
Introduction to bed, bank and shore protection

Introduction to bed, bank and shore protection

Gerrit Jan Schiereck updated by Henk Jan Verhagen

© Delft Academic Press / VSSD

Revised edition 2016

Published by Delft Academic Press / VSSD Leeghwaterstraat 42, 2628 CA Delft, The Netherlands tel. +31 15 27 82124 dap@vssd.nl www.delftacademicpress.nl/f007.php

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo¬copying, recording, or otherwise, without the prior written permission of the publisher.

Printd edition: ISBN 97890-6562-4031

NUR 956

Keywords: shore protection.

A little learning is a dangerous thing; Drink deep or taste not the Pierian spring. Alexander Pope (1688-1744)

Preface

Every book is unique. 'This one is because of a combination of two things:

- the coverage of subjects from hydraulic, river and coastal engineering, normally treated in separate books
- the link between theoretical fluid mechanics and practical hydraulic engineering.

On the one side, many fine textbooks on fluid motion, wave hydrodynamics etc. are available, while on the other side one can find lots of manuals on hydraulic engineering topics. The link between theory and practice is seldom covered, making the use of manuals without understanding the backgrounds a "dangerous thing". Using a cookbook without having learned to cook is no guarantee for a tasty meal and distilling whisky without a thorough training is plainly dangerous. Manuals are often based on experience, either in coastal or river engineering, or they are focussing on hydraulic structures, like weirs and sluices. In this way, the overlap and analogy between the various subjects is missed, which is a pity, especially in nonstandard cases where insight into the processes is a must. This book tries to bridge the gap between theoretical hydrodynamics and designing protections. Imagination of what happens at an interface between soil and water is one of the keywords. However, this can only partly be derived from a textbook. Using one's eyes every time one is on a river bank, a bridge or a beach is also part of this process. In the same sense, a computer program never can replace experimental research completely and every student who wants to become a hydraulic engineer should spend some time doing experiments whenever there is a possibility. Anyway, the purpose of this book is to offer some know how, but even more important, some know why.

The painting on the cover represents three major elements in protection against water. The inset right under pictures the power of water, symbolised by Neptune who is enthousiastically trying to enter the gate while money and knowledge, symbolised by Mercury and Minerva, respectively, are the means to stop this. The painting itself depicts the granting of the right to establish an administrative body by the people of Rhineland, a polder area, by the count of Holland in 1255. People's participation is always a major issue in hydraulic engineering, as most projects serve a public goal. People's participation and money is not what this book offers, but I do hope that it will contribute to the knowledge to be able to make durable and sustainable protections.

Gerrit Jan Schiereck, Dordrecht, December 2000

Preface to the 2nd edition

The main reason to make a 2nd edition of this book was that we run out of copies. The basic setup of the book has not been changed. Also the fundamentals did not change in the last decade. Some new findings on turbulence have been added; the chapters on execution have been updated to the latest level of technology. Also a number of new examples from the last decade have been included. Finally the book is again in line with the latest standards. To indicate that this is a new version of the book a new cover has been designed. On the first cover an allegoric painting from the office of the waterboard of Rhineland was shown. For this edition I have selected a painting of Mastenbroek (1932) depicting the closure of the Afsluitdijk. A situation where the stability of the bed material was essential for the completion of the works. The painting expresses the strength of the grab, needed to combat the strength of the water.

Henk Jan Verhagen, Delft, July 2012

Acknowledgement

It is impossible to compile a book like this without the help of many people. In alphabetical order, we want to thank for their major or minor, but always important, contributions: Kees d' Angremond, Alice Beurze, Jeroen van den Bos, Henri Fontijn, Pieter van Gelder, Mark Lindo, Jelle Olthof, Jacques Oostveen, Kristian Pilarczyk, Hermine Schiereck, Jacques Schievink, Wijnand Tutuarima, Wim Venis, Arnold Verruijt, Dick de Wilde.

