
Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Other publications by Van Haren Publishing

Van Haren Publishing (VHP) specializes in titles on Best Practices, methods and standards
within four domains:
 - IT management,
 - Architecture (Enterprise and IT),
 - Business management and
 - Project management

These publications are grouped in series: ITSM Library, Best Practice and IT Management
Topics. VHP is also publisher on behalf of leading companies and institutions:
The Open Group, IPMA-NL, PMI-NL, CA, Getronics, Pink Elephant.

Topics are (per domain):

IT (Service) Management /

IT Governance

ASL
BiSL
CATS
CMMI
COBIT
ISO 17799
ISO 27001
ISO/IEC 20000
ISPL
IT Service CMM
ITIL® V2
ITIL® V3
ITSM
MOF
MSF

Architecture

(Enterprise and IT)

Archimate
GEA
TOGAFTM

Business Management

EFQM
ISA-95
ISO 9000
ISO 9001:2000
SixSigma
SOX
SqEME®

Project/Programme/

Risk Management

A4 Project management
ICB / NCB
MINCE®

M_o_R®

MSP
PMBoK
PRINCE2®

For the latest information on VHP publications, visit our website: www.vanharen.net.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

IV

Colofon

Title:	 SOA Source Book

A publication of:	 The Open Group

Publisher:	 Van Haren Publishing, Zaltbommel, www.vanharen.net

ISBN:	 978 90 8753 503 2

Print:	 First edition, first impression, April 2009

Layout and design:	 CO2 Premedia, Amersfoort-NL

Copyright:	 © 2009, The Open Group

For any further enquiries about Van Haren Publishing, please send an e-mail to:
info@vanharen.net

Trademarks
TOGAF™ is a trademark and The Open Group® is a registered trademark of
The Open Group in the United States and other countries.
All other brand, company, and product names are used for identification purposes
only and may be trademarks that are the sole property of their respective owners.

Comments relating to the material contained in this document may be submitted by
email to: ogspecs@opengroup.org

Although this publication has been composed with most care, neither Author nor
Editor nor Publisher can accept any liability for damage caused by possible errors
and/or incompleteness in this publication.

No part of this publication may be reproduced in any form by print, photo print,
microfilm or any other means without written permission by the publisher.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

V

Contents

Chapter 1  Service-Oriented Architecture�� 1
	 1.1	 What Is SOA?�� 1
	 1.1.1	 Service-Oriented Architecture��� 1
	 1.1.2	 SOA Architectural Style�� 2
	 1.2	 SOA and Enterprise Architecture�� 2
	 1.2.1	 Enterprise Architecture�� 3
	 1.2.2	 SOA��� 4
	 1.2.3	 Overview of SOA��� 5
	 1.2.4	 Architectural Dimension of SOA�� 6
	 1.2.5	 Mainstream SOA��� 7
	 1.3	 SOA and Boundaryless Information Flow�� 8
	 1.3.1	 The Problem��� 8
	 1.3.2	 Boundaryless Information Flow through SOA��������������������������� 8
	 1.4	 SOA Features and Benefits��10
	 1.4.1	 Summary of Features and Benefits��11
	 1.4.2	 Service���12
	 1.4.3	 Service Re-Use���13
	 1.4.4	 Messaging���14
	 1.4.5	 Message Monitoring��14
	 1.4.6	 Message Control��14
	 1.4.7	 Message Transformation��15
	 1.4.8	 Message Security��15
	 1.4.9	 Complex Event Processing���15
	 1.4.10	 Service Composition���16
	 1.4.11	 Service Discovery��17
	 1.4.12	 Asset Wrapping��18
	 1.4.13	 Virtualization���19
	 1.4.14	 Model-Driven Implementation���19
	 1.5	 Maturity Model for SOA���20
	 1.5.1	 Overview of the Model���20
	 1.5.2	 Using the Model���20
	 1.5.3	 Dimensions��22
	 1.5.4	 Maturity Levels��23

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

VI

Chapter 2  The SOA Reference Architecture��� 27
	 2.1	 The Building Blocks of SOA���27
	 2.1.1	 Services���28
	 2.1.2	 Business Processes���28
	 2.1.3	 Human Actors��29
	 2.1.4	 Events��30
	 2.1.5	 Service Descriptions, Contracts, and Policies����������������������������30
	 2.1.6	 Service Compositions���31
	 2.1.7	 Programs���32
	 2.1.8	 Information Items, Data Items, and Data Stores�����������������������32
	 2.2	� A High-Level Perspective of the SOA Reference Architecture��������������33
	 2.2.1	 Overview��33
	 2.2.2	 Operational Systems Layer���35
	 2.2.3	 Service Components Layer��35
	 2.2.4	 Services Layer���36
	 2.2.5	 Business Processes Layer��36
	 2.2.6	 Consumers Layer���37
	 2.2.7	 Integration Layer���37
	 2.2.8	 Quality of Service Layer���37
	 2.2.9	 Information Layer���38
	 2.2.10	 Governance Layer��38
	 2.3	� Detailed Building Blocks of the SOA Reference Architecture���������������38
	 2.3.1	 Composition��39
	 2.3.2	 Messaging���40
	 2.3.3	 Service Discovery��42
	 2.3.4	 Asset Wrapping��43
	 2.3.5	 Virtualization���43
	 2.3.6	 Event Processing��44
	 2.4	 Infrastructure for SOA��45
	 2.4.1	 Service Repository���46
	 2.4.2	 Messaging Program���46
	 2.4.3	 Activity Monitor��48
	 2.4.4	 PDPs and PEPs��49
	 2.4.5	 Data Translator��49
	 2.4.6	 Encryption Engine��50
	 2.4.7	 Event Processor��51
	 2.4.8	 Composition Engine���51
	 2.4.9	 Service Registry���52

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

VII

	 2.4.10	 Service Components���53
	 2.4.11	 Model-Implementation Environment��53

Chapter 3  Service-Oriented Infrastructure��� 55
	 3.1	 Overview���55
	 3.2	 SOI Reference Model���56
	 3.2.1	 Business Requirements���56
	 3.2.2	 Service-Level Requirements���57
	 3.2.3	 BPM���57
	 3.2.4	 IMF��57
	 3.2.5	 Applications��57
	 3.2.6	 Services Exposed to and Consumed by IT���������������������������������57
	 3.2.7	 Infrastructure Services��58
	 3.2.8	 Physical Services��58
	 3.2.9	 Virtualized Services���58
	 3.3	 Infrastructure Services��58
	 3.3.1	 Pure-Play Infrastructure Services���59
	 3.3.2	 Cross-Application Infrastructure Services���������������������������������60
	 3.3.3	 Operational Infrastructure Services��61
	 3.4	 Virtualized Services���61

Chapter 4  SOA and TOGAF��63
	 4.1	 Using TOGAF for Enterprise SOA��63
	 4.1.1	 Preliminary Phase���64
	 4.1.2	 Architecture Requirements Management����������������������������������66
	 4.1.3	 Phase A: Architecture Vision��66
	 4.1.4	 Phase B: Business Architecture��70
	 4.1.5	 Phase C: Information Systems Architectures�����������������������������71
	 4.1.6	 Phase D: Technology Architecture��74
	 4.1.7	 Phase E: Opportunities and Solutions��75
	 4.1.8	 Phase F: Migration Planning��76
	 4.1.9	 Phase G: Implementation Governance���������������������������������������76
	 4.1.10	 Phase H: Architecture Change Management�����������������������������76
	 4.2	 Using TOGAF for SOA Solutions��77
	 4.2.1	 Preliminary Phase���77
	 4.2.2	 Architecture Requirements Management����������������������������������78
	 4.2.3	 Phase A: Architecture Vision��78
	 4.2.4	 Phase B: Business Architecture��78

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

VIII

	 4.2.5	 Phase C: Information Systems Architectures�����������������������������79
	 4.2.6	 Phase D: Technology Architecture��81
	 4.2.7	 Phase E: Opportunities and Solutions��82
	 4.2.8	 Phase F: Migration Planning��82
	 4.2.9	 Phase G: Implementation Governance���������������������������������������82
	 4.2.10	 Phase H: Architecture Change Management�����������������������������82
	 4.3	 Addressing Stakeholder Concerns in SOA���83
	 4.3.1	 Stakeholders���83
	 4.3.2	 Concerns and Models���84
	 4.4	 Information Architecture for SOA���87
	 4.4.1	 Importance of Information Architecture for SOA��������������������88
	 4.4.2	 Information Architecture for SOA using TOGAF��������������������89
	 4.4.3	 Preliminary Phase���90
	 4.4.4	 Phase A: Architecture Vision��91
	 4.4.5	 Phase B: Business Architecture��91
	 4.4.6	 Phase C: Information Systems Architectures�����������������������������92
	 4.4.7	 Phase D: Technology Architecture��93

Chapter 5  SOA Governance���95
	 5.1	 Introduction to SOA Governance��95
	 5.1.1	 Definition of SOA Governance���96
	 5.1.2	 Enterprise SOA Governance Models��97
	 5.1.3	 SOA Governance Framework��98
	 5.2	 SOA Governance Reference Model���99
	 5.2.1	 Governance Principles��99
	 5.2.2	 SOA Activities��100
	 5.2.3	 Governing Processes���101
	 5.2.4	 Roles and Responsibilities��102
	 5.3	 SOA Governance Vitality Method���103
	 5.3.1	 The Plan Phase���104
	 5.3.2	 The Define Phase���104
	 5.3.3	 The Implement Phase��104
	 5.3.4	 The Monitor Phase��105

Index��� 107

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

IX

List of Figures

Figure 1: Overview of a Service-Oriented Architecture��������������������������������������� 5
Figure 2: Boundaryless Information Flow��� 9
Figure 3: Information Silos��� 9
Figure 4: SOA for Boundaryless Information Flow��10
Figure 5: SOA Maturity Model Matrix���21
Figure 6: High-Level Perspective of the SOA Reference Architecture�������������34
Figure 7: Basic Model for Service Composition��39
Figure 8: Model for Scripted Service Composition���39
Figure 9: Basic Messaging Model��40
Figure 10: Detailed Messaging Model���41
Figure 11: Model for Service Discovery���42
Figure 12: Model for Asset Wrapping���43
Figure 13: Model for Virtualization���44
Figure 14: Model for Event Processing���45
Figure 15: Service-Oriented Infrastructure Reference Model���������������������������56
Figure 16: Example ODBC Service Stack���60
Figure 17: SOA Governance Relationships��96
Figure 18: SOA Governance Aspects��97
Figure 19: SOA Governance Framework��99
Figure 20: SOA Governance Vitality Method��103

List of Tables

Table 1: SOA Features, Benefits, and Infrastructure��12
Table 2: SOA Concerns, Stakeholders, and Models���87

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

X

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XI

Preface

The Open Group
The Open Group is a vendor-neutral and technology-neutral consortium,
whose vision of Boundaryless Information Flow™ will enable access to
integrated information within and between enterprises based on open
standards and global interoperability. The Open Group works with
customers, suppliers, consortia, and other standards bodies. Its role is to
capture, understand, and address current and emerging requirements,
establish policies, and share best practices; to facilitate interoperability,
develop consensus, and evolve and integrate specifications and Open
Source technologies; to offer a comprehensive set of services to enhance the
operational efficiency of consortia; and to operate the industry’s premier
certification service, including UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating
certification programs and has extensive experience developing and
facilitating industry adoption of test suites used to validate conformance to
an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the
main part of which is focused on development of Technical and Product
Standards and Guides, but which also includes white papers, technical studies,
branding and testing documentation, and business titles. Full details and a
catalog are available at www.opengroup.org/bookstore.

