H. Ligteringen

Faculty of Civil Engineering and Geosciences Delft University of Technology

Delft Academic Press

©Delft Academic Press Second edition 2017

Published by Delft Academic Press / VSSD Leeghwaterstraat 42, 2628 CA Delft, The Netherlands tel. +31 15 27 82124 dap@vssd.nl www.delftacademicpress.nl/f031.php

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Great care has been taken to locate and acknowledge all owners of copyrighted material in this book. If any such owner has inadvertently been omitted, acknowledgement will gladly be made in future printings.

Printed version ISBN 97890-6562-4147 NUR 957 Key words: ports and terminals

Preface

Former students of Delft University of Technology, who followed the lectures Ports and Waterways in the Master Hydraulic Engineering will recognize this text book as one of the readers they had to digest. It was and will be used in that course, but as there was also much interest from other universities and practioners in the Netherlands and abroad it was converted into a published version in 2012.

The foundation of the book was laid by Hugo Velsink during his years as professor Ports and Waterways in the Faculty of Civil Engineering at Delft University of Technology. As his successor in 1995 I continued to use the reader and updated it from time to time. The 2012 edition was still a joint production, but in the preparations of this new edition Hugo left the honor to me. However, the results of his vast experience in port planning and design are there and are whole-heartedly acknowledged.

This new edition became necessary due to the rapid developments in some areas such as container ships and terminals, but also to include the results of research carried out by my successor, Tiedo Vellinga, and members of his group, who are using the book in their lectures in Delft. The contributions of him, Poonam Taneja, Cornelis van Dorsser, Bas Wijdeven and Peter Quist are greatly appreciated and acknowledged in the chapters. Furthermore several recent PIANC Working Group Reports provided valuable information for this edition, such as the Design Guidelines for Harbour Approach Channels.

The new cover photograph shows a part of the Port of Rotterdam with the city in the background. One sees the channels and different types of terminals that are treated in the book. This is to acknowledge the fact that throughout the years the Port of Rotterdam has been a highly valued partner for the University and the Civil Engineering Faculty in particular, providing training places and guest lecturers on specialized subjects, and collaborating in research projects of Port Research Centre and Smart Ports.

Delft, Summer 2017 Han Ligteringen

Contents

Preface	V
List of symbols	xiii
1 Introduction	1
2 Maritime Transport	3
2.1 Introduction	3
2.2 Specific Data of Merchant Ships	5
2.2.1 Transport Capacity	5
2.2.2 Vertical Dimensions	7
2.2.3 Horizontal Dimensions	8
2.2.4 Other Relevant Data	9
2.3 Commodities and types of vessels	10
2.3.1 Introduction	10
2.3.2 Break-bulk or Conventional General Cargo	11
2.3.3 Container Vessels	15
2.3.4 Ro/Ro Vessels	19
2.3.5 Car Carriers and Other Special Vessels	22
2.3.6 Bulk Cargo	28
2.3.7 Short Sea Trader	36
2.4 Tramp and Liner Trade	37
2.4.1 Liner Trade	37
2.4.2 Tramp Trade	38
2.5 Graphs and Observations	38
2.6 References	44
3 Port Functions and Organisation	47
3.1 Introduction	47
3.2 Functions	47
3.3 Transport Chain	50
3.4 Organisation of Seaports	51
3.5 References	52
4 Port Planning Methodology	55
4.1 Introduction	55
4.2 Types of Planning	55
4.3 Overall Planning Process	58
4.4 Permits and Legal framework	60
4.5 Technical Planning	62
4.5.1 Cargo and Shipping Projections	63

