These procedure guidelines describe almost all common patient investigations and therapies that are carried out by a department of nuclear medicine. The emphasis is on the quality of the procedures as well as the necessary equipment and radiopharmaceuticals.

Most of the investigations relate to diagnostic procedures, though therapeutic treatments using radiopharmaceuticals are also discussed.

Furthermore, this book describes physical and pharmaceutical aspects used in nuclear medicine.

It is primarily intended as a handbook and reference for those working at a department of nuclear medicine and for those who are still in training.

However, it is not a textbook and does not follow the evidence based medicine methodology.

Members of the Dutch society of nuclear medicine (NVNG) wrote the procedure guidelines under the direction of the NVNG committee for quality improvement with the assistance of the Dutch society of clinical physics (NVKF) and the Dutch society of hospital pharmacists (NVZA).

With this publication the current opinion within nuclear medicine with respect to highquality patient care is decreed.

ISBN 978-90-78876-09-0

NEDERLANDSE VERENIGING VOOR NUCLEAIRE GENEESKUNDE

Procedure Guidelines Nuclear Medicine

Dutch Society of Nuclear Medicine

Procedure Guidelines Nuclear Medicine

Dutch Society of Nuclear Medicine

Editor-in-chief: JP Esser

I Diagnostic Methods II Radionuclide Therapy III Radiopharmaceuticals IV Equipment V Radiation Dosimetry in Nuclear Medicine JP Esser, chiefeditor JP Esser, chiefeditor JJG van den Heuvel, editor JA van Dalen, editor JA van Dalen, editor

Procedure Guidelines Nuclear Medicine

ISBN 978-90-78876-09-0

Dutch Society of Nuclear Medicine

Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG)

- JJG van den Heuvel (chairman)
- JA van Dalen (secretary)
- JP Esser
- B de Keizer
- KP Koopmans
- MN Lub-de Hooge
- RL Romijn
- NC Veltman

English language editing and translation

- EC Owers
- CDJM de Pont

©Dutch Society of Nuclear Medicine (NVNG)

This publication is the responsibility of the Dutch Society for Nuclear Medicine (NVNG). However, both the NVNG and the publisher cannot accept any liability with regards to the content, including any errors or omissions that may occur.

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other non-commercial uses permitted by copyright law. For permission requests, write to the publisher, addressed "Attention: Permissions Coordinator".

Kloosterhof Neer BV Napoleonsweg 128a 6086 AJ NEER Netherlands

P. +31-475597151 www.kloosterhof.nl info@kloosterhof.nl

Publisher

HGP Vullers eric@kloosterhof.nl

Editorial office

AHM Muijres anuska@kloosterhof.nl

Lay-out

AGM Peeters vormgeving@kloosterhof.nl

Foreword

Dear reader,

It is with the greatest pleasure that I present to you the new Procedure Guidelines. For the fifth time now, several of our colleagues have succeeded in updating the guidelines, aiming to bring the practice of Nuclear Medicine in line with the latest evidence-based practices. With our first loose leaf edition appearing in 1988, our profession was already aware that the practice of Nuclear Medicine is not an arbitrary matter but that patients deserve that we perform diagnostics and treatment in an unambiguous and accountable manner. In doing so, we were the forerunners of what has now been made mandatory as standard practice by the government.

Over the past few years, there has been a trend in healthcare across the board to practise medicine in line with established criteria and protocols. It has now been widely accepted that patient care is delivered in the safest and best possible way if it proceeds in line with protocols established by the profession itself. As care professionals, we are increasingly required to justify how we conduct our healthcare practice and on what grounds we have made our choices. Both policy makers and health insurers, after all, are guided by achievement indicators and outcome parameters to decide on matters of licensing and contracting.

There are three reasons that make this edition a rather special one. Firstly, this is not only a work of revision but also, with many new chapters, of complete renewal. Secondly, this will be the last edition to appear in print. With advancing digitization, revision will be done on a continuous, online and modular basis from now on. Thirdly, owing to surging interest in and from neighbouring nations, this revision has been published in English. A special word of thanks, therefore, should go to our colleagues E.C. Owers and C.D.J.M. de Pont, who have undertaken the full copy-editing of this edition.

