
An Introduction to Parallel Programming

An Introduction to Parallel Programming

Tobias Wittwer

VSSD

© Tobias Wittwer
First edition 2006

Published by:
VSSD
Leeghwaterstraat 42, 2628 CA Delft, The Netherlands
tel. +31 15 278 2124, telefax +31 15 278 7585, e-mail: hlf@vssd.nl
internet: http://www.vssd.nl/hlf
URL about this book: http://www.vssd.nl/hlf/a019.htm

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.

ISBN-10 90-71301-78-8
ISBN-13 978-90-71301-78-0
NUR 958

Keywords: parallel programming

http://www.vssd.nl/hlf
http://www.vssd.nl/hlf/a019.htm

Foreword

Any computer user knows the craving for more computing power. It was this “need for speed”
that made me choose high performance computing as subject of my master thesis. This gave me
the opportunity to work with systems at Stuttgart’s high performance computing center, HLRS.
I spent five months parallelising programs for gravity field modelling using OpenMP and MPI,
and testing them on a Cray Opteron cluster, NEC TX-7, and NEC SX-6.

After graduating I moved to the Netherlands for my PhD research in the Physical and Space
Geodesy Group of the Delft Institute of Earth Observation and Space System, at the faculty of
Aerospace Engineering of the Delft University of Technology. My research topic, regional grav-
ity field modelling, proved to be computationally intensive. Luckily, we had access to Teras and
Aster, two supercomputers at the SARA supercomputing facility in Amsterdam. My programs
were quickly parallelised, shortening program runs from hours to minutes.

Seeing my colleagues struggle with the limited power of their PCs gave me the idea of writing a
tutorial about parallel programming, to give everyone the opportunity to easily parallelise her or
his programs. More urge was added when our group decided to buy its own Linux cluster.Now
all I needed was an example program - and when I had to write a program for spherical harmonic
analysis to check some results, I had this as well.

A week of coding and writing ensued. Test computations, creating graphics, proofreading, and
finetuning followed. My supervisor Prof. Dr.-Ing. Roland Klees reviewed the document and
gave his approval. I hope that the finished product will be useful to the reader, and as enjoyable
to read as it was to write.

Tobias Wittwer, Delft, November 2006

v

Contents

1 Introduction 1

1.1 Goal . 1

1.2 Prerequisites . 2

1.3 Example Program . 2

2 System Architectures 3

2.1 Single Instruction - Single Data (SISD) . 3

2.2 Single Instruction - Multiple Data (SIMD) . 5

2.3 Multiple Instruction - Multiple Data (MIMD) 5

2.4 Shared Memory . 6

2.5 Distributed Memory . 7

2.6 ccNUMA . 8

2.7 Cluster . 9

2.8 Multiple Instruction - Single Data (MISD) . 10

2.9 Some Examples . 11

3 Software 15

3.1 Compiler . 15

3.2 BLAS & LAPACK . 17

3.3 MPI . 19

3.4 BLACS . 21

3.5 ScaLAPACK . 21

vi

CONTENTS

4 Performance Analysis 23

4.1 Timing . 23

4.2 Profiling . 24

4.3 Measuring Performance . 24

5 SHALE - a program for spherical harmonic analysis 27

5.1 Spherical harmonic analysis . 27

5.2 Direct method . 29

5.3 Conjugate gradient method . 40

5.4 Conclusions . 48

Bibliography 51

Index 53

vii

Chapter 1

Introduction

1.1 Goal

Many scientific computations require a considerable amount of computing time. This computing
time can be reduced by distributing a problem over several processors. Multiprocessor computers
used to be quite expensive, and not everybody had access to them. Since 2005, x86-compatible
CPUs designed for desktop computers are available with two “cores”, which essentially makes
them dualprocessor systems. More cores per CPU are to follow.

This cheap extra computing power has to be used efficiently, which requires parallel program-
ming. Parallel programming methods that work on dual-core PCs also work on larger shared
memory systems, and a program designed for a cluster or other type of distributed memory sys-
tem will also perform well on your dual-core (or multi-core) PC.

The goal of this tutorial is to give an introduction into all aspects of parallel programming that
are necessary to write your own parallel programs. To achieve this, it explains

• the various existing architectures of parallel computers,

• the software needed for parallel programming, and how to install and configure it,

• how to analyse software and find the points were parallelisation might be helpful,

• how to write parallel programs for shared memory computers using OpenMP,

• how to write parallel programs for distributed memory computers using MPI and ScaLA-
PACK.