4.5.2 Functional Requirements and Planning Elements	64
4.5.3 Site Data	65
4.5.4 Layout Development	68
4.5.5 Project Evaluation	71
4.5.6 Financial and economic analysis	73
4.5.7 Project Optimisation	81
4.6 Sustainable port development	84
4.7 Adaptive Port Planning (Planning under Uncertainty)	89
4.7.1 Why Adaptive Port Planning?	89
4.7.2 Steps in Adaptive Port Planning	90
4.7.3 Comparison of the planning approaches	91
4.8 Concluding remarks	92
4.9 References	94
5 Planning and Design of the Water Areas	97
5.1 Introduction	97
5.2 Ship Manoeuvring and Hydrodynamic Behaviour	98
5.2.1 Basic Manoeuvrability	98
5.3 Approach Channels	112
5.3.1 Alignment	112
5.3.2 Channel Width	115
5.3.3 Channel Depth	117
5.4 Manoeuvring Areas within the Port	123
5.5 Port Basins and Berth Areas	127
5.5.1 Nautical Aspects	127
5.5.3 Harbour Basin Resonance	131
5.6 Morphological Aspects	132
5.6.1 Littoral Transport	132
5.6.2 Siltation of Approach Channels	134
5.6.3 Sedimentation inside the Port	135
5.7 References	136
6 Planning and Design of Port Terminals	139
6.1 General	139
6.2 Services Provided	139
6.3 Terminal Components	140
6.4 Types of Terminals	141
6.5 Terminal Capacity: Maximum or Optimum	150
6.6 Terminal Dimensions	151
6.6.1 Quays and Jetties	152
6.6.2 Terminal Areas	153

Contents

6.7 References	154
7 Container Terminals	155
7.1 Introduction	155
7.1.1 Historical development of container transport	155
7.1.3 Disadvantages of containerisation	160
7.1.4 Major transport routes	161
7.1.5 Global container throughput	163
7.2 Container types and container vessels	164
7.2.1 Container types and sizes	164
7.2.2 Container vessels	167
7.2.3 Global ocean carriers	171
7.2.4 Terminal operators	171
7.3 Container terminal operations	172
7.3.1 Terminal processes and equipment	172
7.3.2 Container flows and modal split	184
7.3.3 Terminal archetypes	187
7.3.4 Size of the container terminal	188
7.3.5 Terminal automation	191
7.4 Layout development	193
7.4.1 Container terminal components	193
7.4.2. Typical container terminal layout	193
7.4.3 Quay length and number of STS cranes	198
7.4.4 Apron area	201
7.4.5 Storage yard	202
7.4.6 Container transfer area and buildings	207
7.4.7 Rail terminal	207
7.4.8 Facilitation of IWT container vessels	208
7.4.9 Other buildings	209
7.4.10 Simulation models	209
7.4.11 Terminal Operating System (TOS)	209
7.4.12 Security	210
7.5 References	212
8 General Cargo and Multipurpose Terminals	215
8.1 Introduction	215
8.2 Non-containerised General Cargo	216
8.2.1 Types of General Cargo	216
8.2.2 Terminal Logistics	217
8.3 Number of Berths and Quay Length	218
8.4 Storage Area and Overall Terminal Lay-out	220

8.5 Multipurpose Terminals	223
8.6 References	224
9 Ro/Ro and Ferry Terminals	225
9.1 Introduction	225
9.2 Lay-out Ro/Ro and Ferry Terminals	226
9.2.1 Ferry Terminal	226
9.2.2 Ro/Ro Terminals	228
9.3 Special Design Aspects	229
9.3.1 Ramp and Bridges	229
9.3.2 Bottom Protection	232
9.4 References	232
10 Liquid Bulk Terminals	235
10.1 Introduction	235
10.2 Oil Tankers and Gas Carriers	235
10.2.1 Oil Tankers	235
10.2.2 Liquid Gas Carriers	235
10.3 The Nature of the Products	237
10.4 Terminals	238
10.4.1 General	238
10.4.2 Types of Terminals	238
10.4.3 Location of the Terminal - Safety Considerations	240
10.5 The Berth	243
10.6 Jetties and Dolphins	244
10.6.1 L and T Jetties	244
10.6.2 Finger Piers	246
10.6.3 Approach Bridges and Jetty Heads	246
10.6.4 Breasting Dolphins	247
10.6.5 Mooring Dolphins	252
10.6.6 Special Aspects of LPG/LNG Jetties	254
10.7 Storage Areas	254
10.8 Offshore Facilities	255
10.8.1 Multiple Buoy Mooring (MBM)	255
10.8.2 Single Buoy Mooring (SBM)	256
10.9 References	258
11 Dry Bulk Terminals	261
11.1 Introduction	261
11.2 Dry Bulk Commodities	261
11.3 Dry Bulk Ships	263
11.4 Unloading Systems	264

