Coastal Dynamics I

Lectures notes CIE4305

Delft University of Technology

Judith Bosboom and Marcel J.F. Stive

© Delft University of Technology • Faculty of Civil Engineering and Geosciences • Section of Hydraulic Engineering

On behalf of the Section of Hydraulic Engineering published by Delft Academic Press (VSSD-uitgeverij), Leeghwaterstraat 42, 2628 CA Delft, The Netherlands tel. +31 15 27 82124, telefax +31 15 27 87585, e-mail: hlf@vssd.nl internet: http://www.vssd.nl/hlf

All rights reserved. No part of this book may be reproduced in any form, by print, photocopy, microfilm, or any other means without written permission by the publisher.

Cover photo: Atlantic coast, Angola (Courtesy Stefanie Ross, Boskalis)

ISBN 978-90-6562-3720

Version 0.5 (January 2015)

Version history:

Version 0.5 (2015): Textual revisions, improvements to illustrations, addition of subject index

Version 0.4 (2013): Minor corrections to text and figures

Version 0.3 (2012): Textual revisions and improvements to selected illustrations

Version 0.2 (2011): Major textual corrections and changes

Version 0.1 (2010): Draft version for lectures February/March 2010

Some of the information in Figures 2-3, 2-5, 2-7, 2-30, 2-31, 2-34, 4-2 and 4-6 is based on De Grote Bosatlas (53rd edition), Wolters-Noordhoff.

Great care has been taken to locate and acknowledge all owners of copyrighted material in this book. If any such owner has inadvertently been omitted, acknowledgement will gladly be made in future printings.

Preface

This fourth draft version of these lecture notes serves to support and supplement the course Coastal Dynamics I (CIE4305). This is a relatively recent (per the academic year 2009-2010) fourth-year course for MSc graduate students following the Hydraulic Engineering programme of the Faculty of Civil Engineering and Geosciences of Delft University of Technology. This course focuses on the interrelation between physical wave, flow and sediment transport phenomena and the resulting morphodynamics of a wide variety of coastal systems. The objective is to provide insights into the phenomenological and theoretical as well as applied aspects for civil engineering MSc students. It builds upon the BSc and MSc courses treating the dynamics of flow, wave and sediment transport, and forms the basis for the course on Coastal Dynamics II (CIE4309) which focuses on coastal modelling.

Although several valuable course monographs and books exist on the topic of coastal dynamics and coastal engineering (see Section 1.7.2), we feel that no single standard teaching books exist for the purposes that we have in mind, given also the Hydraulic Engineering curriculum that the faculty of Civil Engineering and Geosciences has historically developed. It is our expectation that the present notes may develop towards that end. The present form and format of these notes is not final and far from perfect, both in language and contents. We feel that this is a matter of evolution, strongly steered by our continuous learning and the experience of both teaching and examination. It is our guess that it will take a few more academic years before we feel that these lecture notes have developed sufficiently to be published by an internationally renowned publisher. Until then anyone is welcome to order these lecture notes at the Delft Academic Press, a Delft University of Technology based, student-directed publishing house.

In the 1960's the topic of coastal engineering and coastal dynamics at our faculty was not really taught as a separate graduate course, it was rather an integral part of the hydraulic engineering chairs and courses of Professors Van Bendegom and Jansen. In 1972, Professor Bijker was appointed the first chair focusing on Coastal Engineering alone. He asked Associate Professor Massie to compose the first Coastal Engineering course notes which still form an input for our current notes. In 1988 Professor Bijker was succeeded by Professor D'Angremond, who invited both MSc van de Velden and Associate Professor Van de Graaff to develop two new courses and lecture notes, viz. Introduction to Coastal Engineering (CT4300) and Coastal Morphology and Protection (CT5309) respectively. In 1994, the topic of Coastal Inlets and Tidal Basins was added as a separate third course (CT5303) developed by Professor Stive, newly appointed in a part-time position. With assistance of MSc's Elias and Hibma, he composed lectures and lecture notes by integrating existing material of Professors De Vriend, Dronkers and Wang and Dr's Van der Spek and Van Dongeren.

Preface v

Per the academic year 2009-2010, the courses CT4300, CT5309 and CT5303 have been replaced with two newly developed courses COASTAL DYNAMICS I (CIE4305) and COASTAL DYNAMICS II (CIE4309). The development of these two new courses was given in by our wish to update and streamline our Coastal Engeering curriculum and make room for morphodynamic modelling and new developments.