This tutorial aims mainly at writing parallel programs for solving linear equation systems. I hope
that it is also useful to give some help for parallelising programs for other applications.

1

2 CHAPTER 1. INTRODUCTION

1.2 Prerequisites

This introduction to parallel programming assumes that you

• work under Linux, as it is the most common platform for high performance computing,

• use the Intel ifort or GNU gfortran Fortran compiler, as these are freely available
(Intel only for non-commercial purposes) OpenMP-capable compilers.

This tutorial should also be useful for people using different system configurations and/or pro-
gramming languages. All the examples use above mentioned configuration, but can easily be
adapted to other configurations. The example programs are written in Fortran, but should also be
understandable for C programmers. OpenMP and MPI work very similar in C/C++, with only a
slightly different syntax (#OMP PARALLEL FOR instead of !$OMP PARALLEL DO, differ-
ent argument types). For ScaLAPACK programming, I recommend using Fortran, as ScaLA-
PACK can be a little awkward to use with C/C++.

1.3 Example Program

The example program SHALE implements spherical harmonical analysis (SHA) using least-
squares estimation of the spherical harmonic coefficients. I consider SHA to be well suited as an
example, as it is quite simple and understandable, can be run in various problem sizes, and offers
several starting points for parallel implementation. The functional model can easily be exchanged
for other functional models, making SHALE a good example for your own parallelised parameter
estimation programs.

All versions of SHALE described in this tutorial are available from the author’s website, http:
//www.lr.tudelft.nl/psg→ Staff → Tobias Wittwer → personal homepage.

http://www.lr.tudelft.nl/psg

Chapter 2

System Architectures

A system for the categorisation of the system architectures of computers was introduced by Flynn
(1972). It is still valid today and cited in every book about parallel computing. It will also be
presented here, expanded by a description of the architectures actually in use today.

2.1 Single Instruction - Single Data (SISD)

The most simple type of computer performs one instruction (such as reading from memory,
addition of two values) per cycle, with only one set of data or operand (in case of the examples a
memory address or a pair of numbers). Such a system is called a scalar computer.

load

instruction

save

result

load

value 1

load

value 2

add

values

Figure 2.1: Summation of two numbers

Figure 2.1 shows, in a simplified manner, the summation of two numbers in a scalar computer.
As a scalar computer performs only one instruction per cycle, five cycles are needed to complete
the task - only one of them dedicated to the actual addition. To add n pairs of numbers, n · 5
cycles would be required. To make matters even worse, in reality each of the steps shown in
figure 2.1 is actually composed of several sub-steps, increasing the number of cycles required for
one summation even more.

The solution to this inefficient use of processing power is pipelining. If there is one functional
unit available for each of the five steps required, the addition still requires five cycles. The

3

4 CHAPTER 2. SYSTEM ARCHITECTURES

advantage is that with all functional units being busy at the same time, one result is produced
every cycle. For the summation of n pairs of numbers, only (n−1)+5 cycles are then required.
Figure 2.2 shows the summation in a pipeline.

load

instruction

load

instruction

load

instruction

load

instruction

load

instruction

load

value 1

load

value 1

load

value 1

load

value 1

load

value 2

load

value 2

load

value 2

add

values

add

values

save

result

time

s
te

p

Figure 2.2: Summation of two numbers in a pipeline

As the execution of instructions usually takes more than five steps, pipelines are made longer
in real processors. Long pipelines are also a prerequisite for achieving high CPU clock speeds.
These long pipelines generate a new problem. If there is a branching event (such as due to an
if -statements), the pipeline has to be emptied and filled again, and there is a number of cycles
equal to the pipeline length until results are again delivered. To circumvent this, the number of
branches should be kept small (avoiding and/or smart placement of if -statements). Compilers
and CPUs also try to minimise this problem by “guessing” the outcome (branch prediction).

The power of a processor can be increased by combining several pipelines. This is then called
a superscalar processor. Fixed-point and logical calculations (performed in the ALU - Arith-
metic/Logical Unit) are usually separated from floating-point math (done by the FPU - Floating
Point Unit). The FPU is commonly subdivided in a unit for addition and one for multiplication.
These units may be present several times, and some processors have additional functional units
for division and the computation of square roots.

2.2. SINGLE INSTRUCTION - MULTIPLE DATA (SIMD) 5

To actually gain a benefit from having several pipelines, these have to be used at the same time.
Parallelisation is necessary to achieve this.

