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Foreword

This book is the result of a series of lectures and courses the author has given on the
topic of network analysis. During these courses it became clear that there is a need for
reference material that integrates network analysis with the statistical foundations of
parameter estimation and hypothesis testing. Network quality control deals with the
qualitative aspects of network design, network adjustment, network validation and
network connection, and as such conveys the necessary knowledge for computing and
analysing networks in an integrated manner.
In completing the book, the author received valuable assistance from Ir. Hedwig
Verhoef, Dr. Ir. Dennis Odijk and Ria Scholtes. Hedwig Verhoef has also been one of
the lecturers and took care of editing a large portion of the book. This assistance is
greatly acknowledged.

P.J.G. Teunissen
December 2006
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1
An overview

This introductory chapter gives an overview of the material presented in the book. The
book consists of three parts. A first part on estimation theory, a second part on testing
theory and a third part on network theory. The first two parts are of a more general
nature. The material presented therein is in principle applicable to any geodetic project
where measurements are involved. Most of the examples given however, are focussed
on the network application. In the third part, the computation and validation of geodetic
networks is treated. In this part, we make a frequent use of the material presented in the
first two parts. In order to give a bird’s eye view of the material presented, we start with a
brief overview of the three parts.

ADJUSTMENT: The need for an adjustment arises when one has to solve an inconsis-
tent system of equations. In geodesy this is most often the case, when one has to solve
a redundant system of observation equations. The adjustment principle used is that of
least-squares. A prerequisite for applying this principle in a proper way, is that a number
of basic assumptions need to be made about the input data, the measurements. Since mea-
surements are always uncertain to a certain degree, they are modeled as sample values of a
random vector, them-vector of observables y (note: the underscore will be used to denote
random variables). In case the vector of observables is normally distributed, its distri-
bution is uniquely characterized by the first two (central) moments: the expectation (or
mean) E{y} and the dispersion (or variance) D{y}. Information on both the expectation
and dispersion needs to be provided, before any adjustment can be carried out.

Functional model: In case of geodetic networks, the observables contain information on
the relative geometry of the network points. Examples are: height differences, angles,
distances, baselines, etc. Knowing the information content of the observables, allows
one to link them to the parameters which are used for describing the geometry of the
network. These parameters, which are often coordinates, are to be determined from the
adjustment. The link between the observables and the n-vector of unknown parameters x,
is established by means of the system of m observation equations

E{y} = Ax

This system is referred to as the functional model. It is given once the design matrix A of
order m×n is specified.

The system as it is given here, is linear in x. Quite often however, the observation
equations are nonlinear. In that case a linearization needs to be carried, to make the
system linear again. The parameter vector x usually consists of coordinates and possi-
bly, additional nuisance parameters, such as for instance orientation unknowns in case of
theodolite measurements. The coordinates could be of any type. For instance, they could
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2 Network Quality Control

be Cartesian coordinates or geographic coordinates. The choice of the type of coordinates
is not essential for the adjustment, but is more a matter of convenience and depends on
what is required for the particular application at hand.

Stochasticmodel: Measurements are intrinsicallyuncertain. Remeasurement of the same
phenomenon under similar circumstances, will usually give slightly different results. This
variability in the outcomes of measurements is modelled through the probability density
function of y. In case of the normal distribution, it is completely captured by its dispersion.
In order to properly weigh the observables in the adjustment process, the dispersion needs
to be specified beforehand. It is given as

D{y} = Qy

This is the stochastic model, with Qy being the m×m variance matrix of the observ-
ables. In these lecture notes, we will assume that Qy is known. Hence, unknown variance
components and their estimation are not treated.

Since the variance matrix describes the variability one can expect of the measurements
when they are repeated under similar circumstances, it is said to describe the precision of
the observables. In order to be able to specify Qy correctly, a good understanding of the
measurement equipment and the measurement procedures used, is needed. Quite often
the variance matrix Qy can be taken as a diagonal matrix. This is the case, when the
measurements have been obtained independently from one another. The variance matrix
becomes full (nondiagonal) however, when for instance, the measurements themselves are
the result of a previous adjustment. This is the case when connecting geodetic networks.

Least-squares: Once the measurements have been collected and the functional model
and the stochastic model have been specified, the actual adjustment can be carried out.
The least-squares estimator of the unknown parameter vector x, is given as

x̂= (ATQ−1
y A)−1ATQ−1

y y

It depends on the design matrix A, the variance matrix Qy and the vector of observables
y. With x̂, one can compute the adjusted observables as ŷ = Ax̂ and the least- squares
residuals as ê= y− ŷ.

The above expression for the least-squares estimator is based on a functional model
which is linear. In the nonlinear case, one will first have to apply a linearization before
the above expression can be applied. For the linearization one will need approximate
values for the unknown parameters. In case already an approximate knowledge on the
geometry of the network is available, the approximate coordinates of the network points
can be obtained from a map. If not, a minimum set of the observations themselves will
have to be used for computing approximate coordinates. In case the approximate values
of the unknown parameters are rather poor, one often will have to iterate the least-squares
solution.

