
four seasons of innovating
it organisations

Anneke Keller &
Tim Meeuwissen

the C
H

ER
R

Y
 M

O
D

EL

In the winter season, the cherry tree has to
put all its effort into surviving. In autumn it

has shed its leaves so it can save energy now.
If the tree isn’t too young, it is hardy and more

likely to stand the freezing cold. However, if
temperatures drop too low for too long, or if

the cherry tree’s roots or trunk are damaged,
it may not make it to spring without help.
The only thing our cherry tree can do is
enter full survival-mode and hang on.

Winter

28

29

I t was the first week of my new job at Jumbo. I was introduced to my team
and colleagues, and my calendar quickly filled up with getting-to-know-

you-meetings. As the new head of an IT-team I was hired to make significant
changes in the department. They asked me to found the “Jumbo Tech Campus”,
a new department that was supposed to become the tech innovation driver of
the company. All the people I met were aware of this, so they were all curious
and sometimes a little suspicious. I spent the first month or so mainly gathering
information. I asked everyone about their role at the company, what they thought
worked well, and what they found could be adjusted or improved. My days were
long and strenuous. Gathering and processing all this new information took a
lot of my energy, but it was worth it. My approach to effectively assess my new
department and team was by listening and asking a lot of questions. Based on the
feedback I got, I mentally visualised my new environment - how processes ran,
how people worked together, how we collaborated with our partners, and so on.

In an ideal world I would have had enough time to talk to every-
one and only after a few months make a plan on how to approach
the Big Task at hand. It’s my experience, however, that you hardly
ever get time for this. You were hired for a reason. There are urgent
issues that need attention ASAP. This case was no different.

On my third day at Jumbo, something went terribly wrong. I noticed
people on my team were making nervous phone calls, gathering around
the desk of one of the developers and intently looking at his screen. It was
9 o’clock in the morning. I asked them what’s going on. ‘Well, we did a
new monthly release last night and now customer service says users can’t
order on our website anymore. To be honest, this is not the first time.’
My plan to take my time to make a proper long-term oriented plan had
just flown out the window. This needed my immediate attention.

Stormy weather
The organisation is in wintertime. This means that we want to put all
our effort in stabilising, making sure the team is ready for spring, and is
fully equipped to start growing. For some reason, when I start in a new
role leading an IT team, my new team is often in what I call “stormy
weather”. Meaning that the amount of issues requiring direct attention
is so enormous that there is hardly any time for anything else. This is
often the case for at least part of the team. I don’t know why this hap-
pens so often, maybe I am attracted to this type of organisation or it
is just a very common state to be in, as an IT team. The upside is that
over time you get some practice in getting out of these situations.

When people ask me how to solve a sit-
uation like this, I always advise them to
prioritise getting out of stormy weather
over everything else. “Thunderstorm

mode” is a very discouraging state for
a team to operate in. If you don’t have
this problem and your team is currently
in a pretty stable condition, I would

30

still recommend reading the following
chapter. It will help you evaluate if
you have given enough thought and
attention to all the issues involved in
“stormy weather”. Like the weather
turning, situations can change quickly.
If your processes and leadership aren’t
prepared to immediately respond
effectively, things can easily run out
of control. Winter is for stabilising,
even when the weather is calm.

The deeper you delve into the details
IT entails, the more predictable it
becomes. It’s all 0s and 1s after all.
However, when it comes to systems,
data, and platforms, it’s a whole differ-
ent story. Due to its complexity, IT can
be unpredictable, especially if you’re
working with partially deprecated or
legacy systems. This may cause teams
to unintentionally create issues in the
software solutions, or in the hardware
configuration it is running on.

Thunderstorms are very counterpro-
ductive for a team, especially when
they last for a long time. Much of the
team members’ focus goes to solving
short-term issues. Since these issues
often cause major problems for the
running operation of the software as
well, the pressure to solve them is
high. On top of that, the longer you
remain in stormy weather, the harder

it becomes to distinguish what's urgent
from what's important, but not urgent.

Managers are likely to assign these
issues to the senior team members
and are often involved with them
themselves as well. In the past they
may have learned that being on top of
the problem solving process is part of
their job and the more they focus on
that, the better the outcome will be.
This means that the team members who
are not directly involved in solving the
issues, will have to do their job without
seniors and a manager to guide them.
Chances are this part of the team will
get unproductive, unmotivated, and
may in the long term even cause bigger
problems than the ones at hand.

When you are leading a team that is
currently in this state, or when you are
part of one, what is the best thing you
can do? Just go with the flow, perform
your tasks and wait for the storm to
blow over? This might work, but it is a
risky approach. This would mean that
the head of the team, the managers
and the seniors all lose sight of the
long-term goals and the team may not
get out of the storm at all. The storm
may rage on and cause team members
to get frustrated, fall ill, and even quit.