Trademarks

The use of trademarks in this publication does not imply any endorsement of disapproval of this product by the authors or their employees.

The following trademarks used in this book are acknowledged:

Accropode Sogreah Consultants, France

Armourflex Armourtec, USA

Basalton Holcim betonproducten by, Rotterdam, Netherlands

Elastocoast Elastogran GmbH, Lemförde, Germany (subsidiary of BASF)
Fixtone Heijmans Beton en Waterbouw, Rosmalen, Netherlands
Hydroblock betonzuilen Betonfabriek Haringman, Goes, Netherlands

Xbloc Delta Marine Consultants (BAM Infraconsult), Netherlands

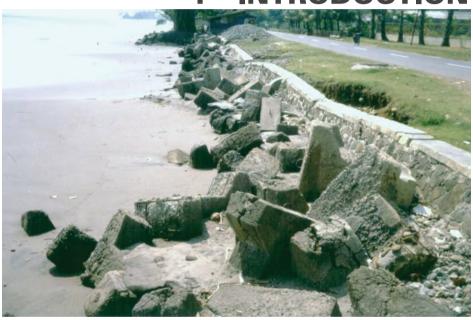
Contents

Preface		V
Preface to the 2nd edition		vi
1	INTRODUCTION	1
1.1	How to look at protections	2
	1.1.1 Why and when	2
	1.1.2 Design	3
	1.1.3 Science or craftsmanship	5
1.2	How to deal with protections	6
	1.2.1 Protection against what?	6
	1.2.2 Failure and design	10
	1.2.3 Load and strength	12
1.3	How to deal with this book	16
2	FLOW – LOADS	19
2.1	Introduction	20
2.2	Turbulence	21
2.3	Wall flow	24
	2.3.1 Uniform flow	24
	2.3.2 Non-uniform flow	26
2.4	Free flow	28
	2.4.1 Mixing layers	28
	2.4.2 Jets	29
2.5	Combination of wall flow and free flow	31
	2.5.1 Flow separation	31
	2.5.2 Vertical expansion (backward-facing step)	32
	2.5.3 Vertical constriction and expansion (sill)	33
	2.5.4 Horizontal expansion	34
	2.5.5 Horizontal constriction and expansion (groyne)	35
	2.5.6 Detached bodies	36
2.6	Load reduction	38
2.7	Summary	39
2.8	APPENDICES	40
	2.8.1 Basic equations	40
	2.8.2 Why turbulence?	43
3	FLOW – STABILITY	47
3.1	Introduction	48
3.2	Uniform flow - horizontal bed	48
	3.2.1 Basic equations	48
	3.2.2 Threshold of motion	53

	2 2 2 Stone dimensions	55
	3.2.3 Stone dimensions	55
	3.2.4 Waterdepth	56
2.2	3.2.5 Practical application	57
3.3	Sloping bed Non-uniform flow	59 61
3.4	3.4.1 Acceleration	62
		64
	3.4.2 Deceleration	69
	3.4.4 A man fundamental approach	
2.5	3.4.4 A more fundamental approach	70
3.5	Coherent material	75
3.6	Summary	77
4	FLOW – Erosion	79
4.1	Introduction	80
	4.1.1 Scour as sediment transport	80
	4.1.2 The scour process	82
4.2	Scour without protection	84
	4.2.1 Scour in jets and culverts	84
	4.2.2 Scour around detached bodies	85
	4.2.3 Scour around attached bodies and in constrictions	89
4.3	Scour with bed protection	91
	4.3.1 Scour development in time	92
	4.3.2 Factor α	92
	4.3.3 Protection length and roughness	95
	4.3.4 Varying conditions	96
	4.3.5 Equilibrium scour	97
	4.3.6 Stability of protection	99
4.4	Summary	101
5	POROUS FLOW – GENERAL	103
5.1	Introduction	104
5.2	Basic equations	105
5.2	5.2.1 General	105
	5.2.2 Laminar flow	107
5.3	Stability of closed boundaries	109
0.0	5.3.1 Impervious bed protections	109
	5.3.2 Impervious slope protections	110
5.4	Stability of open boundaries	114
	5.4.1 Heave and piping	114
	5.4.2 Micro-stability of slopes	117
5.5	Macro stability of slopes	120
5.6	Load reduction	123
5.7	Summary	125