This Document
The Open Group’s SOA Source Book is a collection of source material for use
by enterprise architects working with Service-Oriented Architecture (SOA).

It consists of material that has been considered and in part developed by The
Open Group SOA Working Group1. The SOA Working Group is engaged in a
work program to produce definitions, analyses, recommendations, reference

1	 Refer to www.opengroup.org/projects/soa.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XII

models, and standards to assist business and information technology
professionals within and outside of The Open Group to understand and
adopt SOA. The Source Book does not represent the final output of that work
program, which will be published as a collection of Open Group Standards
and Guides. It is an interim publication, and its content will not necessarily
be reflected in the final output.

The material reflects input from a large number of people from a wide
range of Open Group member companies, including product vendors,
consultancies, and users of SOA. In some cases, these people have brought
concepts developed, not just by themselves, but by groups of people within
their organizations. The input has been refined and further developed
through discussion within the Working Group. The value in the result is due
to the ideas and efforts of the Working Group members.

The material is now published in its current form to make that value available
to the wider architecture community.

Chapter 1 discusses SOA in relation to enterprises, and describes how to
evaluate SOA features in business terms.

Chapter 2 presents The Open Group SOA Reference Architecture.

Chapter 3 describes how to apply the principle of service-orientation to
infrastructure.

Chapter 4 explains how to use TOGAF - the comprehensive architecture
framework developed and maintained by The Open Group - for SOA.

Chapter 5 describes SOA governance, and provides an initial explanation of
how to define and maintain an SOA governance regimen for an enterprise.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XIII

Trademarks

Boundaryless Information Flow™ and TOGAF™ are trademarks and Making
Standards Work®, The Open Group®, UNIX®, and the “X” device are
registered trademarks of The Open Group in the United States and other
countries.

Model Driven Architecture® and MDA® are registered trademarks, and
Business Process Modeling Notation™, BPMN™, MOF™, and Unified
Modeling Language™ are trademarks of the Object Management Group, Inc.
in the United States and/or other countries.

OASIS® is a registered trademark, and Security Assertion Markup Language™
and SAML™ are trademarks of OASIS.

W3C® is a registered trademark (registered in numerous countries), and
XML™ and XSL™ are trademarks of the World-Wide Web Consortium
(W3C); marks of W3C are registered and held by its host institutions MIT,
ERCIM, and Keio.

The Open Group acknowledges that there may be other brand, company,
and product names used in this document that may be covered by trademark
protection and advises the reader to verify them independently.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XIV

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XV

Acknowledgements

The Open Group gratefully acknowledges the following people in
contributing, either directly or indirectly, to the SOA Source Book.

The material in the book is derived from the work of the Definition of
SOA, SOA Reference Architecture, SOA/TOGAF Practical Guide, SOA
Governance, Service-Oriented Infrastructure, and SOA Ontology projects of
The Open Group SOA Working Group, from work done by The Open Group
Service Integration Maturity Model project, and also from work done jointly
by the SOA Working Group and the Semantic Interoperability Working
Group.

The co-chairs of the SOA Working Group, Tony Carrato (IBM) and Mats
Gejnevall (Capgemini), together with former co-chair Chris Greenslade
(CLARS), member Jorge Diaz (IBM), and Forum Director Chris Harding
(The Open Group), comprise the Working Group’s Steering Committee. They
are responsible for the overall direction of the Working Group and contribute
greatly to the quality of its work. In addition, Tony Carrato took a particular
interest in guiding the development of the Source Book. Chris Harding was
primary author.

The Definition of SOA project was led by Dave Hornford (Hornford
Associates).

The SOA Reference Architecture project is led by Ali Arsanjani (IBM) and
Nikhil Kumar (ApTSi). Ali Arsanjani made a particular contribution in
providing the base document for the work, having led its development within
IBM.

The SOA/TOGAF Practical Guide project is led currently by Awel Dico
(Bank of Montreal) and Dave Hornford, and was led formerly also by Steve
Bennett (BEA Systems).

The SOA Governance project is led currently by Mats Gejnevall and Jorge
Diaz, and was led formerly also by Andrew Hately (IBM), Tony Carrato, and
Steve Bennett. In addition, Bill Brown (IBM) provided a substantial part of its
base material.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XVI

The Service-Oriented Infrastructure project is led currently by Hemesh Yadav
(Wachovia), E.G. Nadhan (HP), and Michael Salsburg (Unisys), and was led
formerly also by Mark England (HP) and Frank Kroon (formerly Capgemini,
now HP). E.G. Nadhan authored the Service-Oriented Infrastructure section
of the Source Book.

The SOA Ontology project is led by Chris Harding.

The Open Group Service Integration Maturity Model project is led by Andras
Szakal (IBM). He was responsible for providing the project’s base document,
which resulted from work led by Ali Arsanjani within IBM.

The contribution of the Semantic Interoperability Working Group was led by
Arnold Van Overeem (CapGemini) and Ron Schuldt (Lockheed Martin).

Many of the people mentioned above also made contributions to projects of
which they were not officers.

The following Working Group members, who were not project or working
group officers, made particular contributions to one or more projects: Stuart
Boardman (CGI), Kathy Carusone (MIT Lincoln Laboratory), Dave Chapelle
(BEA Systems), Bill Estrem (Metaplexity), Ed Harrington (Model-Driven
Solutions), Harry Hendrickx (Capgemini), Heather Kreger (IBM), Bob Laird
(IBM), Srikanth Inaganti (Wipro), Shreyas Kamat (Infosys), Rich Valentine
(Unisys), and Bobbi Young (Unisys).

Finally, over 300 other people have been involved in the SOA Working
Group. It is not possible to mention them all individually, but their collective
contribution is important.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XVII

Referenced Documents

The following documents are referenced in this Source Book:

•	 The Boundaryless Organization: Breaking the Chains of Organizational
Structure, by Ron Ashkenas, Dave Ulrich, Todd Jick, & Steve Kerr; ISBN
0-7879-5943-X.

•	 Control Objectives for Information and related Technology (COBIT),
Version 4.1, available from ISACA; refer to www.isaca.org.

•	 Interoperable Enterprise Business Scenario (K022), published by The
Open Group; refer to www.opengroup.org/bookstore/catalog/k022.htm.

•	 ISO/IEC 2382-1:1993, Information Technology – Vocabulary – Part 1:
Fundamental Terms.

•	 OECD Corporate Governance Principles, 2004, available from the
Organization for Economic Cooperation and Development; refer to
www.oecd.org.

•	 TOGAF; refer to www.opengroup.org/togaf.
•	 The SOA Solution Stack: A Reference Architecture for Designing SOA

Solutions, IBM Corporation.
•	 The following standards defined by OASIS; refer to www.oasis-open.org:
	 –	 Business Process Execution Language (BPEL)
	 –	 Security Assertion Markup Language (SAML)
	 –	 Universal Description Discovery and Integration (UDDI)
	 –	 Web Services Reliable Messaging (WS-ReliableMessaging)
	 –	 Web Services Security (WS-Security)
	 –	 Web Services Security Policy (WS-Security-Policy)
	 –	 eXtensible Access Control Markup Language (XACML)
•	 The following standards, defined by the Object Management Group

(OMG); refer to www.omg.org:
	 –	 Business Process Modeling Notation (BPMN)
	 –	 Meta Object Facility (MOF)
	 –	 Unified Modeling Language (UML)
•	 The following standards, defined by the World-Wide Web Consortium

(W3C); refer to www.w3.org:
	 –	 Simple Object Access Protocol (SOAP)
	 –	 Web Ontology Language (OWL)
	 –	 Web Services Description Language (WSDL)

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

XVIII

	 –	 Web Services Policy Framework (WS-Policy)
	 –	 eXtensible Markup Language (XML)
	 –	 eXtensible Stylesheet Language (XSL) Transformations (XSLT)

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

This section discusses Service-Oriented Architecture (SOA) in relation to
enterprises, and describes how to evaluate SOA features in business terms. It
contains:
•	 A definition of SOA
•	 An analysis of the role of SOA in relation to enterprise architecture
•	 An explanation of how SOA can enable an enterprise to achieve

Boundaryless Information Flow
•	 A description of the features of SOA and the business benefits that they

provide
•	 An SOA maturity model that facilitates the assessment of an organization’s

current and desired future states in service integration and flexibility, and
helps the organization to determine its architectural strategy for adopting
service-orientation

	 1.1	 What Is SOA?
This definition of SOA was produced by the SOA Definition team of The
Open Group SOA Working Group.

	 1.1.1	 Service-Oriented Architecture
Service-Oriented Architecture (SOA) is an architectural style that supports
service-orientation.

Service-orientation is a way of thinking in terms of services and service-based
development and the outcomes of services.

A service:
•	 Is a logical representation of a repeatable business activity that has a

specified outcome (e.g., check customer credit, provide weather data,
consolidate drilling reports)

•	 Is self-contained

Chapter 1

Service-Oriented Architecture

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book2

•	 May be composed of other services
•	 Is a “black box” to consumers of the service

	 1.1.2	 SOA Architectural Style
An architectural style is the combination of distinctive features in which
architecture is performed or expressed.

The SOA architectural style has the following distinctive features:
•	 It is based on the design of the services – which mirror real-world

business activities – comprising the enterprise (or inter-enterprise)
business processes.

•	 Service representation utilizes business descriptions to provide context
(i.e., business process, goal, rule, policy, service interface, and service
component) and implements services using service orchestration.

•	 It places unique requirements on the infrastructure – it is recommended
that implementations use open standards to realize interoperability and
location transparency.

•	 Implementations are environment-specific – they are constrained or
enabled by context and must be described within that context.

•	 It requires strong governance of service representation and
implementation.

•	 It requires a “Litmus Test”, which determines a “good service”.

	 1.2	 SOA and Enterprise Architecture
SOA provoked hot debate when it burst onto the scene in 2005. Its
advocates said that it would replace traditional information technology (IT)
architecture. The traditionalists replied that SOA was nothing new; just a
rehash of old (but good) ideas about encapsulation and loose coupling.

There is some truth in both of these positions. But in the main they are both
wrong. Although SOA does include earlier architectural ideas, it is a distinct
style which marks a major step forward. And, to obtain maximum benefit
from SOA, an enterprise needs traditional architectural disciplines and
methods.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

3Service-Oriented Architecture

	 1.2.1	 Enterprise Architecture
Why does an enterprise need an SOA – or an architecture of any other kind?

The directing function of an enterprise – the board of directors of a
commercial company, or the top-level management of a division or
government department, for example – sets objectives for the enterprise, and
decides how it should operate in order to achieve them. A clearly articulated
architecture describes the desired enterprise organization and manner of
operation. By doing so, it provides:
•	 A definition of the changes that should be implemented to achieve this

organization
•	 A basis for control and governance of its ongoing operation

An enterprise architecture also provides a third benefit. Enterprises change
over time. They combine and split, as in commercial mergers and spin-offs, or
government department reorganizations. It is easier to combine an enterprise
with another, or to split it into component parts, when it has a clearly-defined
architecture. This brings significant cost savings, and can increase the value of
a commercial enterprise.