Quality: Every function of a random vector, is itself a random variable as well. Thus
x̂ is a random vector, just like the vector of observables y is. And when x̂ is linearly
related to y, it will have a normal distribution whenever y has one. In that case also the
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distributionof x̂ can be uniquely characterized by means of its expectation and dispersion.
Its expectation reads

E{x̂} = x

Thus the expectation of the least-squares estimator equals the unknown, but sought for
parameter vector x. This property is known as unbiasedness. From an empirical point
of view, the equation implies, that if the adjustment would be repeated, each time with
measurements collected under similar circumstances, then the different outcomes of the
adjustment would on the average coincide with x. It will be clear, that this is a desirable
property indeed.

The dispersion of x̂, describing its precision, is given as

D{x̂} = (ATQ−1
y A)−1

This variance matrix is independent of y. This is a very useful property, since it implies
that one can compute the precision of the least-squares estimator without having the actual
measurements available. Only the two matrices A and Qy need to be known. Thus once
the functional model and stochastic model have been specified, one is already in a position
to know the precision of the adjustment result. It also implies, that if one is not satisfied
with this precision, one can change it by changing A and/or Qy. This is typically done at
the design stage of a geodetic project, prior to the actual measurement stage. Changing
the geometry of the network and/or adding/deleting observables, will change A. Using
different measurement equipment and/or different measurement procedures, changes Qy.

TESTING: Applying only an adjustment to the observed data is not enough. The result
of an adjustment and its quality rely heavily on the validity of the functional and stochastic
model. Errors in one of the two, or in both, will invalidate the adjustment results. One
therefore needs, in addition to the methods of adjustment theory, also methods that allow
one to check the validity of the assumptions underlying the functional and stochastic
model. These methods are provided for by the theory of statistical testing.

Model errors: One can make various errors when formulating the model needed for
the adjustment. The functional model could have been misspecified, E{y} �= Ax. The
stochastic model could have been misspecified, D{y} �= Qy. Even the distribution of y
need not be normal. In these lecture notes, we restrict our attention to misspecifications
in the functional model. These are by far the most common modelling errors that occur
in practice. Denoting the model error as b, we have E{y} = Ax+ b. If it is suspected
that model errors did indeed occur, one usually, on the basis of experience, has a fair idea
what type of model error could have occurred. This implies that one is able to specify the
vector b in the form of equations like

b=C∇

where C is a matrix of order m× q and ∇ is a q-vector. The vector ∇ is still unknown,
but the matrix C is then known. This matrix specifies how the vector of observables is
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assumed to be related to the unknown error vector ∇. A typical example of modelling
errors that can be captured through this description are blunders in the measurements. In
case of a single blunder in one of the measurements, theC-matrix reduces to a unit vector,
having a one at the entry that corresponds with the corrupted measurement.

Test statistic: It will be intuitively clear that the least-squares residual vector ê, must
play an important role in validating the model. It is zero, when the measurements form a
perfect match with the functional model, and it departs from zero, the more the measure-
ments fail to match the model. A test statistic is a random variable that measures on the
basis of the least-squares residuals, the likelihood that a model error has occurred. For a
model error of the typeC∇, it reads

Tq = êTQ−1
y C(CTQ−1

y QêQ
−1
y C)−1CTQ−1

y ê

It depends, apart from the least-squares residuals, also on the matrix C, on the design
matrix A (through Qê) and on the variance matrix Qy. The test statistic has a central Chi-
squared distribution, with q degrees of freedom, χ2(q,0), when the model error would be
absent. When the value of the test statistic falls in the right tail-area of this distribution,
one is inclined to belief that the model error indeed occurred. Thus the presence of the
model error is believed to be likely, when Tq > χ2αq(q,0), where αq is the chosen level of
significance.

Testing procedure: In practice it is generally not only one model error one is concerned
about, but quite often many more than one. In order to take care of these various potential
modelling errors, one needs a testing procedure. It consists of three steps: detection,
identification and adaptation. The purpose of the detection step is to infer whether one
has any reason to belief that the model is wrong. In this step one still has no particular
model error in mind. The test statistic for detection, reads

Tm−n = êTQ−1
y ê

One decides to reject the model, when Tm−n > χ2αm−n(m−n,0).
When the detection step leads to rejection, the next step is the identification of the

most likely model error. The identification step is performed with test statistics like Tq.
It implies that one needs to have an idea about the type of model errors that are likely to
occur in the particular application at hand. Each member of this class of potential model
errors is then specified through a matrixC. In case of one dimensional model errors, such
as blunders, the C-matrix becomes a vector, denoted as c. In that case q = 1 and the test
statisticT q simplifies considerably. One can then make use of its square-root, which reads

w=
cTQ−1

y ê√
cTQ−1

y QêQ
−1
y c

This test statistic has a standard normal distribution N(0,1) in the absence of the model
error. The particular model error that corresponds with the vector c, is then said to have
occurred with a high likelihood,when | w |>N 1

2α1
(0,1). In order to have the model error
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detected and identified with the same probability, one will have to relate the two levels
of significance, αm−n and α1. This is done by equating the power and the noncentrality
parameters of the above two test statistics Tm−n and w.