Contents

11.4.1 General	264
11.4.2 Grabs	265
11.4.3 Pneumatic Systems	266
11.4.4 Vertical Conveyors	267
11.4.5 Bucket Elevators	269
11.4.6 Slurry Systems	273
11.4.7 Self-unloading Vessels	273
11.5 Loading Systems	274
11.6 On-terminal Handling and Storage	276
11.6.1 Transport Systems	276
11.6.2 Stacking, Storage and Reclaiming	277
11.6.3 Blending, Processing, Weighing	279
11.7 Design Aspects of Dry Bulk Terminals	280
11.8 Climatic and Environmental Considerations	281
11.9 References	281
12 Fishery Ports	283
12.1 Introduction	283
12.2 Types of Fishery Ports	283
12.2.1 Simple Landing Places	283
12.2.2 Coastal Fishery Ports	284
12.2.3 Near-distance Fishery Ports	284
12.2.4 Ocean Fishery Ports	286
12.3 Site Selection	287
12.4 Fishing Vessels	288
12.5 Port Planning	291
12.5.1 Access Channels	291
12.5.2 Basins and Berths	292
12.6 Unloading Equipment	302
12.7 Fishery Port Organisation and Management	304
12.8 References	304
13 Marinas	305
13.1 Yachting and Yachts	305
13.2 General Lay-out of the Port	308
13.3 Basins and Berths	309
13.4 Port Structures	312
13.5 References	314
14 Ports and Terminals for Inland Water Transport	315
14.1 Location and Lay-out of IWT Ports	315
14.2 The Vessels	315

14.2.1 General	315
14.2.2 The European Waterways	316
14.3 Types of Ports	319
14.3.1 Open River Ports	319
14.3.2 Closed River Ports	320
14.3.3 Canal and River Ports: Lay-out and Dimensions	323
14.4 Terminals	325
14.4.1 IWT Cargo Terminals	325
14.4.2 Cargo Handling	326
14.4.3 Storage	327
14.4.4 IWT Jetties on Rivers with a Large Seasonal Water Level Variation	327
14.4.5 Design Aspects for a Simple IWT Canal Berth	330
14.4.6 Inland Passenger Terminals	333
14.4.7 Seaport Terminals for IWT Vessels and Lighters	334
14.5 References	334
Index	335

List of symbols

Parameter	Unit	Description
a	m	vertical motion due to wave response
А	m ²	surface area
A _{cfs}	m^2	surface area of the CFS
A_{ch}	m ²	chamber floor area (horizontal); channel wet cross-sectional area
A_{gr}	m^2	gross storage area
A _L	m^2	longitudinal above water area
A _s	m ²	vessel cross-sectional area in the plane of the water surface; used in squat calculation
A _r	m^2	transverse above water area
A _{TEU}	m ²	required area per TEU inclusive op equipment travelling lanes
B	m	beam; width of a ship at the midships-section
c	m/s	celerity of an individual wave in unrestricted water
С	t/yr; TEU/yr	design annual throughput
c _a	m/s	apparent wave celerity
C _b	t/yr; TEU/yr	berth productivity per year
C _B	-	block coefficient
c _c	TEU	parcel size; the number of TEU (un)loaded per call
C _c	-	configuration coefficient; current force coefficient
C _c	currency	present day value
C _e	-	eccentricity coefficient