Enterprise architecture in its widest sense includes much more than IT.
It covers business operations, finance, people, and buildings in addition
to technology, and it covers technologies other than IT, such as for
manufacturing or transport. The enterprise architect must understand these
areas, at least well enough to supervise architects that specialize in them. The
IT architect must be able to work in teams with such specialists.

The SOA Source Book focuses on the IT component of enterprise
architecture. This is concerned with the strategic development of an
enterprise’s IT. It looks at the whole of the enterprise, not just a particular
system, and it looks at the long-term evolution of the IT, not just at what
should be installed today.

The quality of an enterprise’s IT architecture can have a major impact on
its business performance. Since the 1950s, commercial and government
organizations have become increasingly dependent on IT for the conduct of
their everyday operations, and that trend looks likely to continue. Companies
that use IT effectively prosper. The best of the once-derided .com companies

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book4

(“When will they ever make a profit?”) became household names. Companies
with poor IT fall behind their competition, or fail.

Because of its importance to the overall business, enterprise IT architecture
has become a profession. No company would think of undertaking the
development of a major building without engaging a buildings architect
with a professional status that provides a guarantee of competency. Similarly,
companies undertaking the development of major IT systems look for
professional enterprise IT architects. Their status as professionals indicates
that they understand, and have a track record of applying, the best IT
architecture methods and techniques.

	 1.2.2	 SOA
An enterprise architect looks at the overall construction of the enterprise.
SOA is a particular construction technique that can be used to build
enterprise IT.

A particular technique can have a major impact on the overall construction.
The introduction of steel-frame techniques in the latter part of the 19th
century revolutionized buildings architecture. It made possible the
skyscrapers of the 1920s, and the even larger buildings that we have today.

SOA could have a similar impact on IT architecture. It does not increase the
size of IT systems, but it does increase their interoperability.

With SOA, the IT systems perform services that are defined and described
in the context of the enterprise’s business activities. Each service is identified,
and what it does is clearly set out in the form of a contract. This principle
enables use of techniques such as service composition, discovery, message-
based communication, and model-driven implementation, which give fast
development of effective and flexible solutions. They are important features
of SOA. Their benefits – especially that of enterprise agility – are the most
frequently quoted reasons for SOA adoption.

But it is the replacement of large, monolithic applications that have tiny
interoperability interfaces, grudgingly provided and not guaranteed, by
smaller, modular services that have interface descriptions and contracts, that
is the most fundamental effect of SOA. This is the basis for the huge increase

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

5Service-Oriented Architecture

in IT system interoperability that SOA can bring, not only within enterprises,
but also between enterprises.

	 1.2.3	 Overview of SOA
The principle of service-orientation can apply throughout the enterprise
architecture, but is most commonly applied to the organization of the
software that supports the enterprise’s business operations. With SOA, this
software is organized as a set of software services. The services are supported
by an infrastructure that, together with the services, improves information
flow within the enterprise and between the enterprise and external
enterprises.

The software services are used by the enterprise’s business operations. This
frequently involves a human-computer interface, often implemented as a web
interface using portals, etc., but it may also involve other interfaces, such as
machine interfaces for process control.

Specific sets of business processes, services, and interfaces are created in
the context of a supporting infrastructure as service-based solutions. Each
solution solves a particular business problem.

The business operations themselves may be organized on the service-oriented
principle. Indeed, there are many people who believe that the greatest benefits
of SOA are obtained when it is applied to the business architecture.

Lifecycle
Support

Execution
Environment

Information
Storage

Development

Software
Services

Business
Information

Infrastructure
Technical
Operations

Business
Operations

Figure 1: Overview of a Service-Oriented Architecture

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book6

The infrastructure provides the execution environment for the software
services. This includes the basic operating system and networking, and also
includes specific support for software services, such as message passing
and service discovery. The infrastructure is managed via human-computer
interfaces by technical staff who are responsible for all aspects of operating
the enterprise’s IT, including its availability, performance, and security.

A major benefit of SOA is that it delivers enterprise agility, by enabling rapid
development and modification of the software that supports the business
processes. The infrastructure can provide for this by including facilities such
as business-oriented scripting languages and model-driven implementation
tools. These facilities support not only the creation of new software services,
but also the modification and replacement of existing ones: the whole service
lifecycle. They are used via human-computer interfaces by development staff.

The infrastructure also provides for storage of enterprise information. SOA
can enable easier flow of information within and between enterprises. The
information is not locked up in specific services, as it often is in the so-called
“silo” applications of earlier architecture styles, but is available to all the
software services that need it.

Service-orientation may extend to the design of the infrastructure, and
many people advocate this, but it is not essential to service-oriented software
architecture.

	 1.2.4	 Architectural Dimension of SOA
It takes far greater knowledge and skill to erect a skyscraper than to build a
house. The buildings architect must make complex stress calculations based
on an understanding of the properties of the materials involved. Training and
experience are essential for success.

Knowledge and skill are also needed for success with SOA. The IT
architect must specify the right tools and infrastructure, create the basis
for the identification of modular services, and ensure that appropriate
implementation governance is in place. Good judgment in these matters is
crucial.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

7Service-Oriented Architecture

Also, just as steel-frame construction is not appropriate for every building,
SOA is not necessarily the right approach to solving every IT problem. The IT
architect must know when, as well as how, to use SOA.

SOA can be a big investment. Its tools and infrastructure cost money, but
that is only one part of what is needed. Development and operation staff
must have special skills to create and use SOA, and the overall organization
structure and culture must be right if the full benefits of SOA are to be
achieved. Staff development and organizational change is often the larger part
of the investment. Such an investment can only be justified in the light of a
long-term strategy for the enterprise as a whole.

Many enterprises have undertaken small-scale SOA developments as part of
a learning process. This is an excellent way for them to introduce SOA, but
they often find it hard to extend beyond the initial pilot. Developers complain
that they cannot justify the infrastructure that they need. Of course not!
Expensive infrastructure cannot be justified on the basis of small projects
and, in any case, looking for business justification for technical spend is
putting the cart before the horse. The business need should come before the
technical solution. SOA should be used where – and only where – it is the
best way to meet that need.

This is where enterprise architecture comes in. Enterprise architecture
creates long-term IT strategy in the light of business possibilities and needs.
Inclusion in such a strategy is the only good justification for large-scale SOA.

	 1.2.5	 Mainstream SOA
SOA is no longer a new toy. It is an established style that architects
understand and can use.

The architect does not start by assuming SOA, but considers service-
orientation and its associated techniques in the light of the business strategy.
Sometimes, the technical possibilities can change that strategy, but the
business needs and possibilities are still the main driving force. The architect
finishes by specifying a particular combination of SOA techniques because it
best realizes the possibilities and meets the needs.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book8

This is the normal architectural approach to IT strategy. SOA and enterprise
architecture may have seemed different in the beginning, but SOA is now part
of the enterprise architecture mainstream.

	 1.3	 SOA and Boundaryless Information Flow
Why is SOA important to The Open Group?

The Open Group’s vision is Boundaryless Information Flow. It has long
been a principle of enterprise organization that permeable boundaries
between departments, organizational levels, enterprises, and nations deliver
productivity and enterprise agility. This was established in the 1980s by
pioneers such as Jack Welch of GE (see The Boundaryless Organization:
Breaking the Chains of Organizational Structure). But traditional IT
architectures hinder this! The need for Boundaryless Information Flow –
provided by IT architectures that enable information to flow freely across
the permeable organizational boundaries – was identified by The Open
Group and described in its Interoperable Enterprise Business Scenario. The
Open Group took on the mission of driving the creation of Boundaryless
Information Flow.

	 1.3.1	 The Problem
Enterprise architecture is the key to achieving Boundaryless Information
Flow. The problem, as described in the Interoperable Enterprise Business
Scenario, is that enterprises need the kind of architecture shown in Figure 2,
in which the business processes are supported by systems that can exchange
information freely.

Too often, however, they are faced with a situation where each business
process has its own system which has its own particular interfaces and
information formats, and is a so-called “information silo”, as shown in
Figure 3.

	 1.3.2	 Boundaryless Information Flow through SOA
With SOA, the applications are replaced by services that interact with each
other. Typically, interactions take place by exchange of messages via an
Enterprise Services Bus (ESB) within the enterprise, or across the web in the
case of external services, although other forms of interaction, even direct

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

9Service-Oriented Architecture

Assembling
Manufacturing
Legal
Finance

Customer Support

Online
Systems

Design
Systems

ERP
Systems

Requirements
Systems

Procurement
Systems

External “Out” Space

Internal Space

Processes

Systems

Procuring

External “In” Space

Figure 2: Boundaryless Information Flow

Ext. “Out” Space
Customer Support

Internal Space

Procuring

Procurement
Systems

Design
Systems

Online
Systems

ERP
Systems

Requirements
Systems

Systems

Processes

External “In” Space

Assembling
Manufacturing
Legal
Finance

Figure 3: Information Silos

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book10

invocation of one service by another (so-called “hard-wiring”) may be used.
This style of architecture can be the basis of Boundaryless Information Flow,
as illustrated in Figure 4.

It is because of the potential for SOA to deliver Boundaryless Information
Flow that SOA is critically important to The Open Group.

	 1.4	 SOA Features and Benefits
SOA starts with a simple idea – the concept of service. This makes it possible
to introduce other ideas, such as service bus, service composition, and
service virtualization, each of which can be applied to the architecture of an
enterprise to deliver benefits. As an architect, it is your job to evaluate the
needs of your enterprise, and the costs of the different potential solutions, to
determine which of these ideas should be applied, and how they should be
applied, in your SOA.

An architect should always probe into the information given, about both
requirements and solutions, to reach a level of understanding that goes
deeper than the buzzwords. For example, it is often said that “SOA delivers

Figure 4: SOA for Boundaryless Information Flow

External “In” Space

Internal Space

External “Out” Space

Procuring

Customer
Support

Procurement
Services

Design
Services

Online
Services

ERP
Services

Requirements
Services

The Web
or ESB

Assembling
Manufacturing
Legal
Finance

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

11Service-Oriented Architecture

enterprise agility”. What does “agility” mean for your enterprise? Is it
the ability to re-combine existing functions to meet changing customer
requirements? Is it the ability to develop new functions rapidly? Is it the
ability to scale operations to meet different levels of demand? Within the
broad concept of SOA, there are three very different ideas that can help you
meet these different agility requirements: service composition, model-driven
development, and service virtualization. You can build all of these ideas into
your SOA, but they each require different – and expensive – supporting
infrastructure. You must choose your solution to fit the requirements.

This section will help you to match the features of SOA to the needs of your
enterprise, so that you can determine the kind of SOA that is appropriate.