2.2 Single Instruction - Multiple Data (SIMD)

The scalar computer of the previous section performs one instruction on one data set only. With
numerical computations, we often handle larger data sets on which the same operation (the same
instruction) has to be performed. A computer that performs one instruction on several data sets
is called a vector computer.

Vector computers work just like the pipelined scalar computer of figure 2.2. The difference is
that instead of processing single values, vectors of data are processed in one cycle. The number
of values in a vector is limited by the CPU design. A vector processor than can simultaneously
work with 64 vector elements can also generate 64 results per cycle - quite an improvement over
the scalar processor from the previous section, which would require at least 64 cycles for this.

To actually use the theoretically possible performance of a vector computer, the calculations
themselves need to be vectorised. If a vector processor is fed with single values only, it cannot
perform decently. Just like with a scalar computer, the pipelines need to be kept filled.

Vector computers used to be very common in the field of high performance computing, as they al-
lowed very high performance even at lower CPU clock speeds. In the last years, they have begun
to slowly disappear. Vector processors are very complex and thus expensive, and perform poorly
with non-vectorisable problems. Today’s scalar processors are much cheaper and achieve higher
CPU clock speeds. Vectorisation is not dead, though. With the Pentium III, Intel introduced SSE
(Streaming SIMD Extensions), which is a set of vector instructions. In certain applications, such
as video encoding, the use of these vector instructions can offer quite impressive performance
increases. More vector instructions were added with SSE2 (Pentium 4) and SSE3 (Pentium 4
Prescott).

2.3 Multiple Instruction - Multiple Data (MIMD)

Up to this point, we only considered systems that process just one instruction per cycle. This
applies to all computers containing only one processing core (with multi-core CPUs, single-CPU
systems can have more than one processing core, making them MIMD systems). Combining
several processing cores or processors (no matter if scalar or vector processors) yields a computer
that can process several instructions and data sets per cycle. All high performance computers
belong to this category, and with the advent of multi-core CPUs, soon all computers will. MIMD
systems can be further subdivided, mostly based on their memory architecture.

6 CHAPTER 2. SYSTEM ARCHITECTURES

2.4 Shared Memory

In MIMD systems with shared memory (SM-MIMD), all processors are connected to a common
memory (RAM - Random Access Memory), as shown in figure 2.3. Usually all processors are
identical and have equal memory access. This is called symmetric multiprocessing (SMP).

CPU

RAMRAM RAM RAM

CPU CPU CPU

connection

Figure 2.3: Structure of a shared memory system

The connection between processors and memory is of predominant importance. Figure 2.4 shows
a shared memory system with a bus connection. The advantage of a bus is its expandability. A
huge disadvantage is that all processors have to share the bandwidth provided by the bus, even
when accessing different memory modules. Bus systems can be found in desktop systems and
small servers (frontside bus).

CPU

RAMRAM RAM RAM

CPU CPU CPU

Figure 2.4: Shared memory system with bus

To circumvent the problem of limited memory bandwidth, direct connections from each CPU to

2.5. DISTRIBUTED MEMORY 7

each memory module are desired. This can be achieved by using a crossbar switch (figure 2.5).
Crossbar switches can be found in high performance computers and some workstations.

CPU

RAMRAM RAM RAM

CPU CPU CPU

Figure 2.5: Shared memory system with crossbar switch

The problem with crossbar switches is their high complexity when many connections need to
be made. This problem can be weakened by using multi-stage crossbar switches, which in turn
leads to longer communication times. For this reason, the number of CPUs and memory modules
than can be connected by crossbar switches is limited.

The big advantage of shared memory systems is that all processors can make use of the whole
memory. This makes them easy to program and efficient to use. The limiting factor to their
performance is the number of processors and memory modules that can be connected to each
other. Due to this, shared memory-systems usually consist of rather few processors.

2.5 Distributed Memory

As could be seen in the previous section, the number of processors and memory modules cannot
be increased arbitrarily in the case of a shared memory system. Another way to build a MIMD-
system is distributed memory (DM-MIMD).

Each processor has its own local memory. The processors are connected to each other (figure
2.6). The demands imposed on the communication network are lower than in the case of a shared
memory system, as the communication between processors may be slower than the communica-
tion between processor and memory.