I would like to thank kindly all those authors whose great dedication has contributed to the realization of this edition, headed by the Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG), consisting of J.J.G. van den Heuvel, J.A. van Dalen, B. de Keizer, K.P. Koopmans, M.N. Lub-de Hooge, R.L. Romijn, N.C. Veltman and further J.B.A. Habraken and A.J. Arends. Their work took place under the inspiring leadership and exemplary management of editor-in-chief, J.P. Esser.

It is gratifying to think that, in fact, all of us bear responsibility for the accomplishment of these guidelines for all of us have, explicitly or perhaps implicitly, approved the chapter versions that have now been included. I am confident that our approval ensures our commitment to their observance. We would like to express our hope, finally, that this new edition will continue to be the cornerstone of our Nuclear Medicine practice, if now at an international level.

Prof. L.F. de Geus-Oei President of the Dutch Society of Nuclear Medicine

Preface

These Procedure Guidelines contains: I Diagnostic Methods II Radionuclide Therapy III Radiopharmaceuticals IV Equipment V Radiation Dosimetry in Nuclear Medicine

Status

These procedure guidelines are recommendations and give no right to any special legal status, rights or obligations.

Members of the Society have had the opportunity to comment on all aspects of each procedure described in this book for the period of at least three months. All comments have been reviewed and the text has been changed when necessary. In this way we have created a broad support and consensus among all members of the Society.

Warning

Some of the guidelines use unregistered (radio)pharmaceuticals. In most of these cases this is explicitly stated at the beginning of the chapter. However, it should not be assumed that a (radio)pharmaceutical is registered when no warning is given. The doctor in charge of the investigation/ procedure is accountable for the use of all these radiopharmaceuticals. In most cases the doctor needs to fill out a form for compassionate use. This is a form in which the responsible doctor declares that he/she is aware that the product is not proven safe and effective and that the patient has been informed of this. These radiopharmaceuticals are mentioned in this book due to their acceptance by the occupational group, in accordance with the up to date professional literature.

Content

Each guideline is an approach to the acts that are necessary for adequate implementation and effective application of the most common nuclear medicine therapies and investigations. The procedure guidelines must be seen as minimum requirements. If a procedure differs this must be done with solid motivation. Alternative procedures and/ or use of other parameters that will eventually give the same information are optional. Also the activity doses mentioned are recommendations. They will depend on the sensitivity of the gamma camera system which is used, count statistics, image quality, status of the patient, radiation protection and other facts. It is clear that these procedure guidelines must not be seen as a textbook. Wherever possible, up to date evidence based literature and guidelines were pursued in writing these procedure guidelines. This book is therefore, not an exhaustive account of all subjects. Most of the common, though not all, investigation/therapy procedures are described. Experimental investigations and or therapies are not taken into account in this edition.

Purpose

The purpose of the procedure guidelines is to improve the quality of nuclear medicine investigations and radiation protection of patients. In order to reach this objective we strive for standardisation of procedures between different institutions/departments. Reproducibility and comparison with former studies is important.

Improvement of Quality

This is probably the last paper edition of the Procedure Guidelines of Nuclear Medicine. From now on, Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG) aims to update the guidelines on the NVNG website whenever necessary. Improvements and additions can then be processed more quickly. NVNG members will be informed by email or mail if/when this is the case.

Auteurs and reviewers

This and former editions of our guidelines came into being through extensive contribution of several society members. The person(s) in charge of writing or updating a guideline is(are) mentioned above every procedure guideline. Reviewers are not always mentioned though their contribution is essential. We, as the Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG), would like to thank all the writers and reviewers for contributing to these procedure guidelines. Without their help we would never have been able to accomplish this task.