In developing the lecture notes of CIE4305 we have first revised, condensed and integrated the material of the three former courses. We wish to acknowledge the efforts of all our colleagues that developed these courses. Second, we developed new material that we found missing. In part, the new material is sometimes based on or at least inspired by some key references that we wish to acknowledge here. Chapter 2, especially Section 2.3, is heavily based on Davies (1994), whose well-illustrated textbook offers a good insight into larger scale coastal behaviour and classification. The energetics approach for cross-shore sediment transport in Chapters 6 and 7 is for a great part based on Bowen (1980), whose elegant work we still find important and very instructive. Chapter 11 on Integrated Coastal Zone Management has benefitted a lot from the book of Kamphuis (2000) and the World Coast Conference contribution (WCC, 1993). In a more general sense we have been inspired by a number of books we reference in Section 1.7, notably the books by Fredsøe and Deigaard (1992), Kamphuis (2000) and Masselink and Hughes (2003). We have tried to the most of our abilities to pay attention to cite where external material is used. If we have failed to do so, please inform us.

Further, we need to acknowledge some close Delft colleagues who have contributed to our knowledge by their work and comments or provided us with material. Hoping not to forget anyone, we mention Jurjen Battjes, Leo Holthuijsen, Jacobus van de Kreeke, Jan van Overeem, Roshanka Ranasinghe, Ad Reniers, Dano Roelvink, Ad van der Spek, Zheng Bing Wang and Han Winterwerp.

Special thanks go to Howard Southgate, who continues reading through our lecture notes in detail and making very relevant comments and suggestions. Many of the improvements is this new version and the previous version of the notes are due to him. Finally, we are grateful for the many suggestions we received from our students.

We are still investing in making the illustrations and graphs "our own". For this we were assisted by Liang Li, Daire Stive, Marcio Boechat Albernaz and Janbert Aarnink, whose contributions we gladly acknowledge. It is thanks to Marcel Mol that the latest version now has a subject index.

As for now, the notes are available for your own personal use only. Please be aware that this is a work in progress. We would be very grateful to be informed of any inconsistencies that can be found in the present text.

Judith Bosboom and Marcel J.F. Stive

Contents

PR	EFAC	Œ	III
CC	ONTEN	NTS	VII
1	OVERVIEW		
	1.1	Introduction	1
	1.2	Coastal dynamics for coastal engineers	1
		1.2.1 What is coastal engineering?	1
		1.2.2 Position of Coastal Dynamics in the curriculum	3
	1.3	Study goals	4
	1.4	Examples of engineering applications	4
		1.4.1 Overview of coastal area and problems	4
		1.4.2 Cross-shore profile	6
		1.4.3 Morphological development in vicinity of a port	8
		1.4.4 Delta near river mouth	10
		1.4.5 Tidal inlets and basins	11
		1.4.6 Dune erosion and flooding during a severe storm surge	13
		1.4.7 Large artificial island in open sea	15
		1.4.8 Other examples	16
	1.5	Coastal (morpho)dynamics	16
		1.5.1 Definition of the coast	16
		1.5.2 Coastal morphodynamics	18
		1.5.3 Time and spatial scales	20
		1.5.4 Equilibrium concept	22
		1.5.5 Classification of coastal systems	23
	1.6	Important parties in the Netherlands	24
	1.7	References	27
		1.7.1 Lecture notes	27
		1.7.2 Text books	27
		1.7.3 Internet sources	27
		1.7.4 Interesting journals	28
		1.7.5 Conference proceedings	28
2	LAR	GE-SCALE GEOGRAPHICAL VARIATION OF COASTS	31
	2.1	Introduction	31
	2.2	Cumulative evolution of coastal systems	32
		2.2.1 Geological timescale	32
		2.2.2 Continental 'drift'	33
		2.2.3 Pleistocene inheritance	34
	2.3	Tectonic control of coasts	35
		2.3.1 Plate tectonic theory	35
		2.3.2 Tectonic plate setting of coasts	37
		2.3.3 First-order coastal sedimentary features	41
		2.3.4 Summary of the tectonic classification	45
	2.4	Pleistocene inheritance of cliffed coasts	45