Once certain model errors have been identified as sufficiently likely, the last step con-
sists of an adaptation of the data and/or model. This implies either a remeasurement of the
data or the inclusion of additional parameters into the model, such that the model errors
are accounted for. In both cases one always should check again of course, whether the
newly created situation is acceptable or not.

Quality: In case a model error of the type C∇ occurs, the least-squares estimator x̂ will
become biased. Thus E{x̂} �= x. The dispersion or precision of the estimator however,
remains unaffected by this model error. The bias in x̂, due to a model error C∇, is given
as

∇x̂= (ATQ−1
y A)−1ATQ−1

y C∇

The purpose of testing the model, is to minimize the risk of having a biased least-squares
solution. However, one should realize that the outcomes of the statistical tests are not
exact and thus also prone to errors. It depends on the ’strenght’ of the model, how much
confidence one will have in the outcomes of these statistical tests. A measure of this
confidence is provided for by the concept of reliability. When the above w-test statistic is
used, the size of the model error that can be found with a probability γ, is given by the
Minimal Detectable Bias (MDB). It reads

| ∇ |=
√

λ (α1,1, γ)
cTQ−1

y QêQ
−1
y c

where λ (α1,1, γ) is a known function of the level of significance α1 and the detection
probability (power) γ. The set of MDB’s, one for each model error considered, is said to
describe the internal reliability of the model.

As it was the case with precision, the internal reliability can be computed once the
design matrix A and the variance matrix Qy are available. Changing A and/or changing
Qy, will change the MDB’s. In this way one can thus change (e.g. improve) the internal
reliability. Substitution of C | ∇ | for C∇ in the above expression for ∇x̂, will show by
how much the least-squares solution becomes biased, when a model error of the size of
the MDB occurs. The bias vectors ∇x̂, one for each model error considered, is then said
to describe the external reliability of the model.

NETWORKS: The theory of adjustment and testing, is in principle applicable to any
geodetic project where measurements are involved for the determination of unknown pa-
rameters. But in case of a project like computing a geodetic network, some additional
considerations need to be taken into account as well. The aim of computing a geodetic
network is to determine the geometry of the configuration of a set of points. The set of
points usually consists of: (1) newly established points, of which the coordinates still
need to be determined, and (2) already existing points, the so-called control points, of
which the coordinates are known. By means of a network adjustment the relative geome-
try of the new points is determined and integrated into the geometry of the existing control
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points. The determination and validation of the overall geometry is usually divided in two
phases: (1) the free network phase, and (2) the connected network phase.

Free network phase: In this phase, the known coordinates of the control points do not
take part in the determination of the geometry. It is thus free from the influence of the
existing control points. The idea is that a good geodetic network should be sufficiently
precise and reliable in itself, without the need of external control. It implies, when in the
second phase, the connected network phase, rejection of the model occurs, that one has
good reason to belief that the cause for rejection should be sought in the set of control
points, instead of in the geometry of the free network.

As with any geodetic project, the three steps involved in the free network phase are:
design (precision and reliability), adjustment (determination of geometry) and testing
(validation of geometry). With free networks however, there is one additional aspect
that should be considered carefully. It is the fundamental non-uniqueness in the relation
between geodetic observables and coordinates. This implies, that when computing co-
ordinates for the free network, additional information in the form of minimal constraints
are needed, to eliminate the non-uniqueness between observables and coordinates. The
minimal constraints however, are not unique. There is a whole set from which they can
be chosen. This implies that the set of adjusted coordinates of the free network, includ-
ing their variance matrix and external reliability, are not unique as well. This on its turn
implies, that one should only use procedures for evaluating the precision and reliability,
that are guaranteed to be invariant for the choise of minimal constraints. If this precau-
tion is not taken, one will end up using an evaluation procedure of which the outcome is
dependent on the arbitrary choice of minimal constraints.

Connected network phase: The purpose of this second phase is to integrate the geom-
etry of the free network into the geometry of the control points. The observables are the
coordinates of the free network and the coordinates of the control points. Since the co-
ordinates of the two sets are often given in different coordinate systems, the connection
model will often be based on a coordinate transformation from the coordinate system of
the free network to that of the control network.

In contrast to the free network phase, the design, adjustment and testing are now
somewhat nonstandard. First of all there is not much left to design. Once the free network
phase has been passed, the geometry of the free network as well as that of the control
points are given. This implies that already at the design stage of the free network, one
should take into account the distribution of the free network points with respect to the
distribution of the control points.

Secondly, the adjustment in the connected network phase is not an ordinary least-
squares adjustment. In most applications, it is not very practical to see the coordinates
of the control points change everytime a free network is connected to them. This would
happen however, when an ordinary adjustment would be carried out. Thus instead, a
constrained adjustment is applied, with the explicit constraints that the coordinates of the
control points remain fixed.

For testing however, a constrained adjustment would not be realistic. After all, the



1. An overview 7

coordinates of the control points are still samples from random variables and therefore
not exact. Thus for the validation of the connected geometry, the testing is based on the
least-squares residuals that follow from an ordinary adjustment and not from a constrained
adjustment.