	 1.4.1	 Summary of Features and Benefits
Table 1 shows the main features and benefits of SOA, together with the
infrastructure needed to support them.

Feature Benefits Supporting Infrastructure

Service Improved information flow
Ability to expose internal
functionality
Organizational flexibility

Service Re-use Lower software development and
management costs

Service repository

Messaging Configuration flexibility Messaging service

Message
Monitoring

Business intelligence
Performance measurement
Security attack detection

Activity monitor

Message Control Application of management policy
Application of security policy

PDPs and PEPs

Message
Transformation

Data translation Data translator

Message Security Data confidentiality and integrity Encryption engine

Complex Event
Processing

Simplification of software structure
Ability to adapt quickly to different
external environments
Improved manageability and
security

Event processor

Service
Composition

Ability to develop new function
combinations rapidly

Composition engine

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book12

	 1.4.2	 Service
Service is the essential concept of SOA.

It is not originally a technical concept. The idea of a service was developed in
the world of business. Look in any “Yellow Pages” directory, and you will find
categories such as “courier services”, “garage services”, and “roofing services”.
For each of these, some person or company (the service provider) is offering
to do something – carry goods and messages, look after vehicles, install
and repair building roofs – that will benefit other people or companies (the
service consumers). The providers offer to contract with the consumers to do
these things, so that the consumers know in advance what they will get for
their money.

The idea has been adopted by technologists. They have established the
concept of a software service. A software service is performed by a software
program. It produces effects that have value to the people or organizations
that are its consumers. It has a provider – a person or organization that takes
responsibility for running the program to produce those effects. And there is
an implicit or explicit contract between the provider and the consumers that
the program will produce the effects that the consumers expect.

Software services can be provided over the Internet and the world-wide
web. In some countries, for example, the government provides a service by
which taxpayers can complete and submit their tax returns via the web. Here,

Feature Benefits Supporting Infrastructure

Service Discovery Ability to optimize performance,
functionality, and cost
Easier introduction of system
upgrades

Service registry

Asset Wrapping Ability to integrate existing assets

Virtualization Improved reliability
Ability to scale operations to meet
different demand levels

Model-driven
Implementation

Ability to develop new functions
rapidly

Model-implementation
environment

Table 1: SOA Features, Benefits, and Infrastructure

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

13Service-Oriented Architecture

the service has a human interface. Services provided over the web can also
have software interfaces. For example, there are commercially-available web
services that provide real-time stock quote information in a form where it
can be analyzed by the consumers’ software. Software services can similarly
be provided over enterprises’ internal networks, and a service performed
by one program can be used by another program running on the same
computer system. It is the organization of an enterprise’s software as software
services that are provided internally in this way, and also externally, that is the
essential characteristic of SOA.

The use of services provides major benefits:
•	 In contrast to the use of large applications, which tend to be “information

silos” that cannot readily exchange information with each other, the use
of finer-grained software services gives freer information flow within and
between enterprises. Integrating major applications is often expensive.
SOA can save integration costs.

•	 Organizing internal software as services makes it easier to expose its
functionality externally. This leads to increased visibility that can have
business value as, for example, when a logistics company makes the
tracking of shipments visible to its customers, increasing customer
satisfaction and reducing the costly overhead of status enquiries.

•	 Business processes are often dependent on their supporting software.
It can be hard to change large, monolithic programs. This can make it
difficult to change the business processes to meet new requirements
(arising, for example, from changes in legislation) or to take advantage
of new business opportunities. A service-based software architecture is
easier to change – it has greater organizational flexibility, enabling it to
avoid penalties and reap commercial advantage. (This is one of the ways in
which SOA can make an enterprise more “agile”.)

The service concept also makes possible further features of SOA. These can
provide additional benefits, as explained in the rest of this section.

	 1.4.3	 Service Re-Use
Clear service descriptions are a starting point for service re-use, which can
provide another major benefit of SOA:
•	 Using existing software modules rather than writing new ones means

lower development and testing costs and – in many cases an even greater
saving – lower maintenance costs.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book14

	 1.4.4	 Messaging
You can have an SOA in which software services invoke each other directly;
for example, by programming-language function calls. But, in many SOAs,
the software services always invoke each other by exchanging messages,
even where they are executing on the same processor. This might seem to
be an additional overhead but, if the services are loosely-coupled (as they
should be), then the number of message exchanges is relatively small, and the
overhead is reasonably low.

Consistent use of messaging provides a key benefit:
•	 Services can very easily be moved between computer systems within the

enterprise, and it is reasonably easy to use externally-provided services
to replace internal ones, and vice versa. Which services handle which
messages can be changed rapidly to meet changing business needs, or to
tune performance. In short, messaging provides significant configuration
flexibility.

Having a central mechanism by which all messages are exchanged facilitates
monitoring, control, transformation, and security of messages.

	 1.4.5	 Message Monitoring
Message monitoring can provide three key benefits:
•	 Monitoring message streams between business activities, and analyzing

them to obtain information about those activities, is known as business
activity monitoring. It can be a valuable source of business intelligence.

•	 Monitoring message volumes and response times is a valuable source of
performance measurement. Service contracts often include performance
clauses. Performance measurement enables service designers to put
realistic clauses into the contracts, and enables systems managers to verify
that those clauses are being met.

•	 Monitoring messages and message volumes can provide security attack
detection, including detection of denial-of-service attacks as well as of
attacks in particular messages.

	 1.4.6	 Message Control
Message control can provide:
•	 Application of management policy; for example, by restricting a service

consumer to a contracted service volume, or giving priority to certain
kinds of message

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

15Service-Oriented Architecture

•	 Application of security policy; for example, by controlling access to certain
services, or rejecting messages that could damage the enterprise systems
or the enterprise itself (e.g., messages containing viruses that could
destroy data)

	 1.4.7	 Message Transformation
Message transformation can provide:
•	 Data translation – the conversion of data from one format to another

through automated field mapping.

Data conversion by specially-written software is expensive. The use of generic
data translators can bring significant cost saving.

	 1.4.8	 Message Security
Message security can include:
•	 Data confidentiality through encryption of messages
•	 Data integrity through addition of cryptographic integrity-check fields

Security is a complex area that is of crucial importance to enterprises. The
ability to encrypt and apply integrity checking to messages in transit can be a
valuable component of an overall security strategy.

	 1.4.9	 Complex Event Processing
As well as being invoked by their consumers, services can respond to events
from other sources. For example, a financial information service might
respond to stock-price changes, or a manufacturing production-control
service might respond to production process events, such as changes in
temperature of the materials being processed.

In many cases, action is taken when a pattern of events is recognized, rather
in response to individual events. A financial information service might
notify the user when a volume of trades is exceeded rather than in response
to a single trade. A production-control service might take measurements
from a number of sensors and take action when the average exceeds a limit.
This aggregation of simple events to generate complex events is known as
Complex Event Processing (CEP).

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book16

In SOA, CEP is often used, not only for external events, but also to detect
patterns in the flow of messages between services. When used in this way, it
becomes an extension of message monitoring.

CEP is often linked with business activity monitoring. For example, detection
of a particular pattern in sales transaction messages could provide advance
warning of difficulties for the production process. In some industries, such as
banking, detection of particular patterns may indicate fraudulent activity, or
assist with regulatory compliance.

CEP can also be used with performance measurement and security attack
detection. For example, where a service contract specifies an average level
of performance, CEP used in conjunction with performance measurement
could generate contract exception events. CEP might also be used to generate
security events for unusual message volumes or patterns.

CEP provides the following benefits:
•	 Simplification of software structure – by removing functionality that is not

business-related from the business software services
•	 Ability to adapt quickly to different external environments – by

concentrating in one place the logic that relates environmental events to
business events

•	 Improved manageability and security – when used with performance
measurement and security event detection

	 1.4.10	 Service Composition
Service composition is the putting together of a number of simple services to
make a more complex one. For example, a “product sale” web service could
be composed of simpler “product selection”, “shopping cart review”, “payment
method selection”, “credit card payment”, and “invoice payment” services.
Service composition provides a key benefit:
•	 Ability to develop new function combinations rapidly

For example, if it is decided that the product sale service should cater for a
new method of payment – “Internet cash” – this can be done by developing a
new “Internet cash payment” service, and including it in the composition.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

17Service-Oriented Architecture

So far, this sounds to be little different from other software modularization
techniques, from machine-code subroutines through to Java objects. Indeed,
in an SOA that does not include messaging, service composition will be
implemented by some such technique. But in many SOAs composition is
implemented by services sending messages to invoke other services, and this
technique gives much greater flexibility.

Two styles of composition are often distinguished:
•	 Orchestration, in which one of the services schedules and directs the

others. If the above example was designed as an orchestration, there
would be a direction service that would invoke in sequence the product
selection, shopping cart review, payment method selection, and,
depending on the selection result, credit card payment or invoice payment
services.

•	 Choreography, in which the composed services interact and cooperate
without the aid of a directing service. If the above example was designed
as a choreography, there would be no directing service: the product
selection service would invoke the shopping cart review service, the
shopping cart review service would invoke the payment method selection
service, and the payment method selection service would invoke the
credit card payment or invoice payment service.

	 1.4.11	 Service Discovery
When a program uses a software service, the identity of that service can
be explicitly given in the program code. For example, where services are
implemented as Java objects, their methods can be invoked by name by user
programs. Where messaging is used, the destinations of the messages can be
explicitly named at programming time. This is called hard-wiring of service
connections.

Hard-wiring is a simple approach, but it has limitations. A different and much
more flexible approach is service discovery. In this approach, the identity of
the target service is not known at programming time, but is discovered at run
time. The user program finds target services that meet its requirements, and
chooses one of them.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book18

The benefits of service discovery are:
•	 Ability to optimize performance, functionality, and cost – by selecting

component services by these criteria
•	 Easier introduction of system upgrades – an upgraded service can be

made available for selection in parallel with the one that it replaces, which
can then be withdrawn

	 1.4.12	 Asset Wrapping
The IT assets of an enterprise can often be considered as actors that perform
services. A CPU performs an information processing service; a filestore
performs an information storage service; and so on. This includes software as
well as hardware assets. A database management system performs a database
management service; an accounts package performs a financial information
processing service.

An important feature of SOA is the recognition that these assets perform
services, and the development of software façades that provide access to
these assets and have interfaces that are in the same form as the interfaces to
other software services of the enterprise. This is called asset wrapping. From
a component-based software engineering point of view, the assets and the
façade are components that are assembled to form a software service. The
software services formed in this way can be used in service composition, have
registry entries, and be dynamically discovered, in the same way as other
services.