	2.5	(Holocen	e) transgression versus regression	48
		2.5.1 G	eological sea-level changes	48
		2.5.2 R	ole of sea-level rise in Holocene coastal evolution	53
		2.5.3 M	fore recent coastal development	58
	2.6	Nature ar	nd abundance of coastal material	60
		2.6.1 Se	ources of sediments deposits	60
		2.6.2 Se	ediment sizes	61
		2.6.3 G	eographical variation	62
		2.6.4 M	fuddy coasts	65
		2.6.5 Sa	andy coasts	67
		2.6.6 V	egetation	67
	2.7	Process-b	pased classification	70
		2.7.1 D	ominance of fluvial, wave or tidal processes	70
		2.7.2 C	haracteristic morphologies	73
	2.8		of coastal classification	79
3	OCE	AN WAVI	ES	81
	3.1	Introduct	ion	81
	3.1		ons of the ocean water surface	81
	3.2		ng ocean surface elevations	88
	3.4		m wave statistics	91
	3.4			91
			Description of wave characteristics	91
			nalysis of the time-series pectral analysis	93
				96
	2.5		hort-term wave height distribution	99
	3.5		ve generation and dispersion	99
			ocally generated sea	102
			Vave dispersion	
			Vave groups	103
	2.0		ea versus swell waves	105
	3.6 Long term statistics and extreme values3.7 Generation of the tide		108	
	3./			110
			quilibrium theory of the tide	110
			ravitational pull	111
			rifferential pull or the tide-generating force	113
			pring and neap tide	116
			aily inequality	118
	2.0		idal constituents	119
	3.8		ion of the tide	123
			lynamic theory of tides	123
			imphidromic systems	126
	2.0		elvin waves	128
	3.9 Tidal analysis and prediction			132
4	GLC	BAL WAV	VE AND TIDAL ENVIRONMENTS	137
	4.1	4.1 Introduction		
	4.2	Zonal win	nd systems and ocean circulation	138
		4.2.1 S	olar radiation and temperature distribution	138
		4.2.2 A	tmospheric circulation and wind patterns	140

Contents ix

		4.2.3 Oceanic circulation	145
	4.3	Large-scale variation in wave environments	146
		4.3.1 Wave height variation	146
		4.3.2 Wave environments	148
		4.3.3 Coastal impact of different wave conditions	149
	4.4	Large-scale variations in tidal characteristics	150
		4.4.1 Global tidal environments	150
		4.4.2 Coastal impact of tide and classification	153
5	COA	ASTAL HYDRODYNAMICS	157
	5.1	Introduction	157
	5.2	Wave transformation	158
		5.2.1 Energy balance	158
		5.2.2 Shoaling	160
		5.2.3 Refraction	163
		5.2.4 Diffraction	166
		5.2.5 Wave breaking	168
	5.3	Wave asymmetry and skewness	172
	5.4	Wave orbital velocities, pressure and bed shear stress	178
		5.4.1 Wave orbital velocities	178
		5.4.2 Dynamic pressure	180
		5.4.3 Wave boundary layer	181
	5.5	Wave-induced set-up and currents	185
		5.5.1 Wave-induced mass flux or momentum	185
		5.5.2 Radiation stress	191
		5.5.3 Wave-induced forces	197
		5.5.4 Cross-shore balance: wave set-up and set-down	200
		5.5.5 Alongshore balance: longshore current	206
		5.5.6 Vertical structure of the wave-induced currents	215
		5.5.7 3D effects	217
	5.6	Wind-induced set-up and currents	221
	5.7	Tidal propagation in coastal waters	223
		5.7.1 Definitions	223
		5.7.2 Tidal propagation along the shore	224
		5.7.3 Tidal propagation into basins	233
		5.7.4 Tidal asymmetry	241
		5.7.5 Overtides	247
		5.7.6 Residual currents	249
	5.8	Long wave phenomena generated in coastal waters	253
		5.8.1 Seiches	253
		5.8.2 Bound long waves and surfbeat	255
6	SED	EDIMENT TRANSPORT	
	6.1	Introduction	257
	6.2	Sediment properties	258
		6.2.1 General	258
		6.2.2 Grain size, density and bulk properties	258
		6.2.3 Fall velocity	259
	6.3	Initiation of motion	264

