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Preface

In this book we discuss several numerical methods for solving ordinary differential equations.
We emphasize the aspects that play an important role in practical problems. We confine ourselves
to ordinary differential equations with the exception of the last chapter in which we discuss the
heat equation, a parabolic partial differential equation. The techniques discussed in the intro-
ductory chapters, for instance interpolation, numerical quadrature and the solution to nonlinear
equations, may also be used outside the context of differential equations. They have been in-
cluded to make the book self-contained as far as the numerical aspects are concerned. Chapters,
sections and exercises marked with a * are not part of the Delft Institutional Package.

The numerical examples in this book were implemented in Matlab, but also Python or any other
programming language could be used. A list of references to background knowledge and related
literature can be found at the end of this book. Extra information about this course can be found
athttp://NMODE. ewi.tudelft.nl, among which old exams, answers to the exercises, and a link
to an online education platform. We thank Matthias Moller for his thorough reading of the draft
of this book and his helpful suggestions.

Delft, June 2016
C. Vuik

The figure at the cover shows the Erasmus bridge in Rotterdam. Shortly after the bridge became
operational, severe instabilities occurred due to wind and rain effects. In this book we study,
among other things, numerical instabilities and we will mention bridges in the corresponding
examples. Furthermore, numerical analysis can be seen as a bridge between differential equa-
tions and simulations on a computer.
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Chapter 1

Introduction

1.1 Some historical remarks

Modern applied mathematics started in the 17th and 18th century with scholars like Stevin,
Descartes, Newton and Euler. Numerical aspects found a natural place in the analysis but the
expression “numerical mathematics” did not exist at that time. However, numerical methods
invented by Newton, Euler and at a later stage by Gauss still play an important role even today.

In the 17th and the 18th century fundamental laws were formulated for various subdomains of
physics, like mechanics and hydrodynamics. These laws took the form of simple looking math-
ematical equations. To the disappointment of many scientists, these equations could be solved
analytically in a few special cases only. For that reason technological development has only been
loosely connected with mathematics. The introduction and availability of digital computers has
changed this. Using a computer it is possible to gain quantitative information with detailed and
realistic mathematical models and numerical methods for a multitude of phenomena and pro-
cesses in physics and technology. Application of computers and numerical methods has become
ubiquitous. Statistical analysis shows that non-trivial mathematical models and methods are
used in 70% of the papers appearing in the professional journals of engineering sciences.

Computations are often cheaper than experiments; experiments can be expensive, dangerous or
downright impossible. Real life experiments can often be performed on a small scale only, which
makes their results less reliable.

1.2 What is numerical mathematics?

Numerical mathematics is a collection of methods to approximate solutions to mathematical
equations numerically by means of finite computational processes.

In large parts of mathematics the most important concepts are mappings and sets. In numerical
mathematics the concept of computability should be added. Computability means that the result
can be obtained in a finite number of operations (so the computation time will be finite) on a
finite subset of the rational numbers (because a computer has only finite memory).

In general the result will be an approximation of the solution to the mathematical problem, since
most mathematical equations contain operators based on infinite processes, like integrals and
derivatives. Moreover, solutions are functions whose domain and image may (and usually do)
contain irrational numbers.

Because, in general, numerical methods can only obtain approximate solutions, it makes sense
to apply them only to problems that are insensitive to small perturbations, in other words to
problems that are stable. The concept of stability belongs to both numerical and classical math-
ematics. An important instrument in studying stability is functional analysis. This discipline
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also plays an important role in error analysis (investigating the difference between the numerical
approximation and the solution).

Calculating with only a finite subset of the rational numbers has many consequences. For exam-
ple: a computer cannot distinguish between two polynomials of sufficiently high degree. Conse-
quently, methods based on the main theorem of algebra (i.e. that an nth degree polynomial has
exactly n complex zeros) cannot be trusted. Errors that follow from the use of finitely many digits
are called rounding errors (Section 1.4).

An important aspect of numerical mathematics is the emphasis on efficiency. Contrary to or-
dinary mathematics, numerical mathematics considers an increase in efficiency, i.e. a decrease
of the number of operations and/or amount of storage required, as an essential improvement.
Progress in this aspect is of great practical importance and the end of this development has not
been reached yet. Here, the creative mind will meet many challenges. On top of that, revolutions
in computer architecture will overturn much conventional wisdom.