When an enterprise adopts an SOA, asset wrapping is typically applied to
existing application software packages. This provides a significant benefit:
•	 Ability to integrate existing assets – which means that the value of an

enterprise’s existing assets is preserved, the cost of developing or acquiring
replacements is avoided, and there is a smooth migration path from the
old architecture to the new one

With the advent of SOA, some application vendors have begun to offer
versions of their products in which the product capabilities are exposed as
services. The acquisition of such a version is clearly a convenient way for an
enterprise to achieve the “wrapping” of an application asset.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

19Service-Oriented Architecture

	 1.4.13	 Virtualization
A façade can present to the consumer a virtual asset that does not correspond
to the real underlying assets. This technique is called virtualization.
Virtualization can be used to enable programs that were written to use one
asset to be executed with a different asset. For example, there are so-called
“hypervisors” that can provide different operating system environments to
programs running on a single CPU. But in the context of SOA it is more
commonly used to create virtual assets that are functionally similar to the
underlying assets. This can deliver two benefits:
•	 Improved reliability – through redundant operation of the underlying

assets, so that one can take over when another fails or is withdrawn for
maintenance

•	 Ability to scale operations to meet different demand levels – through
dynamically increasing or reducing the number of underlying assets that
support a real asset, as demand rises and falls

These benefits are particularly important when the principles of SOA are
applied to enterprise infrastructure. While SOA is most commonly thought
of as a way of architecting an enterprise’s application software, it can also be
used at the infrastructure level, to create a Service-Oriented Infrastructure
(SOI). Taken to the limit, this can provide a form of grid computing. The use
of virtual assets that are made available over the Internet has become known
as cloud computing.

	 1.4.14	 Model-Driven Implementation
Model-driven implementation refers to the automatic realization of a system
or application from an abstract model. Where the model starts at a high
level of architectural abstraction, it is usually referred to as Model-Driven
Architecture (MDA).

SOA lends itself particularly well to model-driven implementation, because
it is based on a high-level software module concept (the service) for which
there are good definition and interface standards.

Model-driven implementation provides:
•	 The ability to develop new functions rapidly – an important form of agility

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book20

In SOA, model-driven implementation can be applied to service
compositions as well as to software services.

	 1.5	 Maturity Model for SOA
As organizations move towards SOA and the use of services as the basis of
their future IT architectures, they encounter the need to assess where they are
in the migration path, and how to achieve greater benefits to support their
businesses and systems.

This maturity model facilitates the assessment of an organization’s current
and desired future states in service integration and flexibility. It helps the
organization to determine its architectural strategy for adopting service-
orientation. It can be applied to a complete enterprise, or to an enterprise
segment, such as one defined by one or more lines of business.

The model was provided by IBM as an input to work on The Open Group
Services Integration Maturity Model (OSIMM).

	 1.5.1	 Overview of the Model
The model defines seven dimensions across seven maturity levels.

The seven dimensions represent different views of the organization: the
Business, Organization, Methods, Application, Architecture, Information, and
Infrastructure views.

The seven maturity levels are Silo, Integrated, Componentized, Services,
Composite Services, Virtualized Services, and Dynamically Re-Configurable
Services.

The complete matrix of dimensions and levels is shown below.

	 1.5.2	 Using the Model
You can use the generic model described here as a reference for the
development of specific baseline and target models of an organization’s SOA
maturity. You can then perform a gap analysis to determine what is needed
to move from the baseline to the target, and create a project roadmap for the
transformation of the organization to the target SOA maturity level.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

21Service-Oriented Architecture

Note that this will provide a description of the target and a statement of
the activities that need to be undertaken that are at a relatively high level.
Further and more detailed analysis will be needed to produce the full target
architecture description and implementation roadmap. In an architectural
engagement, you would typically use the model at an early stage; for example,
in the Preliminary Phase or Phase A of TOGAF. The full architecture and
roadmap would not be produced until a later stage (for example, TOGAF
Phases D and E).

You develop the specific baseline or target model by assessing the maturity
of the organization in each of the seven dimensions. The assessment in
each dimension results in a summary textual description and a number
(1-7) identifying the maturity level. You can then aggregate the assessments
through the dimensions to show the overall state of the organization.

Mix-and-match
Business and

Context-aware
Capabilities

Governance
through Policy

Business
Grammar-
oriented

Modeling

Dynamic
Assembly;

Context-aware
Invocation

Dynamically
Re-configurable

Architecture

Semantic Data
Vocabularies

Dynamic
Sense, Decide

& Respond

Ad hoc LOB
IT Strategy &
Governance

Structured
Analysis &

Design

Isolated
Business

Line-driven
Business

Silo Integrated Componentized Services Composite
Services

Virtualized
Services

Dynamically
Re-configurable

Services

Organization

Methods

Applications

Architecture

Information

Infrastructure

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Modules

Monolithic
Architecture

LOB Platform-
specific

Application-
specific

Business
Process

Integration

Ad hoc
Enterprise IT
Strategy &

Governance

Object-
oriented

Modeling

Objects

Layered
Architecture

Enterprise
Standards

LOB or
Enterprise-

specific

Componentized
Business

Common
Governance

Processes

Component-
based

Development

Components

Component
Architecture

Common
Re-usable

Infrastructure

Canonical
Models

Componentized
Business Offers

Services

Emerging SOA
Governance

Service-oriented
Modeling

Services

Emerging
SOA

Project-based
SOA

Environment

Information
as a Service

Processes
through Service

Composition

SOA and IT
Governance
Alignment

Service-
oriented

Modeling

Process
Integration
via Services

SOA

Common SOA
Environment

Enterprise
Business Data
Dictionary and

Repository

Geographical-
independent

Service Centers

SOA and IT
Infrastructure
Governance
Alignment

Service-oriented
Modeling for
Infra (CDSP)

Process
Integration via

Services

Grid-enabled
SOA

Virtual SOA
Environment;

S&R

Virtualized
Data Services

Figure 5: SOA Maturity Model Matrix

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book22

You carry out the assessment by interviewing key staff from the organization,
using a set of questions about the characteristics of the organization in
each dimension. From the answers to these questions, you produce the
summary maturity description and level identification. Architecture practices
and consultancies will typically have standard sets of questions that they
customize for each assessed organization to take account of particular
circumstances and requirements.

	 1.5.3	 Dimensions
An organization’s SOA or desired SOA scope can be assessed across the
following dimensions.

Business
The Business dimension is focused around the business architecture, the
organization’s current practices and policies around the business architecture,
how business processes are designed, structured, implemented, and executed,
how costs of IT capabilities are allocated throughout the enterprise, and how
well the IT capabilities support flexibility of the business, business agility,
and business Service-Level Agreement (SLA) management. Because the
business dimension includes IT strategy, it includes a high-level quantifiable
monetary-value justification for moving from one maturity level to a higher
maturity level.

Organization
The Organization dimension is focused on the structuring and design of
organizations and resulting measures of organizational effectiveness in
the context of an SOA; for example, SOA governance. This includes the
types and extent of skills, training, and education that are available within
the organization, the existence of a formal governance process to keep IT
activities and capabilities aligned with the needs of the whole business, how
IT management is organized, and how costs are allocated.

Methods
The Methods dimension is focused on the methods and processes employed
by the organization for its IT and business transformation, and the
organization’s maturity around the Software Development Lifecycle, such
as the use of requirements management, estimation techniques, project

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

23Service-Oriented Architecture

management, quality assurance processes, design methodologies and
techniques, and tools for designing solutions.

Application
The Application dimension is focused on application style, structuring of the
application and functional decomposition, re-usability, flexibility, reliability
and extensibility of the applications, understanding and uniform use of best
practices and patterns, whether multiple applications have been created to
serve different lines of business with essentially the same functionality, and
the availability of enterprise schema and object models.

Architecture
The Architecture dimension is focused on topology, data characteristics,
business information model, integration techniques, enterprise architecture
decisions, standards and policies, web services adoption level, experience
in SOA implementation, SOA compliance criteria, and typical artifacts
produced.

Information
The Information dimension is focused on the information modeling aspects,
access to enterprise data, abstraction of the data access from the functional
aspects, data transformation, service and process definition, handling
of identifiers, security credentials, knowledge management, and content
management.

Infrastructure
The Infrastructure dimension is focused on the organization’s infrastructure
capability, service management, IT operations, IT management and IT
administration, how SLAs are met, how monitoring is performed, and what
types of integration platforms are provided.

	 1.5.4	 Maturity Levels
Each of the seven maturity levels reflects a possible abstract state of an
organization in terms of its maturity in the integration of its services
(business and/or IT). The following are typical aggregate descriptions for
these levels.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book24

Silo
Individual parts of the organization are developing their own software
independently, with no integration of data, processes, standards, or
technologies. This severely limits the ability of the organization to implement
business processes that require co-operation between the different parts, and
the IT systems cannot be integrated without significant manual intervention,
such as re-keying and re-interpretation of data.

Integrated
Technologies have been put in place to communicate between the silos, and
to integrate the data and interconnections. The construction of an IT system
that integrates across different parts of the organization becomes possible.
However, integration does not extend to common standards in data or
business processes. Therefore, connecting two systems requires a possibly
complex conversion of the data, operations, and protocols that they use.
Each such connection may require bespoke code and adapters, leading to a
proliferation of software that is difficult to manage and complex to code. It is
not therefore easy to develop new business processes.

Componentized
The IT systems in the silos have been analyzed and broken down into
component parts, with a framework in which they can be developed into
new configurations and systems. There may also be some limited analysis of
the business functionality into components. Although components interact
through defined interfaces, they are not loosely-coupled, which limits
interoperability between systems in different parts of the organization, or
different organizations within the business eco-system. This makes it hard to
develop cross-organization business processes.

Services
Composite applications can now be built from loosely-coupled business
services. The way that services may be invoked is based upon open standards
and independent of the underling application technology. The services have
an IT infrastructure that supports them with suitable protocols, security
mechanisms, data transformation, and service management capabilities,
even across different organizations within the eco-system, and may be
managed by assigning responsibilities for SLAs to relevant parts of the
organization. However, the flow of control within a composite application

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

25Service-Oriented Architecture

is still defined by bespoke programming, rather than by a declarative flow
language. The business functionality has been analyzed in detail and is
broken down into business services residing within a business architecture
that ensures that business services will interoperate at the business level. In
addition, it is possible to define the services via a specification language that
unambiguously describes the operations performed by each service, enabling
the construction of a catalog of services. The combination of IT and business
service architectures permits the construction of systems based upon these
services, operating right across the organizations in the eco-system. However,
at this stage the composition of services is still performed by developers
writing bespoke code, thus limiting the agility of the development of new
business processes.

Composite Services
It is now possible to construct a business process for a set of interacting
services, not just by bespoke development, but by the use of a composition
language to define the flow of information and control through the individual
services. This permits the assembly of business services into composite
business processes, which may be short-running or long-running, without
significant construction of code. Thus, the design and development of
business services is agile, and may be performed by developers under the
close guidance of business analysts.

