  = 5
16 ,

p(
_
s ,r) = p(r) p(

_
s /r) = 12  38  = 3

16 ,
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Figure 1.11. Joint probabilities of Exercise 1.7.

5 7

3 1

8 8

12

4

r r

s

s

p(s,
_
r ) = p(s) p(

_
r /s) = 34  7

12  = 7
16 ,

p(
_
s ,

_
r ) = p(

_
s ) p(

_
r /

_
s ) = 14  14  = 1

16 .

The results can be shown in a diagram, where the probabilities have been
multiplied by 16. See Figure 1.11.
As only the result of the selection is mentioned without any further specifi-
cation, there are two possible results of the selection. The amount of
information is

H(selection/not suitable)

  = –p(r/
_
s ) log p(r/

_
s ) – p(

_
r /

_
s ) log p(

_
r /

_
s )

  = – 34 log 34  – 14 log 14  = 0.81 bit.

b. If the selection is made by tossing a coin, each student will have a 50%
chance of being rejected. As a result all of the probabilities p(r/s), p(r/

_
s ),

p(
_
r /s) and p(

_
r /

_
s ) become 12 , irrespective of the condition s or 

_
s .

The amount of information becomes

H(selection/not suitable) = H(selection) = – 12 log 12  – 12 log 12
  = 1 bit.

c. Since being suitable or not does not play a role in b, the student can make
no use of his foreknowledge, namely that he is not suitable. The amount of
information that he receives in b is identical to the information that is
received after tossing a coin and therefore equal to 1 bit. The uncertainty is
smaller for a, so that he also receives less information.
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1.8. a. Using the given matrix, it directly follows that

H(X,Y) = –Â
i=1

3
  Â
j=1

3
  rij log rij

= –( )2 ¥ 7
24 log 7

24  + 4 ¥ 1
24 log 1

24 + 14 log 14  = 2.30 bits.

b. Since for all j

qj = Â
i=1

3
  rij

it follows that q(y1) = q(y2) = q(y3) =  13. The amount of information then
becomes

H(Y) = log 3 = 1.58 bits.

c. We are asked to calculate H(X/Y). This is most easily calculated from
H(X ,Y ) = H(Y ) + H(X/Y). This gives H(X/Y) = 0.72 bit. One can also
determine the conditional probabilities pij from rij and qj and substitute them
in

H(X/Y) = –Â
i=1

3
  Â
j=1

3
  rij log(pij).

1.9. a. We have p(v1/u0) = 1 – p(v0/u0) = 1/4.
Thus for the uncertainty with regard to the received symbol, given that a
‘zero’ has been transmitted, we find

H(V/u0) = –p(v0/u0) log p(v0/u0) – p(v1/u0) log p(v1/u0)

= – 34 log 34  – 14 log 14  = 0.82 bit.

b. First calculate the joint probabilities.
We have p(u0,v0) = p(v0/u0)p(u0) = 3/8. It can similarly be found that

p(u0,v1) = 18 , p(u1,v0) = 14 and p(u1,v1) = 14 .

For the amount of information with regard to the received symbol, given the
transmitted symbol, it now follows that
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H(V/U) = –Â
i=0

1
  Â
j=0

1
  p(ui,vj) log p(vj/ui)

= – 38 log 34  – 18 log 14  – 14 log 12  – 14 log 12  = 0.91 bit.

c. Method I: Filling in the joint probabilities in the formula for the joint
information yields

H(U,V) = –Â
i=0

1
  Â
j=0

1
  p(ui,vj) log p(ui,vj) = 1.91 bits.

Method II: Since p(u0) = p(u1) = 12 , the amount of information H(U) with
regard to the transmitted symbol is equal to H(U) = 1 bit. It now follows that

H(U,V) = H(U) + H(V/U) = 1 + 0.91 = 1.91 bits.

In this case, this method is faster than method I.
d. Since it can be derived that p(v0) = 5/8 and p(v1) = 3/8, it follows for the
information H(V) with regard to the received symbol that

H(V) = – 58 log 58  – 38 log 38  = 0.96 bit.

Hence
H(U/V) = H(U,V) – H(V) = 1.91 – 0.96 = 0.95 bit.