8 CHAPTER 2. SYSTEM ARCHITECTURES

RAMRAM RAM RAM

connection

CPU CPU CPU CPU

Figure 2.6: Structure of a distributed memory system

Distributed memory systems can be hugely expanded. Several thousand processors are not un-
common, this is called massively parallel processing (MPP). To actually use the theoretical per-
formance, much more programming effort than with shared memory systems is required. The
problem has to be subdivided into parts that require little communication. The processors can
only access their own memory. Should they require data from the memory of another processor,
then these data have to be copied. Due to the relatively slow communications network between
the processors, this should be avoided as much as possible.

2.6 ccNUMA

The two previous sections showed that shared memory systems suffer from a limited system size,
while distributed memory systems suffer from the arduous communication between the memo-
ries of the processors. A compromise is the ccNUMA (cache coherent non-uniform memory
access) architecture.

A ccNUMA system (figure 2.7) basically consists of several SMP systems. These are connected
to each other by means of a fast communications network, often crossbar switches. Access to the
whole, distributed or non-unified memory is possible via a common cache.

A ccNUMA system is as easy to use as a true shared memory system, at the same time it is much
easier to expand. To achieve optimal performance, it has to be made sure that local memory
is used, and not the memory of the other modules, which is only accessible via the slow com-
munications network. The modular structure is another big advantage of this architecture. Most
ccNUMA system consist of modules that can be plugged together to get systems of various sizes.

2.7. CLUSTER 9

 cache

RAM

CPU CPU

CPU CPU

RAM

CPU CPU

CPU CPU

RAM

CPU CPU

CPU CPU

RAM

CPU CPU

CPU CPU

Figure 2.7: Structure of a ccNUMA system

2.7 Cluster

For some years now clusters are very popular in the high performance computing community.
A cluster consists of several cheap computers (nodes) linked together. The simplest case is the
combination of several desktop computers - known as a network of workstations (NOW). Most
of the time, SMP systems (usually dual-CPU system with Intel or AMD CPUs) are used because
of their good value for money. They form hybrid systems. The nodes, which are themselves
shared memory systems, form a distributed memory system (figure 2.8).

The nodes are connected via a fast network, usually Myrinet or Infiniband. Gigabit Ethernet has
approximately the same bandwidth of about 100 MB/s and is a lot cheaper, but the latency (travel
time of a data package) is much higher. It is about 100 ms for Gigabit Ethernet compared to only
10 - 20 ms for Myrinet. Even this is a lot of time. At a clock speed of 2 GHz, one cycle takes 0.5

10 CHAPTER 2. SYSTEM ARCHITECTURES

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

network

Figure 2.8: Structure of a cluster of SMP nodes

ns. A latency of 10 ms amounts to 20,000 cycles of travel time before the data package reaches
its target.

Clusters offer lots of computing power for little money. It is not that easy to actually use the
power. Communication between the nodes is slow, and as with conventional distributed mem-
ory systems, each node can only access its local memory directly. The mostly employed PC
architecture also limits the amount of memory per node. 32 bit systems cannot address more
than 4 GB of RAM, and x86-64 systems are limited by the number of memory slots, the size
of the available memory modules, and the chip sets. Despite these disadvantages, clusters are
very successful and have given traditional, more expensive distributed memory systems a hard
time. They are ideally suited to problems with a high degree of parallelism, and their modularity
makes it easy to upgrade them.

In recent years, the cluster idea has been expanded to connecting computers all over the world
via the internet. This makes it possible to aggregate enormous computing power. Such a widely
distributed system is known as a grid.

2.8 Multiple Instruction - Single Data (MISD)

The attentive reader may have noticed that one system architecture is missing: Multiple Instruc-
tion - Single Data (MISD). Such a computer is neither theoretically nor practically possible in a
sensible way. Openshaw et al. (1999) write: “We found it hard to figure out why you would want
to do this (the simultaneous manipulation of one data set with several operations) unless you are
a computer scientist interested in weird computing! It is a highly specialised and seemingly a

2.9. SOME EXAMPLES 11

very restrictive form of parallelism that is often impractical, not to mention useless, as the basis
for a general-purpose machine.”

2.9 Some Examples

This section presents a few common multiprocessor/multi-core architectures. A much more
extensive and detailed description is given in the “Overview of recent supercomputers”, which is
updated once a year, and available on-line at http://www.phys.uu.nl/~euroben/.