Virtualized Services
The business and IT services are now provided through a level of indirection.
The service consumer does not invoke the service directly, but through
a virtual service. The infrastructure performs the work of converting the
virtual service invocation into an invocation of the real service, and may
as part of this conversion change the address, network, protocol, data,
and synchronization pattern of the invocation. Such conversions may be
complex services in their own right; for example, transforming data from one
data model to another. The virtual service thereby becomes more loosely-
coupled from the infrastructure on which it is running, permitting more
opportunities for the composition of business services. This is in contrast to
the lower levels of service maturity where the service is more closely coupled
to the infrastructure. Although virtualization has been used in non-SOA
systems, this level extends the concept (and advantages) of virtualization to
business services.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book26

Dynamically Re-Configurable Services
Prior to this level, the business process assembly, although agile, is performed
at design time by developers (under the guidance of business analysis
and product managers) using suitable tooling. Now this assembly may be
performed at run time, either assisted by the business analysts via suitable
tooling, or by the system itself. This requires the ability to access a repository
of services and to query this repository via the characteristics of the required
services. In its simplest form, these characteristics may have been defined in
advance, restricting the system to selecting and locating specific instances of
services.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

This chapter describes the Service-Oriented Architecture (SOA) Reference
Architecture, which is a significant underlying logical structure for the
development and assessment of architectures designed and built using a
combination of traditional and service-oriented computing principles and
concepts. It contains the following sections:
•	 The Building Blocks of SOA (Section 2.1), which describes a set of

architecture building blocks that represent the key elements of SOA
•	 A High-level Perspective of the SOA Reference Architecture (Section 2.2),

which gives an overview of the nine layers of the reference architecture,
with examples and rationale describing the main responsibilities of the
layers and their primary building blocks

•	 Detailed Building Blocks of the SOA Reference Architecture (Section 2.3),
which presents detailed models that show how some of the features of
SOA can be implemented using the reference architecture

•	 Infrastructure for SOA (Section 2.4), which describes architecture
building blocks that correspond to infrastructure products that are
available today to support service-oriented applications

	 2.1	 The Building Blocks of SOA
Architects develop models to show different aspects of the systems that are to
be created or modified in accordance with their architectures. These models
are constructed of building blocks, which are abstractions of the system
components.

There are many different kinds of architecture and solution building block.
You can abstract as a building block any part of a system that you want to
think about. This section describes the building blocks that are commonly
used for SOA. Some of them are also used for other styles of IT architecture.

They are described at a high level of abstraction; for example, service and
program. An architectural model would typically show less abstract building

Chapter 2

The SOA Reference Architecture

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book28

blocks – for example, payment service or messaging program – that fall into
categories defined by the building blocks described here.

	 2.1.1	 Services
Service is of course the most important SOA concept:
A service is a repeatable activity that has a specified outcome.

A service has a provider, can have one or more consumers, and produces
effects that are of value to its consumers.

Providers and consumers see services from different points of view. To a
consumer, a service is a black box. Two services are the same to a consumer
if, given the same inputs, they produce the same effects. To a provider, a
service is a means of exposing capabilities. Two services are different to a
provider if they have different mechanisms for doing this, even though they
produce the same effects. Architects talk to providers and to consumers, and
must be able to see services from both points of view.

Consumers use services in their business processes (see Section 2.1.2). These
business processes are mechanisms by which the consumers may themselves
provide larger services. Such services, whether provided to consumers
outside the enterprise or within it, are called business services.

From a provider’s perspective, a service can be performed by people, by
technology, or a combination of people using technology. Services that are
performed by software programs (see Section 2.1.7) are the key components
of an SOA. They are called software services. In any particular SOA, there
is often a set of software services that are identified for processes such as
discovery and composition. They make up the architecture’s service portfolio,
and they are called portfolio services.

	 2.1.2	 Business Processes
A business process of an enterprise is an activity that is related to the
enterprise’s business mission and that is conducted in a defined, repeatable
way.

People often take part in business processes. It is sometimes tempting to
think of a business process as “a process in which people take part”, but it is

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

29The SOA Reference Architecture

the relation to the business mission, rather than who or what takes part in it,
that characterizes a business process.

Modeling business processes is an important element of enterprise
architecture development. The Business Process Modeling Notation (BPMN)
defined by the OMG is a formal notation for describing business processes
that is becoming increasingly accepted.

When business processes are modeled, the people that take part in them are
referred to as human actors (see Section 2.1.3).

Software programs can take part in business processes also. The software
services of an SOA exist to support the enterprise’s business processes. This
relation can and should be symbiotic. Analysis of the business processes is the
main way of identifying software services. On the other hand, the existence of
the right software services enables new business processes to be developed, to
meet new business opportunities.

	 2.1.3	 Human Actors
An actor is someone or something that does something. Actors of various
kinds can be abstracted as building blocks.

A human actor is a person that does something in relation to an architected
system.

Human actors appear when business processes are modeled, and also in
models showing other aspects of the system, such as management and
security.

A model generally shows an abstraction of a person, rather than a real
person: “president”, rather than “George Washington”. The word “role” is
sometimes used, rather than “actor”, because of this.

Other kinds of actor may be encountered in IT architecture. A technology
actor is an actor that is a machine or other piece of technology. It could be
hardware, software, or both. A program is one particular kind of technology
actor; a data store (see Section 2.1.8) is another. An organization actor is a

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book30

system whose components can be people, technology items, and other things,
and that is regarded as a single actor.

	 2.1.4	 Events
Events to which business processes or services respond can be building
blocks too.

An event is something that happens.

An event is not necessarily associated with any particular business process or
service.

Like human actors, events appear when business processes are modeled, and
also in models showing other aspects of the system, such as management and
security.

	 2.1.5	 Service Descriptions, Contracts, and Policies
An important feature of services in SOA is that they have descriptions that
state clearly what they do and how to interact with them.

A description is an information item (see Section 2.1.8) that is represented in
words, possibly accompanied by supporting material such as graphics.

A service description is a description of a service.

A service description can be represented in informal text but, for many
purposes, it is better to use a structured description language. The Web
Services Description Language (WSDL) defined by the W3C is widely used
for this purpose.

A contract is an agreement between two or more actors – the parties to the
contract. The term is most commonly used for a written agreement, or one
that is enforceable at law, but it can be applied more widely.

A service contract is a contract between the provider of a service and one or
more of its consumers.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

31The SOA Reference Architecture

A service contract may be an implicit agreement that the service will conform
to its description, or it may be a more formal agreement, which could be
recorded in a signed internal enterprise document, or be a legal contract
executed between enterprises.

A service contract covers functionality (what effects the service produces),
and often also covers service quality. Service quality typically includes the
service’s performance and security characteristics.

A policy is a course of action that a person or organization intends to follow,
or intends that another actor should follow.

A service policy is a course of action that a service provider intends to follow
in providing a service, or intends that the service consumers should follow.

For example, an enterprise might have a policy that certain services are
provided only to internal consumers, or a web service provider might have an
“acceptable use policy” that states what consumers of its service may and may
not do.

Service description, contract, and policy building blocks appear in models
that show how services are consumed. In SOA, this is a very important aspect
of system implementation and operation.

	 2.1.6	 Service Compositions
A composition is a collection of things that are put together to form a single
thing.

Services can be composed of other services. Business processes can be
composed of services and other business processes.

A service composition is a collection of services that are put together to form a
single service.

Service composition is a provider’s concept. It relates not to what a service
does, but to how it is performed.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book32

Service compositions appear in models that show how business processes
are supported by services. They may also appear where functionality that is
not related to the business mission is implemented using a service-oriented
approach, in a model of an SOI, for example.

	 2.1.7	 Programs
A software program is a set of instructions for a computer to perform a
specific task.

Software programs relevant to SOA include programs that contain
instructions to perform services. When such a program is executing,
we generally say that it (rather than the computer that carries out its
instructions) performs the service.

A software service is different from the program that performs it, just as
services performed by people are different from those people.

A program that performs a software service should also be distinguished
from the service provider. The service provider is the person or organization
that takes responsibility for the service, and enters into contracts with its
consumers.

Other programs relevant to SOA include programs that provide
infrastructure for the services, and application programs.

Program building blocks appear in models that show how services are
performed, models that show how services are integrated with each other
and with other system components, models that show how the architected
system processes data, and in models showing other system aspects, such as
performance, management, security, and governance.

	 2.1.8	 Information Items, Data Items, and Data Stores
IT architecture is of course very much concerned with information, and
building blocks related to information are used for SOA, as for other
architectural styles.

The concept of information is a very general one.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

33The SOA Reference Architecture

An information item is a thing that is known about some other thing.

An information item may be simple or may be complex, composed of simpler
information items.

Information items appear in models of business processes.

Data can be defined as “a re-interpretable representation of information
in a formalized manner suitable for communication, interpretation, or
processing” (see ISO/IEC 2382-1:1993.)

A data item is a representation of an information item.

A data store is a technology actor that stores data items.

Data items and data stores are important architectural building blocks. Like
programs, they appear in models that show how services are performed,
models that show how services are integrated with each other and with other
system components, models that show how the architected system processes
data, and in models showing other system aspects, such as performance,
management, security, and governance.

	 2.2	 �A High-Level Perspective of the SOA Reference
Architecture
This high-level perspective shows the conceptual building blocks of an
SOA solution, and how they relate to each other. It can be used as a basis
for specific solution models, and also for models of larger SOA systems,
including those of enterprise SOA.

The perspective is derived from “The SOA Solution Stack: A Reference
Architecture for Designing SOA Solutions” submitted by IBM as input to the
Reference Architecture project of The Open Group SOA Working Group. The
original reference architecture is described in an IBM developerWorks article.

	 2.2.1	 Overview
The reference architecture classifies SOA-related building blocks into nine
layers, as shown below.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book34

The first five layers contain building blocks whose purposes relate to business
functionality. They support each other in a hierarchy, although its layering is
not strict. In order, from bottom to top, they contain building blocks that are:
•	 Existing application assets and other programs (the Operational Systems

layer)
•	 Software components that help to perform services and may leverage

existing assets (the Service Components layer)
•	 The services that are in the service portfolio, and hence available for use

in solutions, including through discovery and composition (the Services
layer)

•	 Business processes, and service compositions that they use, including
orchestrations and choreographies (the Business Processes layer)

•	 The people and external systems that participate in the business processes,
and their interfaces to the services (the Consumers layer)

The remaining four layers support the layers related to business functionality,
but do not support each other in a strictly layered hierarchy. They contain
building blocks whose purposes relate to:
•	 Integration of other building blocks (the Integration layer)
•	 Quality aspects of system operation (the Quality of Service layer)

Consumer
Interfaces

Business
Processes

Services

Service
Components

Operational
Systems

Integration

Q
uality of Service

Inform
ation

G
overnance

Figure 6: High-Level Perspective of the SOA Reference Architecture

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

35The SOA Reference Architecture

•	 Information (the Information layer)
•	 Governance (the Governance layer)

	 2.2.2	 Operational Systems Layer
The building blocks in this layer are programs and data of the operational
systems of the enterprise. For example, a bank might have building blocks
such as “customer relations management”, “customer database”, “internal
accounting”, and “settlement” in this layer. They include:
•	 Applications and data stores with functionality required to deliver the

service functionality in the Services layer
•	 Infrastructure programs such as operating systems, database management

systems, and run-time environments

	 2.2.3	 Service Components Layer
This layer contains programs, other than the programs in the Operational
Systems layer, that help to perform services.

The asset wrapping and virtualization features of SOA are supported by
building blocks in this layer.

The building blocks in this layer include:
•	 Programs that “wrap” the programs in the Operational Systems layer to

create services
•	 Programs that are written to perform services and deliver the service

functionality themselves
•	 Groups of such programs

The Service Components layer enables IT flexibility by strengthening
decoupling in the system. Decoupling is achieved by hiding volatile
implementation details from consumers.