CONTENTS ix

6	POROUS FLOW – FILTERS		127
6.1	General		128
6.2	Granu	ılar filters	130
	6.2.1	Introduction	130
	6.2.2	Geometrically closed filters	131
	6.2.3	Geometrically open filters	133
6.3	Geotextiles		139
	6.3.1	Introduction	139
	6.3.2	Retention criteria	141
	6.3.3	Permeability criteria	142
	6.3.4	Overall stability	143
	6.3.5	Survivability and durability	144
6.4	Sumn	nary	144
7	WAV	ES – Loads	147
7.1	Introd	luction	148
7.2	Non-b	oreaking waves	150
	7.2.1	General	150
	7.2.2	Shear stress	153
7.3	Break	ing waves	156
	7.3.1	General	156
	7.3.2	Waves on a foreshore	159
7.4	Wave	s on slopes	161
	7.4.1	General	161
	7.4.2	Run-up and run-down	163
	7.4.3	Overtopping	166
	7.4.4	Wave impact	169
7.5	Load	reduction	169
7.6	Sumn	nary	171
7.7	APPE	ENDICES	172
	7.7.1	Linear wave theory	172
	7.7.2	Wave statistics	176
	7.7.3	Wave generation	181
8	WAV	ES - Erosion and stability	185
8.1	Erosio	on	186
	8.1.1	Erosion of slopes	186
	8.1.2	Bottom erosion	187
	8.1.3	Wave scour around detached bodies	188
8.2	Stabil	ity general	190
8.3	Stabil	ity of loose grains	193
	8.3.1	Stability in non-breaking waves	193
	8.3.2	Stability in breaking waves	194
	8.3.3	Other aspects	201


8.4	Stability of coherent material	202
	8.4.1 Placed-block revetments	202
	8.4.2 Interlocking blocks	208
	8.4.3 Generalised approach	209
	8.4.4 Impervious layers	212
8.5	Material quality	215
8.6	Summary	216
9	SHIPS	219
9.1	Introduction	220
9.2	Loads	
	9.2.1 Limit speed	222
	9.2.2 Primary waves	224
	9.2.3 Secondary waves	227
	9.2.4 Propeller wash	230
9.3	Stability	235
	9.3.1 Primary waves	235
	9.3.2 Secondary waves	235
	9.3.3 Propeller wash	236
9.4	Erosion	238
9.5	Summary	239
10	DIMENSIONS	241
10.1	General	242
10.2	Probabilistics	244
	10.2.1 Introduction	244
	10.2.2 Comparison of methods	246
	10.2.3 Level III	249
	10.2.4 Level II	252
	10.2.5 Level I	254
	10.2.6 Evaluation	254
10.3	Maintenance	256
	10.3.1 Introduction	256
	10.3.2 Maintenance policies	256
	10.3.3 Probabilistic approach of inspection	258
10.4	Failure mechanisms	261
	10.4.1 Introduction	261
	10.4.2 Systems	261
	10.4.3 Fault trees	262
	10.4.4 Examples	264
10.5	Summary	266
10.6	APPENDIX: Probabilistic approach Level II	267