Twice a year, a list of the 500 fastest computers in the world is published. The ranking is based
on the LINPACK benchmark. Although this is an old benchmark with little practical reference,
the Top 500 list gives a good overview of the fastest computers and the development of super-
computers. The list can be viewed on-line at http://www.top500.org.

2.9.1 Intel Pentium D

The Intel Pentium D was introduced in 2005. It is Intel’s first dual-core processor. It integrates
two cores, based on the NetBurst design of the Pentium 4, on one chip. The cores have their own
caches and access the common memory via the frontside bus. This limits memory bandwidth
and slows the system down in the case of memory-intensive computations. The Pentium D’s
long pipelines allow for high clock frequencies (at the time of writing up to 3.73 GHz with the
Pentium D 965), but may cause poor performance in the case of branches. The Pentium D is not
dual-CPU-capable. This capability is reserved for the rather expensive Xeon CPU. The Pentium
D supports SSE3 and x86-64 (the 64bit-extension of the x86 instruction set).

2.9.2 Intel Core 2 Duo

Intel’s successor to the Pentium D is similar in design to the popular Pentium M design, which
in turn is based on the Pentium III, with ancestry reaching back to the Pentium Pro. It abandons
high clock frequencies in the favour of more efficient computation. Like the Pentium D, it uses
the frontside bus for memory access by both CPUs. The Core 2 Duo supports SSE3 and x86-64.

2.9.3 AMD Athlon 64 X2 & Opteron

AMD’s dual-core CPUs Athlon 64 X2 (single-CPU only) and Opteron (depending on model
up to 8 CPUs in one system possible) are very popular CPUs for Linux clusters. They offer
goodt performance at affordable prices and reasonable power consumption. Each core has its

http://www.phys.uu.nl/~euroben/
http://www.top500.org

12 CHAPTER 2. SYSTEM ARCHITECTURES

own HyperTransport channel for memory access, making these CPUs well suited for memory-
intensive applications. They also support SSE3 and x86-64.

2.9.4 IBM pSeries

The pSeries is IBM’s server- and workstation line based on the POWER processor. The newer
POWER processors are multi-core designs and feature large caches. IBM builds shared mem-
ory systems with up to 32 CPUs. One large pSeries installation is the JUMP cluster at Kern-
forschungszentrum Jülich, Germany (http://jumpdoc.fz-juelich.de).

2.9.5 IBM BlueGene

BlueGene is an MPP (massively parallel processing) architecture by IBM. It uses rather slow
700 MHz PowerPC processors. These processors form very large, highly integrated distributed
memory systems, with fast communication networks (a 3D-Torus, like the Cray T3E). At the time
of writing, position one and three of the Top 500 list were occupied by BlueGene systems. The
fastest system, BlueGene/L (http://www.llnl.gov/asc/computing_resources/
bluegenel/), consists of 131,072 CPUs, and delivers a performance of up to 360 TeraFLOPS.

2.9.6 NEC SX-8

The NEC SX-8 is the one of the few vector supercomputers in production at the moment. It
performs vector operations at a speed of 2 GHz, with eight operations per clock cycle. One SX-8
node consists of eight CPUs, up to 512 nodes can be connected. The biggest SX-8 installation is,
at the time of writing, the 72-node system at Höchstleistungsrechenzentrum Stuttgart (HLRS),
Germany.

2.9.7 Cray XT3

Cray is the most famous name in supercomputing. Many of its designs were known not only for
their performance, but also for their design. The Cray XT3 is a massively-parallel system using
AMD’s Opteron CPU. The biggest installation of an XT3 is “Red Storm” at Sandia National
Laboratories (http://www.sandia.gov/ASC/redstorm.html) with 26,544 dual-core
Opteron CPUs, good for a performance of more than 100 TFLOPS and the second position in
the November 2006 Top 500 list.

http://jumpdoc.fz-juelich.de
http://www.llnl.gov/asc/computing_resources/bluegenel
http://www.sandia.gov/ASC/redstorm.html

2.9. SOME EXAMPLES 13

2.9.8 SGI Altix 3700

The SGI Altix 3700 is a ccNUMA system using Intel’s Itanium 2 processor. The Itanium 2 has
large caches and good floating point performance. Being ccNUMA, the Altix 3700 is easy to pro-
gram. Aster at SARA, Amsterdam, the Netherlands (http://www.sara.nl/userinfo/
aster/description/index.html) is an Altix 3700 with 416 CPUs.

http://www.sara.nl/userinfo/aster/description/index.html