1.3 Why numerical mathematics?

A big advantage of numerical mathematics is that it can provide answers to problems that do not
admit closed-form solutions. Consider for example the integral

7?
/ V1 + cos? xdx.
0

This is an expression for the arc length of one arc of the curve y(x) = sinx, which does not have
a solution in closed form. A numerical method, however, can approximate this integral in a very
simple way (Chapter 5). An additional advantage is that a numerical method only uses stan-
dard function evaluations and the operations addition, subtraction, multiplication and division.
Because these are exactly the operations a computer can perform, numerical mathematics and
computers form a perfect combination.

An advantage of analytical methods is that the solution is given by a mathematical formula.
From this, insight in the behavior and the properties of the solution can be gained. For numerical
approximations, however, this is not the case. In that case, visualization tools may be used to gain
insight in the behavior of the solution. Using a numerical method to draw a graph of a function
is usually a more useful tool than evaluating the solution at a large number of points.

1.4 Rounding errors

A computer uses a finite representation of the all numbers in R. These are stored in a computer
in the form

£0.dydy .. .dy - B, 1.1)

in which, by definition, d; > 0 and 0 < d; < B. The normalization is needed in order to prevent a
waste of digits and to make the representation unambiguous. We call the value in equation (1.1)
a floating point number (representation) in which 0.d1d5 ... d,, is called the mantissa, B the base and
e (integer) the exponent, where L < e < U. Characteristic values for |L| and U are in the range
[100,1000], often, B = 2 (binary representation) and n = 24 (single precision) or n = 53 (double
precision). Most computers and software packages (Matlab) satisfy the IEEE-754 standard, and
hence provide single-! and double-precision?> computations.

Let forx € R
O.dl...dn~‘5"’§x<0.d1d2...(dn+l)~[3"’,

Ihttp://en.wikipedia.org/wiki/Single-precision_floating-point_format
2http://en.wikipedia.org/wiki/Double-precision_floating-point_format
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where for simplicity x is taken positive, and we assume that d, < p — 1. Rounding x means that
x will be replaced with the floating point number closest to x, which is called fI(x). The error
caused by this process is called rounding error, and fI(x) is written as

fl(x) =x(1+e¢). (1.2)

The value |x — fI(x)| = |ex| is called the absolute error and |x — fl(x)|/|x| = |e| the relative
error. The difference between the floating point numbers enclosing x is f°~". Rounding yields
|x — fl(x)] < B~"/2, hence the absolute error is bounded by

1
< Zpgen,
x| < 2
Because |x| > B¢~! (since di > 0), the relative error is bounded by

le] < eps (1.3)

with the computer’s relative precision eps defined as

eps = %51_”. (1.4)

From 8 = 2 and n = 53 it follows that eps ~ 10719, thus in double precision approximately 16
decimal digits are used.

Figure 1.1 shows the distribution of the floating point numbers 0.1d,d3 - B¢ ; e = —1,0,1,2 in
base 2 (binary numbers). These floating point numbers are not uniformly distributed and there is
a gap around 0. A computational result lying within this neighborhood is called underflow. Most
machines provide a warning, replace the result with 0 and continue. A computational result with
absolute value larger than the largest floating point number that can be represented is called
overflow. The machine warns and may continue with Inf’s (infinity).

A final remark is that rounding errors are deterministic. If one repeats the algorithm, the same
results are obtained.

\
\
-4 -3 -2 -1 0 1 2 3 4

Figure 1.1: Distribution of £0.1dyds - g, p =2,e = —1,0,1,2.

Next, let us investigate how computers execute arithmetic operations in floating point arithmetic.
Processors are very complex and usually the following model is used to simulate reality. Let o
denote an arithmetic operation (+, —, X or /) and let x and y be floating point numbers (hence,
x = fl(x), y = fl(y)). Then the machine result of the operation x o y will be

z=fl(xoy). (1.5)

The exact result of x o y will not be a floating point number in general, hence an error results.
From formula (1.2) it follows that

z={xoy}(1+¢), (1.6)

for some ¢ satisfying (1.3) and z # 0. Expression (1.6) describes the error due to converting the
result of an exact calculation to floating point form.