		6.3.1	Forces on a single grain	264
		6.3.2	Shields curve	266
	6.4	Basic	principles of transport modelling	267
		6.4.1	Definitions	267
		6.4.2	Practical modelling of sediment transport	271
	6.5	Bed lo	oad based on the Shields parameter	273
		6.5.1	Importance of the Shields parameter	273
		6.5.2	Including waves	273
		6.5.3	Instantaneous bed load transport	276
		6.5.4	Bed load transport based on time-averaged shear stress	278
		6.5.5	Summary and concluding remarks	281
	6.6	Diffus	sion approach for suspended transport	284
		6.6.1	General formulation	284
		6.6.2	Sediment continuity	287
		6.6.3	Time-averaged concentration distribution	290
	6.7	Energ	etics approach	294
		6.7.1	Introduction	294
		6.7.2	Energetics approach for combination of waves and currents	294
	6.8	Some	aspects of (very) fine sediment transport	298
		6.8.1	Memory effects	298
		6.8.2	Critical shear stress and settling velocity	299
		6.8.3	Environmental issues	301
	6.9	Discus	ssion	302
		6.9.1	Choice of formulations	302
		6.9.2	Specific situations	303
7	CROSS-SHORE TRANSPORT AND PROFILE DEVELOPMENT			
	7.1	Introd	uction	305
	7.2		brium shoreface profile	309
		7.2.1	The concept	309
			(Semi-) empirical derivations	311
		7.2.3		313
	7.3	Morpl	hodynamics of the upper shoreface	316
		_	Introduction	316
		7.3.2	Beach states	316
		7.3.3	Storm and seasonal changes	322
		7.3.4	~	324
			Episodic changes (dune erosion)	325
	7.4		ural losses or gains	329
	7.5		-shore sediment transport	331
		7.5.1	Introduction	331
		7.5.2		332
		7.5.3	Analytical solutions for the middle and lower shoreface	335
8	LON	IGSHOI	RE TRANSPORT AND COASTLINE CHANGES	343
	8.1			
	8.2 Longshore transport formulations			343 344
		8.2.1	General transport formulations	344
		8.2.2	Cross-shore distribution of longshore transport	346

Contents xi

		8.2.3	Bulk longshore transport formulations	348
		8.2.4	The (S,φ) -curve	355
		8.2.5	Yearly-averaged sediment transport	357
	8.3	Calcul	lation of coastline position	360
		8.3.1	Introduction	360
		8.3.2	Single line theory	362
		8.3.3	Analytical solution for accretion near breakwater or jetty	367
		8.3.4	Multiple line theory	372
	8.4	Coasta	al features and coastal change due to longshore transport	373
		8.4.1	Introduction	373
		8.4.2	Blockage of longshore transport by shore-normal structures	375
		8.4.3	Shadow effects due to obstacles away from the shoreline	377
		8.4.4	Shoreline perturbation	380
		8.4.5	Interrupted coasts: spits	382
		8.4.6	Deltaic coastlines	384
9	COA	STAL 1	INLETS AND TIDAL BASINS	387
	9.1	Introd	uction	387
	9.2		and inlet types	388
		9.2.1	Bays, lagoons and estuaries	388
		9.2.2	Hydrodynamical classification	391
		9.2.3		394
	9.3	The m	nain morphological elements	395
		9.3.1	Introduction	395
		9.3.2	Tidal deltas	396
		9.3.3	Basin characteristics	398
	9.4	The el	ob-tidal delta or outer delta	400
		9.4.1	Waves and currents at the outer delta	400
		9.4.2	Sediment transport patterns	406
		9.4.3	Empirical relationships: sediment volume of the ebb-tidal delta	410
	9.5	Stabili	ity of the inlet cross-sectional area	413
		9.5.1	Escoffier's model	413
		9.5.2	Empirical equilibrium cross-sectional area	415
	9.6	The in	nner basin geometry	419
		9.6.1	Complex geometry of tidal basins	419
		9.6.2	Equilibrium relations for tidal channels and flats	421
	9.7	Net se	ediment import or export	424
		9.7.1	Introduction	424
		9.7.2	Tide-induced residual transport of (medium to) coarse sediment	425
		9.7.3	Fine sediment transport and siltation	431
		9.7.4	Overview of the relation morphology and sediment transport	434
		9.7.5	Large scale morphodynamics	434
	9.8	Chang	ges in dynamic equilibrium	436
		9.8.1	Closure of a part of the tidal basin	436
		9.8.2	Accretion of new land	437
		9.8.3	Relative sea-level rise	438
		9.8.4	Adaptation time	438