Contents

Preface	
Foreword	

Part I: Diagnostic Methods	13
Brain and Lacrimal tract	
Cisternal Scintigraphy	14
Regional Cerebral Blood Perfusion Scintigraphy	18
Dopamine Transporters and Receptor Scintigraphy	22
¹⁸ F FDG PET/CT of the Brain	27
Lacrimal Scintigraphy	31
Tumour and endocrine glands	
Thyroid Scintigraphy	35
Measurement of Thyroid Iodine Uptake	42
Iodine Total Body Scintigraphy	47
Parathyroid Scintigraphy	52
MIBG Scintigraphy	59
Somatostatin-receptor Scintigraphy	65
Adrenal Scintigraphy	71
Sentinel Node Localisation in Breast Cancer	75
Sentinel Node Localisation of Melanoma	80
Molecular Breast Imaging (MBI)	85
¹⁸ F FDG PET/CT in Oncology	90
¹²⁴ I PET/CT in Thyroid Cancer	119
¹⁸ F choline PET/CT in Prostate Cancer	126
¹⁸ F FES PET/CT in Oncology	132
¹⁸ F DOPA PET/CT in Neuroendocrine Tumours and in	
Presynaptic Dopaminergic Deficits	136
Hematopoietic system	
Lymphoscintigraphy of the Upper Extremities	145
Lymphoscintigraphy of the Lower Extremities	151
Spleen Scintigraphy Using Denatured Erythrocytes	158
Erythrocyte and Plasma Volume Measurement	161
Erythrocyte Survival Time	167
Leucocyte Scintigraphy	171
Platelet Kinetics	178
⁶⁷ Ga Scintigraphy	182
¹⁸ F FDG PET/CT in Inflammation and Infection Detection	187
Cardiovascular system	
Myocardial Perfusion Scintigraphy	191
¹⁸ F FDG PET/CT in Myocardial Viability	205
Equilibrium Radionuclide Angiography / Multigated Acquisition	211

Quantification of Left-to-Right Cardiac Shunt 21	15
Quantification of Right-to-Left Cardiac Shunt 2	19
⁸² Rb PET/CT of Myocardial Perfusion 22	22
¹³ N ammonia and H ₂ ¹⁵ O PET/CT of Myocardial Perfusion 22	28
¹²³ I MIBG Cardiac Sympathetic Innervation Scintigraphy 23	38
Locomotor system	
Bone Mineral Densitometry with Dual Energy X-Ray Absorptiometry	44
Bone Scintigraphy 24	49
¹⁸ F NaF PET/CT of Bone 26	61
Respiratory tract	
Lung Perfusion Scintigraphy 27	70
^{81m} Kr Ventilation Scintigraphy 2	74
^{99m} Tc Aerosols Ventilation Scintigraphy 27	77
Nasal Mucociliary Clearance 28	80
Gastrointestinal tract	
Salivary Gland Scintigraphy 28	84
Oesophageal Scintigraphy 28	88
Scintigraphy of Gastric Emptying 29	91
Scintigraphy of Ectopic Gastric Mucosa	00
Scintigraphy of Gastrointestinal Tract Haemorrhage 30	04
Detection of Gastrointestinal Protein Loss using ^{99m} Tc-HSA 30	80
Detection of Gastrointestinal Protein Loss using ⁵¹ Cr 3	11
Bile Acid Malabsorption Test 3	14
Bile Acid Breath Test 3	19
Liver and Spleen Scintigraphy 32	23
Hepatic Haemangioma Scintigraphy 32	27
¹⁴ C urea Breath Test 33	30
Cholescintigraphy 33	34
Urinary tract	
Renal Cortical Scintigraphy 34	41
Dynamic Renal Scintigraphy 34	44
Measurement of Renal Function (GFR and ERPF) 35	52
Micturition Cystourethrography using Scintigraphy 33	56
General	
Specific Preparations for ¹⁸ F FDG PET/CT in Critically III Patients	
on Intensive Care Units 36	60
Paediatric Dosage 36	67
Part II: Radionuclide Therapy33	71
¹³¹ I Therapy in Primary Hyperthyroidism and Non-Toxic (Multi)Nodular Goitre 3	72
¹³¹ I Therapy for Treatment of Differentiated Thyroid Carcinoma	84
Appendix 39	95
General Introduction to Bone Seeking Radiopharmaceuticals for	
the Treatment of Patients with Osteoblastic skeletal Metastases 39	98
¹⁸⁸ Re HEDP etidronate 4(00