As well as insulating consumers from the service implementation, a service
component provides a point at which compliance with the service contract
can be monitored or enforced.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book36

	 2.2.4	 Services Layer
This layer contains the portfolio services. Each service conforms to a
specification that provides sufficient detail to enable a consumer to invoke the
functions exposed by the service provider.

This is the central layer of the model. Its building blocks support the basic
service feature of SOA.

Examples of portfolio services, in a banking context, might be “identify
eligible customer account”, “validate transfer”, “submit transfer”, “move funds”,
and “complete transfer”.

Portfolio services can be composed of other portfolio services. For example,
“move funds” might be composed of other portfolio services including “move
funds from source” and “move funds into destination”.

In an enterprise architecture development, as opposed to a solution design,
you are likely to be dealing with groups of related services rather than
individual services. An example of such a group might be “funds transfer
services”.

The building blocks in this layer include:
•	 The portfolio services themselves
•	 Compositions in which portfolio services are composed of other portfolio

services
•	 Groups of services and compositions covering functional areas
•	 Data created or used by the portfolio services
•	 Service descriptions, contracts, and policies

	 2.2.5	 Business Processes Layer
This layer contains the business processes. An example might be “transfer
funds”.

Business processes can be composed of other business processes and of
portfolio services. For example, “transfer funds” might be composed of other
business processes including “create transfer” and “process transfer”.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

37The SOA Reference Architecture

The lowest layer typically includes business processes that are composed
of portfolio services. For example, “create transfer” might be composed of
portfolio services including “submit transfer” and “move funds”.

The building blocks in this layer include:
•	 The business processes themselves
•	 Compositions in which business processes are composed of other business

processes and of portfolio services
•	 Information created or used by the business processes

	 2.2.6	 Consumers Layer
This layer contains the users of the system and the programs by which they
interface to the portfolio services. Examples might be “customer” and “online
banking portal”.

Building blocks in this layer include:
•	 People, organizations, and programs that take part in the business

processes (the consumers)
•	 Interface programs that present information to and accept information

from the consumers, such as channels, portals, other human-computer
interface programs, format converters, and interface configuration
programs

•	 Data used by the interface programs, such as user profiles and interface
configurations

	 2.2.7	 Integration Layer
This layer contains building blocks whose function is to enable integration
of and communication between other building blocks. It gives the ability
to decouple service providers and consumers, which adds flexibility to the
architecture.

The messaging, message transformation, complex event processing, service
composition, and service discovery features of SOA are supported by
building blocks in this layer.

	 2.2.8	 Quality of Service Layer
This layer contains building blocks whose functions are concerned with
monitoring and management of the quality of service of the architected
system, including its performance, security, and manageability.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book38

The message monitoring, message control, and message security features of
SOA are supported by building blocks in this layer.

The layer also includes building blocks such as performance managers,
security managers, and configuration managers.

	 2.2.9	 Information Layer
This layer contains building blocks whose functions are concerned with the
transformation and management of data.

The message transformation feature of SOA is supported by building blocks
in this layer.

The layer also includes building blocks such as:
•	 Information models
•	 Vocabularies
•	 Data models
•	 Data representation models
•	 Programs that expose data as services
•	 Data search engines
•	 Data mining engines
•	 Document management systems

	 2.2.10	 Governance Layer
This layer contains building blocks whose function is concerned with
implementation and operational governance.

The layer includes building blocks such as:
•	 Governance rules and procedures
•	 Services and programs that support the application of the rules and the

operation of the procedures

	 2.3	 �Detailed Building Blocks of the SOA Reference
Architecture
This section contains detailed models showing how some of the features of
SOA can be implemented using the SOA Reference Architecture.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

39The SOA Reference Architecture

The building blocks shown in these models fall into the categories described
under Building Blocks of SOA (Section 2.1), but are at a lower level of
abstraction. Some of them are described further under Infrastructure
for SOA (Section 2.4). They are all building blocks of the SOA Reference
Architecture.

	 2.3.1	 Composition
This is the basic model for service composition.

The composite service is created by putting together the element services.
This may simply be a matter of performing the element services one after
another, or there may be more complex interactions between the services that
affect the order in which they are performed.

In this latter case, the performance of the services may be controlled by
scripts. The model for scripted service composition is shown below.

Composite
Service

Element
Service

Element
Service

Figure 7: Basic Model for Service Composition

Element
Service

Element
Service

Composite
Service

Script

Composition
Engine

Script

Figure 8: Model for Scripted Service Composition

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book40

In this model, one or more of the element services is controlled by a script,
executed by a composition engine (see Section 2.4.8). The script is written in
a language (such as the Web Services Business Process Execution Language
(BPEL) defined by OASIS) that includes constructs for interacting with other
services.

(This interaction is often via messages, and composition engines are often
integrated with messaging programs.)

In a common orchestration scenario, only one of the element services is
controlled by a script. This service directs the other services by invoking
them in the appropriate sequence.

In a common choreography scenario, all of the element services are
controlled by scripts, and these scripts are written so as to synchronize the
performance of the element services.

	 2.3.2	 Messaging
This is the basic messaging model.

Programs can exchange messages using a messaging service that is performed
by a messaging program. One program submits a message to the messaging
program, which delivers the message to a second program. The message is
sent by the first program, and received by the second. These programs are
both consumers of the messaging service.

The consumer programs that send and receive the messages can be programs
that perform services. In this case, we also say that the services are sending
and receiving the messages.

Message

ReceiveSend

Consumer
Program

Messaging
Program

Consumer
Program DeliverSubmit

Figure 9: Basic Messaging Model

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

41The SOA Reference Architecture

Use of a single program for communication between services makes it easy
to process the information as it is exchanged, by adding other programs onto
the messaging program. Several SOA features, such as message monitoring
and data translation, are commonly implemented in this way.

A detailed messaging model, including several such programs, is shown
below.

The consumer programs are as in the Basic Messaging Model (Figure 9).

The management programs perform functions such as setting up and
changing routing tables, configuring the infrastructure building blocks that
are attached to the bus, and managing logs and audit trails.

The programs other than the consumer programs and the management
programs combine to perform the messaging service. They all realize
infrastructure building blocks:
•	 An encryption engine (see Section 2.4.6) encrypts and decrypts data, and

applies and verifies integrity checks based on encryption technology.
•	 A data translator (see Section 2.4.5) converts data from one representation

to another.
•	 A policy decision point (see Section 2.4.4) decides, in accordance with a

policy, whether resource access requests should be granted.

Activity
Monitor

Policy
Enforcement

Point

Policy
Decision

Point

Management
Program

Consumer
Program

Encryption
Engine

Data
Translator

Messaging Program

Figure 10: Detailed Messaging Model

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book42

•	 A policy enforcement point (see Section 2.4.4) implements decisions to
grant or deny resource access requests.

•	 An activity monitor (see Section 2.4.3) monitors messaging activity.

The programs shown in the Detailed Messaging Model (Figure 10) support
a rich set of capabilities. Not all of these capabilities are required for a viable
messaging service, and not all of these programs need be present.

	 2.3.3	 Service Discovery
This is the model for service discovery.

A program (the consumer program) wishes to use a service. It makes a
discovery request to a program that performs a registry service (see Section
2.4.9), specifying the characteristics of the service that it wishes to use. The
registry program replies with a discovery response, giving descriptions of
services that meet the specification (the consumable services). The consumer
program can then use one (or more) of the consumable services.

Discovery
Request

Registry
Service

Discovery
Response

Service
Description

Consumable
Service

Registry
Program

Consumer
Program

Figure 11: Model for Service Discovery

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

43The SOA Reference Architecture

The consumer program can be a program that performs a service. It is a
consumer of the registry service, and is also a consumer of whichever of the
consumable services it uses.

	 2.3.4	 Asset Wrapping
This is the model for asset wrapping.

The service component (see Section 1.4.10) in this model is a program that
implements one or more of the interfaces of a service and invokes existing
assets in order to deliver the required functionality. It need not itself have
much functionality, and is sometimes described as a façade. The service is
performed by its service components and the assets that they invoke.

	 2.3.5	 Virtualization
This is the model for virtualization.

This model can be used to define the internal structure of a service
component in order to create a virtualized service.

Asset Asset

Service
Component

Service

Figure 12: Model for Asset Wrapping

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book44

The service interface program implements the interface that is used by
consumers of the service, in accordance with the service contract. The
asset interface programs invoke the underlying assets whose capabilities
are exposed by the service. The control and supply program invokes the
underlying assets via the asset interface programs, using appropriate numbers
of assets with regard to the level of demand and the ability of currently-used
assets to respond. Details of available assets are held in the asset repository,
which is maintained as assets are commissioned and decommissioned to
show which are in service. The demand monitoring program monitors the
level of demand for the service, and the results monitoring program assesses
the response.

	 2.3.6	 Event Processing
This is the model for event processing.

The event processor (see Section 2.3.6) detects input events with associated
information, and generates output events with associated information.
A single output event may correspond to multiple input events, and
the information associated with an output event is derived from all the
information associated with the corresponding input events.

A common scenario is that the input events are messages on a message bus,
and the output events are handled by analysis and presentation programs
within an activity monitor.

Asset
Repository Asset Interface

Results
Monitoring

Control and
Supply

Demand
Monitoring

Service Interface

Figure 13: Model for Virtualization

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

45The SOA Reference Architecture

	 2.4	 Infrastructure for SOA
The infrastructure for SOA is implemented within the context of the SOA
Reference Architecture. SOA places unique requirements on enterprise IT
infrastructure. Good choice of infrastructure products, and their effective
integration, is crucial for SOA implementation.

An effective architecture makes this possible:
•	 The architecture should have building blocks to which vendors can match

their products, so that products can be compared like-for-like.
•	 The building blocks should be defined by open standards for

interoperability.
•	 The architecture should be expressed in terms of a standard reference

architecture, so that it can easily be communicated to developers and
integrators.

This section of the SOA Reference Architecture will help you to achieve
these goals. It describes a number of SOA infrastructure building blocks that
correspond to products that are available today. It identifies the key standards
to which those products can conform. And it is based on the conceptual
building blocks of SOA (Section 2.1), the high-level SOA model (Section

Event
Processor

Input Events

Output Event
Information

Input Event
Information

Output Events

Figure 14: Model for Event Processing

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book46

2.2), and the detailed models for SOA features (Section 2.3) described in this
Source Book.

	 2.4.1	 Service Repository
Re-use of software services is a very important aspect of SOA for many
enterprises. They often introduce governance mechanisms to ensure that
services are developed with re-use in mind, and that the possibility of
re-using existing services is explored before new ones are written. But, for
re-use to be possible at all, the services must be clearly described, and their
descriptions must be readily available to developers.

The simplest way of making service descriptions available is to publish them
as documents. A more sophisticated mechanism, which has advantages
where there are large numbers of services to keep track of, is a service
repository, which enables you to maintain and search a database of service
descriptions.