C _m	-	added mass coefficient
$C_{mx}^{m}; C_{my}$	-	virtual mass coefficients
C _r	m/yr	resiltation factor
C _s	-	stiffness coefficient
C _{s/h}	t/hr	unloading rate per ship per hour
Ct	currency	annual costs in year t
Cw	-	waterplane area coefficient
D	m	draught; depth of non-moving ship; ship draught (for condition considered)
d ₅₀	m	average grain size diameter; characteristic diameter bottom protection
D_{pl}	m ³	water displacement
DWT	t	deadweight tonnage
Е	J	impact energy
f	Hz	actual wave frequency
F	Ν	force
f _{area}	-	ratio gross area over net area
f _{bulk}	-	bulking factor
f _r	-	irregularity factor for vessel arrival
f _{TEU}	-	TEU-factor
GRT	m ³	gross (register) tonnage (expressed in units of 2.83 m ³)
h	m	water depth; water level above undisturbed level;
$\mathbf{h}_{\mathrm{berth}}$	m	water depth at the berth location
h _f	m	freeboard
h _{gd}	m	guaranteed depth (with respect to a speci- fied reference level)
h _{net}	m	remaining safety margin or net under keel clearance
h _{over}	m	overdepth
h _s	m	average height of the cargo in the storage or CFS
h_{T}	m	tidal elevation above reference level, below which no entrance is allowed
H	m	significant wave height
i	-	inflation rate

Chapter 1

Introduction

By nature port planning is a multidisciplinary activity. It involves expertise in the field of transport economics, shipping, nautical matters, safety and logistics. But also knowl- edge of waves and currents, sediment transport and coastal morphology, dredging and land reclamation, and design of breakwaters and quays. Hence port planning is teamwork. But within this team the port planner plays a central role in developing the concepts and obtaining the required expertise at the right time. Most port planners are civil engineers with hydraulic engineering training and experience. But they need to have two important qualities in addition to that:

- i. a basic understanding of the other disciplines involved
- ii. creativity

The first quality is needed to direct the work done by these experts and to integrate the results into a balanced design of the port lay-out. The integration process itself is the creative part of the work: after having determined the basic dimensions of approach channel and turning basins, of quays and terminals and of the corridors for hinterland connections, there are often many ways to physically arrange them into a port lay-out. Here the second quality mentioned above plays a crucial role in developing the right one.

The first part of this book (Chapter 1 through 6) is aimed at providing the basic elements to perform this planning process. In Chapter 7 the detailed planning of container terminals is treated, including the logistic process. Further attention is paid to design aspects, typical for such terminals. The objective is to provide the basis for an all-round port engineer, somebody who can participate in the design of any given type of port or terminal.

Chapters 8-14 present the planning aspects of other types of terminals.

Chapter 2

Maritime Transport

2.1 Introduction

Maritime transport is (in terms of tonne kilometres) the most important of the 6 transport modes, the other five being inland water transport, road, rail and air transport and transport by pipeline. It is relevant to make the distinction between intercontinental maritime transport and that within a continent, because of the different competitive position. For the intercontinental shipping air transport is the only alternative, but not really a competitor because of the great difference in freight rates (see Table 2.1). Broadly speaking only passengers and high-value goods are carried by plane and this share of the market for transportation is well defined.

Transport mode	Door-to-door time (days)	Freight rate (US\$/kg)
Priority air	2-3	4.0 - 5.6
Standard air	4-7	2.5 - 3.5
Direct ocean	14-28	0.25 - 0.40

Table 2.1 Freight rates across the Atlantic Ocean

Maritime transport within a continent has many competitors, road transport being the most important one. Again the air transport mode is quite distinct from the others in terms of freight rate. But maritime transport, road, rail and inland water transport are in the same cost range and therefore in fierce competition. Maritime transport used to be at a disadvantage compared with roads for two reasons:

- i. it often needs additional transport between seaport and final destination. This creates two extra links in the chain, which increases costs, time and unreliability (see Figure 2.1)
- ii. ports presented an uncertain element, due to the conventional custom procedures and the frequent labour strikes, which could cripple transport for weeks.