31

I normally take a different approach.
First off, I’ll focus all my attention on
getting the team out of this stormy
weather. This means that as a manager
or leader of the team, I have to make

sure that not all my time is consumed
by solving or communicating about
the problems. Limit the time and
energy spent on this to create focus
on two other very important things:

1.	 Fixing the processes,
2.	 trusting the team.

Let me explain.

Fix the processes
Working with a team that is dealing with a storm requires
a number of things that may feel counterintuitive:

1.	 Burden the team with mandatory evaluation sessions,
2.	 Reduce testing time before code goes to production,

even though the team wants to do more testing,
3.	 Step out of your comfort zone and start soul finding

sessions with peers in other departments,
4.	 Tell everyone about what went wrong in the department.

I’ll admit, I’m not really selling these
tasks here. That being said, getting
out of a storm isn’t easy and requires

effort and leadership from a leader,
their team and their colleagues. Let’s
go through the steps one by one.

1.	 Close the feedback loop

Failing isn’t bad for an organisation,
it may even have important upsides.
Failing means the organisation is
experiencing new things and trying
to make progress. Failing without
learning on the other hand, is very
bad for an organisation. It is costly
and leads to customer dissatisfac-
tion. So, I need to make sure my
team learns from mistakes. In other
words: close the feedback loop.

When issues occur on your production
system, something is failing. It might

be a bug in the software, a hardware
configuration, or both, or even some-
thing completely different. There are
countless chances to fail. Key is to know
exactly what failed and how the team
solved it. A root cause analysis (RCA)
has to be made for everything that went
wrong, or a post-mortem as some call
it. (Personally, I hate this eery term, but
my teams won’t stop using it.) What’s
important is that the team evaluates
the process of dealing with an issue.

32

Discuss post-mortems with the team,
partly to pinpoint which issues are
one-offs and which ones need struc-
tural fixing. Structural fixes need to
go to the team’s backlogs, with the
right priority. The team needs to stop
“firefighting”, therefore structural fixes
deserve a place high on the backlogs.

I learned about the importance of
quality control in the years I worked
in the automotive industry. For these
companies the quality of manufactur-
ing is vital. A car is built up of about
30,000 parts. If one of these parts isn’t

manufactured well and breaks, this
can have dire consequences, ranging
from costly recalls to fatal car crashes.

Every single part of a car has to be
of very high quality. At the company
I worked at, the quality system was
based on a simple principle called
PDCA: Plan > Do > Check > Act.
This is a common guideline in the
automotive industry and is visual-
ised as a circle. The idea behind it is
that quality can only be achieved by
continuous learning. The circle is an
effective way of structuring that.

33

This is how it works:

Plan: Develop a solution you want to make with the whole team.

Do: Execute the solution according to plan and record all outcomes.

Check: Analyse the outcomes and determine success.

Act: Implement improvements and iterate back to “plan” if needed.

When you think about it, PDCA is
nothing special, perhaps it is so simple
you can’t even really call it a quality
system. Nevertheless, I was impressed
by this process. Not because of its
complexity, but because of the devo-
tion with which it was followed by my
colleagues. I worked at a manufacturer
of navigation systems at the time, and
we were collaborating with a large
European car manufacturer to develop
navigation software for their next range
of cars. Their team used the PDCA
process and held us to it as well. In
the beginning, we weren’t charmed by
it, because it slowed down our scrum
based development process. However
the automotive team stubbornly kept

testing our software, and over time we
started experiencing the benefits. Every
time we thought we had delivered some
pretty solid work, they managed to find
flaws in it and our first priority would
be to fix them. Over time, this resulted
in us building a very robust product.

I believe this PDCA system is a powerful
tool, especially when your team is in
“firefighting mode”. It gives structure
to your actions and it is helpful for
you and your team to experience that
if you relentlessly keep fixing faults
and learning from them - painful as
it may be - eventually the quality of
the platform will improve and you
will get out of the stormy weather.

Through the fire and flames

The period Anneke is describing, is one all too familiar to me. With
my history in development I’ve seen many outages and this one
was not different from the many others I’ve witnessed and solved.
An outage can hurt the business in many ways. It’s key however to
make sure everybody that needs to feel the pain, feels it where it
should be felt, and prevent the feeling from becoming diffuse caus-
ing a blaming culture. IT is intrinsically complex, and not everybody
is inclined to, or even dares, to understand it. The more you know,
the more you realise you don’t know, which can lead to a blinding
downfall on the spiral of self-worth and resistance or reluctance.1

1. � Kruger, Justin & Dunning, David, Unskilled and Unaware of It: How
Difficulties in Recognizing One’s Own Incompetence Lead to Inflated Self-
Assessments (Journal of Personality and Social Psychology, 1999)

My hands were itching to help out.
I saw so many opportunities to

solve the issue at hand, as well as
improve the overall way of working