CONTENTS xi

11	PROTECTIONS	273
11.1		274
11.2		275
	11.2.1 General	275
	11.2.2 Loose rock	275
	11.2.3 Fascine mattresses	277
	11.2.4 Composite mattresses	279
	11.2.5 Evaluation	282
	11.2.6 Piers	283
11.3	Bank protections	284
	11.3.1 Revetments	284
	11.3.2 Loose rock	284
	11.3.3 Composite mattresses	284
	11.3.4 Rigid structures	286
	11.3.5 Groynes	286
11.4	Shore protection	289
	11.4.1 Revetments and dikes	289
	11.4.2 Groynes and breakwaters	293
	11.4.3 Breakwaters	294
11.5	General aspects revetments	296
	11.5.1 Choice	296
	11.5.2 Transitions	296
	11.5.3 Toes	298
12	ENVIRONMENT	303
12.1	Introduction	304
	12.1.1 General	304
	12.1.2 Ecology	305
	12.1.3 Load and strength	310
12.2	Bed protections	311
	12.2.1 General	311
	12.2.2 Fascine mattresses	311
12.3	Bank protections	312
	12.3.1 General	312
	12.3.2 Vegetation	313
	12.3.3 Vegetation with reinforcing mats	316
	12.3.4 Load reductors	317
12.4	Shore protections	319
	12.4.1 Mangroves	319
	12.4.2 Load reduction	324
	12.4.3 Grass dikes and revetments	325
	12.4.4 Design based on ecology	328

13	CONSTRUCTION	331
13.1	Introduction	332
13.2	Equipment	332
	13.2.1 General	332
	13.2.2 Land based equipment	333
	13.2.3 Waterborne equipment	336
13.3	Bed protections	338
	13.3.1 Loose rock	338
	13.3.2 Fascine mattresses	339
	13.3.3 Prefabricated mats	342
13.4	Bank protections	343
	13.4.1 Revetments	343
13.5	River groynes	349
13.6	Shore protections	350
	13.6.1 Dikes	350
	13.6.2 Groynes and breakwaters	352
13.7	Quality assurance	354
	13.7.1 General	354
	13.7.2 Tolerances	355
Appen	IDIX A MATERIAL PROPERTIES	357
A. 1	Block weight and size	358
A.2	Geotextiles	364
A.3	Gabions	369
A.4	Physical properties of soil	370
APPEN	NDIX B EXAMPLES	375
B.1	Bank protection along a river mouth	376
B.2	Caisson closure	381
B.3	Breakwater	391
List o	OF SYMBOLS	399
Refer	RENCES	404
Ph.D.	and M.Sc. theses from Delft University of Technology and other research	
	reports from TU Delft	404
Other	references	405
INDE	X	410

1 INTRODUCTION

Coastal protection along the Javanese coastline (photo Verhagen)

1.1 How to look at protections

1.1.1 Why and when

The interface of land and water has always played an important role in human activities; settlements are often located at coasts, river banks or deltas. When the interface consists of rock, erosion is usually negligible, but finer material can make protection necessary. In a natural situation, the interface moves freely with erosion and sedimentation. Nothing is actually wrong with erosion, unless certain interests are threatened. Erosion is somewhat like weed: as long as it does not harm any crop or other vegetation, no action is needed or even wanted. There should always be a balance between the effort to protect against erosion and the damage that would occur otherwise.

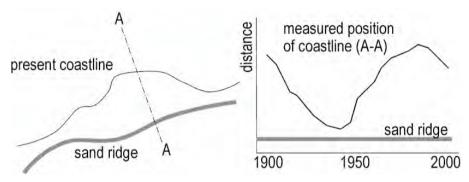


Figure 1-1 To protect or not to protect, that's the question

Figure 1-1 shows cyclic sedimentation and erosion of silt (with a period of many decades) seaward of a natural sand ridge. In a period of accretion people have started to use the new land for agricultural purposes. When erosion starts again, the question is whether the land should be protected and at what cost. Sea-defences are usually very costly and if the economic activities are only marginal, it can be wise to abandon the new land and consider the sand ridge as the basic coastline. If a complete city has emerged in the meantime, the decision will probably be otherwise. With an ever increasing population, the pressure on areas like these also increases. Still, it is good practice along a natural coast or bank to build only behind some setback line. This set-back line should be related to the coastal or fluvial processes and the expected lifetime of the buildings. For example, a hotel has a lifetime of, say 50 years. It should then be built at a location where erosion will not threaten the building within 50 years, see Figure 1-2. So, in fact the unit for a set-back line is not meters but years! These matters are Coastal Zone Management issues and are beyond the scope of this book.