	10.1	.1 Introduction		
	10.2	Coastal protection strategies and methods	442	
		10.2.1 Management strategies	442	
		10.2.2 Selection of protection method	443	
		10.2.3 From problem definition to realisation	444	
	10.3	Coastal erosion	445	
		10.3.1 Structural erosion of coasts	445	
		10.3.2 Beach and dune erosion during severe storm surges	448	
		10.3.3 Dynamic behaviour of tidal inlets	450	
	10.4	Modification of longshore transport processes	450	
	10.5	Structures influencing longshore transport rates	452	
		10.5.1 Introduction	452	
		10.5.2 Jetties or shore-normal breakwaters	453	
		10.5.3 Groynes	457	
		10.5.4 Detached shore parallel offshore breakwaters	461	
		10.5.5 Piers and trestles	465	
		10.5.6 Concluding remarks	466	
	10.6	Structures providing protection against storm-induced erosion	467	
		10.6.1 Introduction	467	
		10.6.2 Seawalls	468	
		10.6.3 Revetments	471	
		10.6.4 Sea-dikes	473	
	10.7	Nourishments	475	
		10.7.1 Introduction	475	
		10.7.2 Design aspects	476	
		10.7.3 Structural erosion of coasts	479	
		10.7.4 Dune reinforcement	482	
		10.7.5 Beach widening and creation	483	
11	INTE	GRATED COASTAL ZONE MANAGEMENT	487	
	11.1	Introduction	487	
	11.2	The coastal zone and its pressures	490	
		11.2.1 Definition of the coastal zone	490	
		11.2.2 Growth of the world population	492	
		11.2.3 Climate change and sea-level rise	494	
		11.2.4 Pollution	496	
		11.2.5 The socio-economic subsystem	497	
		11.2.6 The necessity of management	500	
	11.3	Objectives and elements of Integrated Coastal Zone Management	501	
		11.3.1 The objective of ICZM	501	
		11.3.2 Integrated versus sectoral management	502	
		11.3.3 The Elements of ICZM	504	
		11.3.4 American versus European School	507	
	11.4	Management tools	508	
		11.4.1 Problem assessment	508	
		11.4.2 Weighing the interests	512	
		11.4.3 Management practice	513	
		11.4.4 Building with Nature	515	
	11.5	Strategies for coastal protection and flooding	516	

Contents	xiii
APPENDIX A GEOLOGICAL HISTORY OF DUTCH C	OAST 517
APPENDIX B LINEAR WAVE THEORY	531
APPENDIX C HYDROGRAPHIC CHARTS	537
APPENDIX D STABILITY OF STRUCTURES	547
APPENDIX E DUTCH CLOSURES	551
REFERENCE LIST	563
SUBJECT INDEX	575

1 Overview

1.1 Introduction

Humans have extensively used the coastal zone for amongst others fishing, tourism, transport of goods, water treatment and housing. Agriculture has benefited from the very fertile grounds due to marine and riverine deposits. Approximately three billion people - half the world's population - live and work within a couple of hundred kilometres of a coastline, notwithstanding the vulnerability of coastal areas to flooding. Due to the high population densities and extensive infrastructure and property development, disasters will have major consequences. Coastal engineers play an important role in both developing the coastal zone and protecting the coast and the hinterland.

In Section 1.2, the course contents and the position in the curriculum are explained. Section 1.3 lists the study goals. Section 1.4 gives some examples of the problems coastal engineers may be faced with. In doing so coastal engineers need a thorough knowledge of the natural dynamics of the coastal system. An introduction on that topic is given in Section 1.5. Important players in the (Dutch) coastal engineering sector are summarized in Section 1.6. The chapter concludes with a list of handbooks, journals, conference proceedings and internet sources for further reading (Section 1.7).

1.2 Coastal dynamics for coastal engineers

1.2.1 What is coastal engineering?

Coastal Engineering is the branch of civil engineering concerned with the planning, design, construction and maintenance of works in the coastal zone. Coastal engineering usually involves either 1) the transport and stabilization of sand and other coastal sediments or 2) the construction of structures.

Measures in the first category are called 'soft' measures since they make use of natural (soft) coastal material. Examples are beach nourishments, maintenance dredging and land reclamation.

