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Preface

This is a book about numerically solving partial differential equations occur-
ring in technical and physical contexts and we (the authors) have set ourselves
a more ambitious target than to just talk about the numerics. Our aim is to
show the place of numerical solutions in the general modeling process and
this must inevitably lead to considerations about modeling itself. Partial dif-
ferential equations usually are a consequence of applying first principles to
a technical or physical problem at hand. That means, that most of the time
the physics also have to be taken into account especially for validation of the
numerical solution obtained.

This book in other words is especially aimed at engineers and scientists who
have real world” problems and it will concern itself less with pesky mathe-
matical detail. For the interested reader though, we have included sections on
mathematical theory to provide the necessary mathematical background.

This book is an abridged but improved version of our book [15]. The scope
corresponds to Chapters 1-4, Section 9.7 and Chapters 10 and 11 from [15].
The material covers the FDM and FVM, but excludes the FEM, and is suitable
for a semester course. The improvements will also be implemented in a future
edition of the unabridged version [15] of this book.

Delft, August 2019 Jos van Kan
Guus Segal
Fred Vermolen
Hans Kraaijevanger
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Chapter 1

Review of some basic
mathematical concepts

1.1 Preliminaries

In this chapter we take a bird’s eye view of the contents of the book. Further-
more we establish a physical interpretation of certain mathematical notions,
operators and theorems. As a first application we formulate a general con-
servation law, since conservation laws are the backbone of physical modeling.
Finally we treat some mathematical theorems that will be used in the remain-
der of this book.

1.2 Global contents of the book

First, in Chapter 2, we take a look at second order partial differential equa-
tions and their relation with various physical problems. We distinguish be-
tween stationary (elliptic) problems and evolutionary (parabolic and hyper-
bolic) problems.

In Chapters 3 and 4 we look at numerical methods for elliptic equations.
Chapter 3 deals with finite difference methods (FDM), of respectable age but
still very much in use, while Chapter 4 is concerned with finite volume meth-
ods (FVM), a typical engineers option, constructed for conservation laws. In
this special version of the book we do not discuss finite element methods
(FEM), which have gained popularity over the last decades. These methods
are discussed in the unabridged version [15] of the book, however.

Application of the FDM or FVM generally leaves us with a large set of alge-
braic equations. In Chapter 5 we focus on the difficulties that arise when these
equations are nonlinear.
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Figure 4.10: General control volume.

4.3.3 Boundary conditions

Boundary conditions of Dirichlet type do not present any problem, so we shall
turn our attention to radiation boundary conditions of the form

ou

— = a(ug —u),

5, = &luo—u)

where we assume for simplicity that « and u( are constant. From an imple-

mentation point of view, it is easiest to take the nodal points on the boundary,
which gives us a half cell control volume at the boundary like in Figure 4.11.

o 'N

elg
Figure 4.11: Boundary cell.

Integrating over the half volume and applying the divergence theorem we get:

— +rea(ug —uc)A0 + —

_ iug—ucAr 1uN—ucg
re AO 2 re A8 2

. A
+ rquAruCAH} - fCrC%AG, (4.3.13)

where the radiation boundary condition has been substituted into the bound-
ary integral of the right (east) boundary of the control volume.
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Exercise 4.4.2 Derive the discretization in the displacement variables u and v for
Equation (4.4.4b) in the V, volume. O

So apparently we must choose a grid in such a way that both V; and V, can
be accommodated and the natural way to do that is take u and v in different
nodal points, like in Figure 4.14.

Figure 4.14: Staggered grid.

Such an arrangement of nodal point is called a staggered grid. This means that
in general different problem variables reside in different nodes.

4.4.2 Boundary conditions

When discretizing a scalar equation you can often choose the grid in such a
fashion that the boundary conditions can be easily implemented. With two or
more components, especially on a staggered grid, this is no longer true.
Consider the W-boundary of our fixed plate in Figure 4.12. On this bound-
ary we have the boundary conditions # = 0 and v = 0. A quick look at the
staggered grid of Figure 4.14 shows a fly in the ointment. The u-points are
on the boundary all right. Let us distinguish between equations derived from
Equation (4.4.4a) (type 1) and those derived from Equation (4.4.4b) (type 2). In
equations of type 1 you can easily implement the boundary conditions on the
W-boundary. By the same token, you can easily implement the boundary con-
dition on the N-boundary in type 2 equations. For equations of the "wrong”
type you have to resort to a trick. The generic form of an equation of type 2 in
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