In a large enterprise you may have a very large number of services, and you
will need a common vocabulary and data model, as well as some sort of
knowledge management system, as the basis for your service repository.

Registries used in service discovery (see Section 1.4.11) can be used as
service repositories. There are a number of specialist service registry products
that are commercially available, but they tend not to provide good support
for searches conducted by people, and are useful at run time, rather than at
design time.

The WSDL defined by the W3C is a commonly-accepted standard for
service descriptions. There is no commonly-accepted standard for repository
management and search operations.

	 2.4.2	 Messaging Program
Between enterprises, services typically exchange messages via the web.
Within an enterprise, they are often exchanged using an Enterprise Services
Bus (ESB). The term ESB can mean many different things; the term messaging
program used here describes a program that has essential ESB functionality.
Commercial ESB products should include this functionality, but often also

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

47The SOA Reference Architecture

have additional features, such as those of other building blocks of the detailed
messaging model that are described later in this section.

A messaging program transports messages between other programs. It
performs the messaging service shown in the Basic Messaging Model (Figure
9), and may interface to management programs, encryption engines, data
translators, policy decision points, policy enforcement points, and activity
monitors as described in the Detailed Messaging Model (Figure 10).
A messaging program must support the following functions:
•	 Acceptance of submitted messages
•	 Message delivery
•	 Message routing

A messaging program may optionally support the following additional
functions:
•	 Routing configuration
•	 Configuration of attached encryption engines, data translators, policy

decision points, policy enforcement points, and activity monitors
•	 Logging
•	 Auditing
•	 Assurance of delivery
•	 Protocol transformation (between different message submission and

delivery interface formats)

A messaging program has one principal interface: message submission and
delivery. The Simple Object Access Protocol (SOAP) defined by the W3C is a
commonly-accepted standard for this. In use, SOAP is layered on top of more
basic communication protocols, such as the Hypertext Transfer Protocol
(HTTP).

SOAP is the core message transmission standard. W3C also defines related
standards for addressing, resource representation, and message transmission
optimization.

SOAP and its related standards were defined in the first instance for web
services. They are also supported, at least to some extent, by many messaging
program products.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book48

SOAP does not provide assurance of message delivery. Another protocol,
Web Services Reliable Messaging (WS-ReliableMessaging) defined by OASIS,
includes mechanisms that enable messages to be transferred reliably in the
presence of software component, system, or network failures. Its specification
includes a SOAP binding, so that it can be layered on top of SOAP.

SOAP is a standard that enables interoperability between messaging systems.
For portability across messaging systems, software services should use a
standard interface dependent on the programming language, such as the Java
Messaging Service (JMS).

The Web Services Security (WS-Security) standards defined by OASIS are
commonly-accepted standards that provide for message encryption and
encapsulation of security tokens. A messaging program that interfaces to an
encryption engine may support WS-Security for encryption, and a message
bus that interfaces to policy decision points and policy enforcement points
may support WS-Security for security tokens.

A message bus that interfaces to management programs, encryption engines,
data translators, policy decision points, policy enforcement points, or activity
monitors can communicate with them using the same interface as for
message submission and delivery, but is more likely to use different interfaces
that are designed to support the particular programs concerned.

	 2.4.3	 Activity Monitor
An activity monitor is a program that interfaces to a messaging program as
described in the Detailed Messaging Model (Figure 10), and monitors the
messaging activity.

An activity monitor has three principal interfaces:
•	 Message bus
•	 Results
•	 Configuration

SOAP is a commonly-accepted standard for the interface to the message bus.

There are no commonly-accepted standards for output of the results of the
monitoring, or for configuration of the monitor.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

49The SOA Reference Architecture

	 2.4.4	 PDPs and PEPs
A policy decision point (PDP) is a program that decides, in accordance with a
policy, whether resource access requests should be granted.

A policy enforcement point (PEP) is a program that implements decisions to
grant or deny resource access requests.

PDPs and PEPs co-operate as part of an overall policy framework. Such
a framework can be used to enforce policies of various kinds, including
security and performance management.

PDPs and PEPs can be attached to messaging programs, as shown in the
Detailed Messaging Model (Figure 10). When used in this way, they can
control acceptance of messages for transport over the bus, and can control
delivery of messages to services.

PEPs can also be embedded within the services themselves.

There are a number of standards that are relevant to PDPs and PEPs,
including the Web Services Policy Framework (WS-Policy) defined by the
W3C, and the following standards defined by OASIS: the Web Services
Security Policy (WS-Security-Policy), the eXtensible Access Control Markup
Language (XACML), and the Security Assertion Markup Language (SAML).

	 2.4.5	 Data Translator
A data translator is a program that converts data from one representation
to another. It can interface to a message bus, as shown in the Detailed
Messaging Model (Figure 10).

A data translator has three principal interfaces:
•	 Input data format
•	 Output data format
•	 Translation specification

The eXtensible Markup Language (XML) defined by the W3C is a
commonly-accepted generic standard for the input and output data formats.
Document Type Definitions (DTDs) and XML schemas are used to define
specific XML data formats.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book50

The eXtensible Stylesheet Language (XSL) Transformations (XSLT) standard
defined by the W3C is a commonly-accepted standard for specifying
translations between data with different XML DTDs or schemas. However, it
is not sufficiently powerful to satisfy all significant translation requirements.

Where the data translator interfaces to a message bus, SOAP (with XML
layered on top) is a commonly-accepted standard for transport of the input
and output data.

	 2.4.6	 Encryption Engine
An encryption engine is a program that encrypts and decrypts data, and
applies and verifies integrity checks based on encryption technology.

As shown in the Detailed Messaging Model (Figure 10), an encryption engine
can be connected to a messaging program. In this situation it encrypts or
applies integrity checks to messages, either for transmission over the bus or
for transmission from the bus over the Internet, and decrypts or verifies the
integrity of messages prior to delivery to services using the bus.

An encryption engine has five principal interfaces:
•	 For submission of data for encryption, and return of the encrypted data
•	 For submission of data for decryption, and return of the decrypted data
•	 For application of integrity checks
•	 For verification of integrity checks
•	 For configuration and management (including encryption key

management)

WS-Security includes extensions to SOAP that provide message integrity and
confidentiality. They also provide the ability to send security tokens in SOAP
messages, and this feature enables higher-level security mechanisms.

Where an encryption engine is connected to a message bus, or sends and
receives data via the Internet, WS-Security is a commonly-accepted standard
for submission of data for encryption and decryption, and for application and
verification of integrity checks. However, product-specific interfaces are often
used instead.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

51The SOA Reference Architecture

There is no commonly-accepted standard for the configuration and
management interface.

	 2.4.7	 Event Processor
An event processor is a program that processes input events and combines
them to generate output events, as described in the Model for Event
Processing (Figure 14).

An event processor has three principal interfaces:
•	 Input event
•	 Output event
•	 Configuration

Input events and output events can be SOAP messages. SOAP is, however,
not necessarily an appropriate standard for all event interfaces.

There is no commonly-accepted standard for the configuration interface.

	 2.4.8	 Composition Engine
A composition engine is a program that executes scripts that control services
and describe interactions between them. It is used to perform one or more of
the services in a composition, as described in the Model for Scripted Service
Composition (Figure 8).

A composition engine has two principal interfaces:
•	 With the scripts
•	 With the services with which it interacts

The Web Services BPEL defined by OASIS is a widely-accepted standard
language for describing service compositions. It is based on XML and
integrated with WSDL. It can be used by an enterprise to define compositions
of internal and external services. The composed services can include both
short-term and long-running transactions.

SOAP is a commonly-accepted standard for the interface between a
composition engine and the services with which it interacts.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book52

	 2.4.9	 Service Registry
A service registry is an organized collection of service descriptions,
maintained by a registry service that returns the descriptions that match
specifications in submitted enquiries, as described in the Model for Service
Discovery (Figure 11).

A registry service has two principle interfaces:
•	 For management of the service descriptions that it maintains
•	 For enquiries and responses

The Universal Description Discovery and Integration (UDDI) standards
published by OASIS are the most commonly-accepted standards for both of
these interfaces. They apply to web-based registries that expose information
about businesses or other entities.

The original UDDI concept was of public registries for businesses and
services, and several well-known companies provided public UDDI nodes.
However, in January 2006 those companies announced the closure of their
nodes. UDDI is now mostly used as an internal registry standard within
corporations.

The UDDI standards define interfaces, based on SOAP and XML, for
publication and inquiry of registry contents. Publication and inquiry are
services, and the UDDI standards include descriptions of these services
in WSDL. Also, it is possible to map UDDI service descriptions to WSDL
service descriptions. This means that UDDI can be used together with WSDL
in an SOA.

A significant limitation of UDDI, which has made service discovery less
useful than had been hoped, is the difficulty of matching service descriptions
to consumer needs. A person reading a “Yellow Pages” directory understands
that a building contractor may provide roofing services, and looks under
“Building Contractors” as well as under “Roofing Services” when a roof
needs repair. Software programs cannot yet make this kind of connection
in a general way. There is, however, another possible approach, which is not
yet established, but which promises better search capabilities. This is the
use of the Web Ontology Language (OWL) defined by the W3C for service
descriptions published as part of the Semantic Web. A group of researchers is
developing an OWL web service ontology known as OWL-S, which includes

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

53The SOA Reference Architecture

a core set of mark-up language constructs for describing the properties and
capabilities of web services, and is designed to be used with WSDL.

	 2.4.10	 Service Components
A service component is a program that plays a part in performing a service.
Service components include programs that implement service interfaces
using underlying assets, as in the Model for Asset Wrapping (Figure 12).

These service components often employ container-based technologies, such
as Enterprise JavaBeans (EJB) technology.

Service components are a limiting influence on performance. The technology
selected as the basis for service components must be carefully considered
from this point of view.

Service component building blocks that implement service interfaces must
conform to the same interface standards as the services. In an SOA that uses
messaging, these typically include WSDL and SOAP.

	 2.4.11	 Model-Implementation Environment
A model-implementation environment is a set of programs that support
the creation of models for services or service compositions, and the
implementation of programs and scripts that perform the services and
compositions directly from the models, without substantial human
intervention.

A model-implementation environment has two principal interfaces:
•	 Model-description language
•	 Implementation meta-model

The Unified Modeling Language (UML) defined by the OMG is a standard
modeling language that is widely used by the architecture community. The
OMG also defines a Meta Object Facility (MOF) which provides an object-
oriented abstract modeling framework that comprehends UML and is the
basis of its model-driven approach.

OWL is also sometimes used for describing models of systems and
applications, instead of, or together with, the OMG standards.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

SOA Source Book54

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

	Preface
	Acknowledgements
	Chapter 1 Service-Oriented Architecture
		1.1	What Is SOA?
		1.2	SOA and Enterprise Architecture
		1.3	SOA and Boundaryless Information Flow
		1.4	SOA Features and Benefits
		1.5	Maturity Model for SOA

	Chapter 2 The SOA Reference Architecture
		2.1	The Building Blocks of SOA
		2.2	�A High-Level Perspective of the SOA Reference Architecture
		2.3	�Detailed Building Blocks of the SOA Reference Architecture
		2.4	Infrastructure for SOA

