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Abstract

Ulrich Beck described the shift to the Risk Society, characterized by the un-
even distribution of manufactured risks stemming from human activity. In
the thesis I apply Beck’s Risk Society perspective to the study of datafication,
with a twofold aim: on the one hand, the Risk Society theory can explain the
uneven acknowledgment of risks unfolding within the datafied society; on the
other hand, the process of datafication constitutes an interesting case to test the
empirical grounding of the reflexive modernization thesis, according to which,
as modernization progresses, technological progress is increasingly questioned.
Results of four empirical studies show how some elements of the reflexive
modernization theory do not pass the empirical test. First, a country’s level
of digitalization does not deepen knowledge-based stratification mechanisms.
Second, individuals’ trust in data institutions does not drop when the pitfalls
of datafication become visible, challenging the ‘worked-and-won’ dynamic of
trust in the risk society. Nevertheless, I also show how the Risk Society perspec-
tive is beneficial to better understand some aspects of the datafication processes,
as findings indicate the success of organized irresponsibility dynamics, as well
as the important role of knowledge as a risk stratification mechanism at the
individual level.
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Ron Swanson: “APRIL! Listen I was trying to buy this hand crafted mahogany
wood model of a B-25Mitchell Panchito aircraft […] I went to this website and
this ad popped up, ‘Hey Ron Swanson, check out this great offer.’ ”
April Ludgate: “What’s your question?”
RS: “My question is, what the hell?”
AL: “Like how do they know who you are?”
RS: “Yeah,”
AL: “OK, um, there are these things called cookies, where like if you go to a site
and buy something it will remember you and create ads for other stuff you might
wanna buy.”
RS: “So it learns information about me? Seems like an invasion of privacy.”
AL: “Dude, if you think that’s bad, go to Google Earth and type in your address.”
(Ron takes his computer to the dumpster)

Ron Swanson on Parks & Recreation, season 4 episode 9 “The Trial of Leslie
Knope”, 2011 - watch the scene at https://edu.nl/3ycjt.
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1Introduction
1 • datafication and risks

The expansion of ICTs has tremendously enhanced life opportunities: an enor-
mous amount of information is available to citizens, governments, and firms
on all corners of the world, which use it in combination with powerful digital
tools to make processes more efficient, and – in many cases - safer. In recent
years, the advent of Big Data has nurtured the process of datafication of society,
or ‘the process by which subjects, objects, and practices are transformed into
digital data’ (Southerton, 2020, p. 1), which now involves virtually every aspect
of social life. Think of the quantification of friendships enabled by Facebook
via likes and comments, but also –- in the framework of the COVID-19 pan-
demic – the quantification of exposure risk via the collection of information
on social encounters via digital contact tracing.
In current understandings, datafication consist of two elements (Souther-

ton, 2020): the translation of social/human life into machine-readable data,
and ‘the generation of different kinds of value from data’ (Mejias & Couldry,
2019, p. 3). The first element, i.e. rendering social life into quantified bits,
has to do with a general tendency to quantification common to all modern
societies (cf. Mennicken & Espeland, 2019). Nowadays, however, it is boosted
by inexpensive data storage solutions, powerful machine learning tools, and
algorithms, that enable to process and analyze large volumes of data at relatively
little cost and effort. In this sense, datafication has led to the quantification of
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