3 Ocean waves

3.1 Introduction

This chapter deals with ocean waves. By ocean waves we mean all oscillations of the water surface generated in the ocean (see Section 3.2). The most important in shaping the coastal zone are the short waves generated by wind and the longer tidal motion generated by the attractive forces of the sun and the moon on the water masses of the earth. In Section 3.3 we look at how waves can be measured. Statistical and spectral representations of wind waves are treated in Section 3.4. Both wind wave generation and the propagation away from the area of wave generation are treated in Section 3.5. We see how ocean waves become longer and smaller when propagating away further from their source due to the phenomenon of wave frequency dispersion and due to frequency dependent dissipation. Long term statistics are briefly discussed in Section 3.6. The generation of the tide is explained and the origin of the different harmonic constituents is treated in Section 3.7. We look into the propagation of the tide in the world's oceans and in doing so talk about propagation velocity, Coriolis forces and amphidromic systems (Section 3.8). Tidal analysis and prediction are the topics of Section 3.9.

After having taken the courses Ocean Waves (CIE4325), Hydraulic Engineering (CTB2410, in Dutch) and Open Channel flow (CTB3350/CIE3310-09) the larger part of this Chapter on Ocean Waves should be familiar to you. This particularly holds for the Sections 3.2 through 3.6 on wind or short waves. You will find that Sections 3.7 through 3.9 treat the tidal generation and propagation more extensively than CTB2410 does. In CTB3350/CIE3310-09 you will have encountered some aspects of tidal propagation as well.

For those of you without any prior knowledge of wind waves or tides in oceanic waters, this Chapter deals with the main aspects that are required in order to successfully follow Coastal Dynamics I.

3.2 Oscillations of the ocean water surface

We can broadly define ocean waves as all sea-surface variations on the timescale of seconds to months as generated in the oceans. Mean Sea Level (MSL) is the sea level

4 Global wave and tidal environments

4.1 Introduction

In this chapter we look into the global variation in the main processes that shape the coast: wind, waves and tides. Based on large scale observations such as the latitude and the continent, a general idea of the wave, wind and tidal conditions at a project site can be obtained. Questions that can be answered are for instance:

- What is the wind system we are dealing with at this latitude and what is the dominant direction?
- Are locally generated waves important or are we mainly dealing with swell waves?
- What wave heights can we expect?
- Does the wave climate exhibit seasonality?
- Can we expect a large tidal range in this part of the world?
- Is there a diurnal or a semi-diurnal tide?

This chapter starts with a treatment of the zonal wind systems (Section 4.2). Knowledge of these global wind patterns is helpful in identifying the prevailing wind conditions for a project site as well as the wave climate. In Section 4.3, the global wave climate is discussed and some generalizations are made about the coastal impact of different wave conditions. Subsequently, global tidal environments and coastal characteristics are discussed in Section 4.4. Here also it is emphasised that it is the *relative* effect of waves and tides rather than the absolute tidal ranges and wave heights that determines the coastal character.

Please bear in mind that wind, waves and tides vary regionally and locally as well. An example of variation due to regional geographic variation is the sheltering of the Southern part of the Florida coastline from waves due to the presence of the Bahamas. On a local scale, the project location of a land reclamation may be chosen such that persistent swell cannot arrive at the site. These smaller scale variations are considered from Chapter 5 onwards.

5 Coastal hydrodynamics

5.1 Introduction

This chapter deals with the near-shore hydrodynamics that are important for sediment transport. It treats mean and oscillatory water levels and currents induced by waves, wind and tides. Relatively a lot of attention is paid to waves and wave-induced currents because of their effectiveness in transporting sediment in the surf zone.

The following aspects of waves are described:

- Linear wave propagation effects in shoaling waves (until wave breaking): increasing wave heights, decreasing wavelengths and refraction towards normal incidence (Section 5.2);
- Non-linear transformation of the wave shapes from initially symmetric, sinusoidal profiles, to asymmetric, pitched forward profiles characteristic of near-breaking waves (Section 5.3);
- Wave dissipation in the wave boundary layer and its effect on wave-orbital velocities, bed shear stress and net wave-induced flow (called Longuet-Higgins streaming) close to the bed (Section 5.4);
- Wave-induced water level changes in breaking waves such as the set-up (raising
 of the water level) at the coast, and wave-induced flow in breaking waves: a
 circulation current in the cross-shore direction (within the lower part of the water
 column an offshore directed undertow) as well as a longshore current along the
 coast (Section 5.5).

Subsequently Section 5.6 describes wind-generated set-up and currents. Section 5.7 is dedicated to tidal propagation in coastal waters. Last, Section 5.8 discusses some other long wave phenomena in coastal waters, viz. seiches and surf beat.