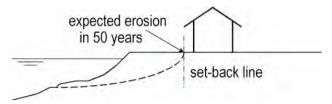


Figure 1-2 Building code in eroding area

Besides erosion as a natural phenomenon, nature can also offer protection. Coral reefs are excellent wave reductors. Vegetation often serves as protection: reed along river banks and mangrove trees along coasts and deltas reduce current velocities and waves and keep the sediment in place. Removal of these natural protections usually mark the beginning of a lot of erosion trouble and should therefore be avoided if possible. So, a first measure to fight erosion, should be the conservation of vegetation at the interface. Moreover, vegetation plays an important role in the ecosystems of banks. Chapter 12 deals with these aspects and with the possibilities of nature-friendly protections.

Finally, it should be kept in mind that, once a location is protected along a coast or riverbank that has eroded on a large scale, the protected part can induce extra erosion and in the end the whole coast or bank will have to be protected. So, look before you leap, should be the motto.

A lot of cases remain where protection is useful. Figure 1-3 gives some examples of bed, bank and shore protections. Along canals, rivers and estuaries, bank protection is often needed to withstand the loads caused by flow, waves or ships. Shore protection structures include seawalls, revetments, dikes and groynes. Bed protection is necessary where bottom erosion could endanger structures, like bridge piers, abutments, in- or outlet sluices or any other structures that let water pass through.

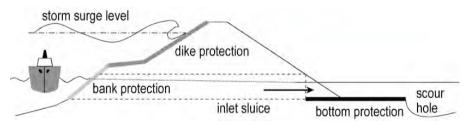


Figure 1-3 Examples of protection

1.1.2 Design

Protections of the interface of land or soil and water are mostly part of a larger project: e.g. a navigation channel, a sea defence system, an artificial island or a bridge. Therefore, the design of a protection should be tuned to the project as a

whole, as part of an integrated design process. In general it can be said that the resulting design should be *effective* and *efficient*. Effective means that the structure should be functional both for the user and the environment. This implies that the structure does what it is expected to do and is no threat for its environment. Efficient means that the costs of the (effective) structure should be as low as possible and that the construction period should not be longer than necessary.

A design that combines effectiveness and efficiency can be said to be "value for money". The intended value becomes manifest in the terms of reference (ToR) which contains the demands for a structure. This ToR has to be translated into concepts (possible solutions). Demands and concepts do not match one to one and a fit between the two is to be reached with trial and error. Promising concepts are engineered and compared. One comparison factor, of course, is costs. The designer's task to get value for money can be accomplished by compromising between four elements, see Figure 1-4.

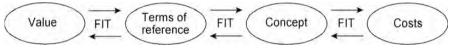


Figure 1-4 Value for money

The design process is of a cyclic nature because it is impossible to go directly from left to right in Figure 1-4. In the first phase, the designer works with a very general notion of the ToR and with some concepts in mind, based on his own or others' experiences. An integrated design process starts with a rough approach to all four elements in Figure 1-4, refining them in subsequent design phases. Effectivity can be evaluated in terms of functionality, environment and technology, while efficiency is expressed in terms of costs and construction although, of course, there are several overlaps and links between these aspects. They all play a role in each of the design phases, but the focus gradually shifts as indicated in Figure 1-5.

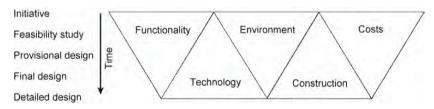


Figure 1-5 Focus during design process

Level of detail

In any project it is possible to discern various levels of detail. It is good to be aware of the level of detail one is working on and to keep an eye on the adjacent levels. An example of these levels (other divisions are, of course, possible):