²²³ Ra dichloride	404
¹⁵³ Sm lexidronam	407
⁸⁹ Sr chloride	411
Radiosynoviorthesis	415
90Y ibritumomab tiuxetan Treatment of Follicular NHL	420
Radioembolization Treatment for Hepatic Malignancies	428
³² P phosphate Treatment of Myeloproliferative Diseases	435
Peptide Receptor Radionuclide Therapy using ¹⁷⁷ Lu octreotate	439
Part III: Radiopharmaceuticals	445
Radiopharmacy introduction	447
General Recommendations	451
Carbon-14	
¹⁴ C urea	454
Chromium-51	
⁵¹ Cr erythrocytes	456
⁵¹ Cr chloride	459
⁵¹ Cr edetate	461
Cobalt-57	
⁵ /Co cyanocobalamin	462
Fluor-18	100
1°F fluorodeoxyglucose	463
185 fluordopa	465
	408
	470
Gallium-67	472
⁶⁷ Ga citrate	171
Indium-111	
¹¹¹ In oxine leukocytes	476
¹¹¹ In DTPA	480
111In pentetreotide	482
¹¹¹ In oxine thrombocytes	484
lodine-123	
¹²³ I iobenguane	487
¹²³ l ioflupane	490
¹²³ I iolopride	493
¹²³ l sodium iodide	495
¹²³ l iodohippurate	497
lodine-124	
¹²⁴ l sodium iodide	499
lodine-125	
¹² °I albumin	501

lodine-131	
¹³¹ I albumin	503
¹³¹ I norcholesterol	505
¹³¹ I sodium iodide	508
¹³¹ l iodohippurate	512
Krypton-81m	
^{81m} Krypton	514
Lutetium-177	
¹⁷⁷ Lu octreotate	515
Nitrogen-13	
¹³ N ammonia	518
Oxygen-15	
¹⁵ O water	521
Phosphorous-32	
³² P sodium phosphate	523
Radium-223	
²²³ Ra dichloride	526
Rhenium-188	
¹⁸⁸ Re etidronate	528
Rubidium-82	
⁸² Rb chloride	531
Samarium-153	
¹⁵³ Sm lexidronam	535
Selenium-75	
⁷⁵ Se tauroselcholic acid	537
Strontium-89	
⁸⁹ Sr chloride	538
Technetium-99m	
^{99m} Tc erythrocytes (modified in-vivo)	540
^{99m} Tc erythrocytes (in-vivo)	543
^{99m} Tc erythrocytes (in-vitro)	546
^{99m} Tc exametazime (HMPAO) leukocytes	549
^{99m} Tc denaturated erythrocytes	553
^{99m} Tc albumin	557
^{99m} Tc bicisate	559
^{99m} Tc colloidal tin	562
^{99m} Tc macrosalb	564
^{99m} Tc mebrofenin	566
^{99m} Tc bisphosphonates	568
^{99m} Tc mertiatide	570
^{99m} Tc nanocolloid	572
^{99m} Tc sodium pertechnetate	574
^{99m} Tc pentetate	576
^{99m} Tc sestamibi	579
^{99m} Tc succimer	582
^{99m} Tc tetrofosmin	584

Yttrium-90	
⁹⁰ Y ibritumomab tiuxetan	586
⁹⁰ Y citrate colloid	588
Part IV: Equipment	E01
	591
Equipment introduction	592
Gamma Camera Overview	597
Planar Gamma Camera	607
SPECT Gamma Camera	628
Whole Body Gamma Camera	633
PET-CT Scanner	637
Laboraty Equipment	662
Dose Calibrator	662
Radiation Monitors	671
Semiconductor Detector	675
Gamma Sample Changer	682
Probes	685
Preliminary Procedure Guidelines on Quality Control of (Medical)	
software in nuclear medicine	696
Co-registration in Hybrid Imaging Devices	712
PET-CT in Radiation Treatment Planning	716

Part V: Radiation Dosimetry in Nuclear Medicine 751