
2015 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2024
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2015 edition is registered under ISBN 978-94-032-7936-7

9 771534 895004

ISSN 1534-8954

9 789403 279367

ISBN 978-94-032-7936-7

2023-05-31 First printing

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2015 symposium was held in Vienna, Austria from 29 Mar 2015 to 1 Apr 2015.

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 Smart Homes with openHAB and ooRexx – Manuel Raffel 1

2 IBM Rexx Language Update:Classic Rexx and The Rexx Compiler – Virgil Hein 19

3 Let’s make a model train set – Jon Wolfers 64

4 What is Classic Rexx? – Walter Pachl 92

5 The IBM Rexx Compiler – Walter Pachl 105

6 The ooDialog User Guide – Oliver Sims 123

7 New Features in BSF4ooRexx – Rony G. Flatscher 137

8 Rexxoid: Running Rexx on Android Systems – Julian Reindorf 146

9 BRexx: Running Rexx on Android Systems – Eva Gerger 155

10 D-Bus and ooRexx - Architecture, Testing and Applications – Sebastian Margiol 167

11 D-Bus and ooRexx - Nutshell Examples – Richard Lagler 211

12 Rexx utilities in Regina – Uwe Winter 252

13 How to Develop a Native Library in C++ for ooRexx in a Nutshell – Rony G. Flatscher 265

14 The Cross-Platform Utility ”ooRexxDoc” – Alexander Seik 280

15 ooRexx as scripting language for all browsers – Manuel Raffel 287

16 NetRexx 3.04 - New Features – René Vincent Jansen 294

17 SOAP4ooRexx - A Cross-platform library to exploit the Simple Object Access Protocol
from ooRexx – Alexander Seik 302

III

1

Smart Homes with openHAB and ooRexx –
Manuel Raffel

Date and Time

30 Mar 2015, 07:30:00 CET

Presenter

Manuel Raffel

Presenter Details

Manuel Raffel is currently about to finish his undergraduate studies in Business,
Economics and Social Sciences with a major in Business Administration at the
Vienna University of Economics and Business. After having been introduced to
the world of ooREXX by one of his professors, Dr. Rony Flatscher, he is currently
working on two projects and his thesis, all of them focussing on BSF4ooREXX
related topics.

Session Abstract

Thepresentation is intended to give an introduction to both the openHABproject
for home automation and the developed extensionwhich adds support for ooRexx.
OpenHAB is a highly extensible, vendor and technology agnostic open source
home automation software. The developed binding effectively enables ooRexx
to take control of lights, heating, shutters and everything else there is in today’s
smart homes.

1

Bringing into the

© boanet, http://www.wu.ac.at/press/picturelibrary/, 29.03.2015

© Manuel Raffel

© Zaha Hadid, https://www.flickr.com/photos/wuvienna/5114015892/, 29.03.2015

2

Smart Home?

Empowering the Smart Home

Demo

Implementation

Demo

Outlook

Agenda

Smart Home?

3

What is a ?

© Keoni Cabral, https://www.flickr.com/photos/52193570@N04/5188977419/, 29.03.2015

© pieter.morlion, https://www.flickr.com/photos/89092297@N00/7002498434/, 29.03.2015

© melikex, https://www.flickr.com/photos/61638779@N00/304897043/, 29.03.2015

?

?

?

!
4

Empowering the
Smart Home

openHAB logo © openHAB, http://www.openhab.org/, 29.03.2015

5

6

Demo

7

images (excl. plan) © openHAB, included in openHAB 1.6.2, 29.03.2015

1 Group g_corridor "Corridor" <corridor>

2

3 Switch light_corridor_ceiling_front "Ceiling Front" (g_corridor)

4 Switch light_corridor_ceiling_back "Ceiling Back" (g_corridor)

5

6 Contact door_corridor "Door" (g_corridor)

8

1 Group g_office "Office" <office>

2

3 Switch light_office_ceiling "Ceiling" (g_office)

4 Switch light_office_table "Table" (g_office)

5

6 Rollershutter shutter_office_left "Office Left" (g_office)

7 Rollershutter shutter_office_right "Office Right" (g_office)

8

9 Contact window_office_left "Office Left" (g_office)

10 Contact window_office_right "Office Right" (g_office)

11

12 Number temp_office_in "Indoor [%.1f °C]" <temperature> (g_office)

13 Number temp_office_out "Outdoor [%.1f °C]" <temperature> (g_office)

images (excl. plan) © openHAB, included in openHAB 1.6.2, 29.03.2015

9

1 sitemap DemoHouse label="DemoHouse"

2 {

3 Frame

4 {

5 Group item=g_corridor label="Corridor" icon="corridor"

6 Group item=g_office label="Office" icon="office"

7 }

8 […]

9 }

Implementation

10

ooRexx

Binding

S
ta

tu
s

U
p

d
a

te
s

C
o

m
m

a
n

d
s

ooRexx logo © Julian Choy, http://www.oorexx.org/, 29.03.2015

1 // Synchronous sending of a command.

2 // itemName – name of the item to send the command for

3 // command – the command to send

4 public abstract void sendCommand(String itemName, Command command)

5

6 // Asynchronous sending of a command.

7 // itemName – name of the item to send the command for

8 // command – the command to send

9 public abstract void postCommand(String itemName, Command command)

10

11 // Asynchronous sending of a status update.

12 // itemName – name of the item to send the command for

13 // newState – the new state to send

14 public abstract void postUpdate(String itemName, State newState)

11

1 OnOffType = bsf.loadClass("org.openhab.core.library.types.OnOffType")

2 OpenClosedType = bsf.loadClass("org.openhab.core.library.types.OpenClosedType")

3 UpDownType = bsf.loadClass("org.openhab.core.library.types.UpDownType")

4

5 openHAB.command~ON = OnOffType~ON

6 openHAB.command~OFF = OnOffType~OFF

7 openHAB.command~OPEN = OnOffType~OPEN

8 openHAB.command~CLOSED = OnOffType~CLOSED

9 openHAB.command~UP = OnOffType~UP

10 openHAB.command~DOWN = OnOffType~DOWN

11

12 openHAB.state~ON = OnOffType~ON

13 openHAB.state~OFF = OnOffType~ON

14 openHAB.state~OPEN = OnOffType~ON

15 openHAB.state~CLOSED = OnOffType~ON

16 openHAB.state~UP = OnOffType~ON

17 openHAB.state~DOWN = OnOffType~ON

Demo

12

images (excl. plan) © openHAB, included in openHAB 1.6.2, 29.03.2015

1 Group g_corridor "Corridor" <corridor>

2

3 Switch light_corridor_ceiling_front "Ceiling Front" (g_corridor)

 { oorexx="command:commandReceived,update:updateReceived" }

4 Switch light_corridor_ceiling_back "Ceiling Back" (g_corridor)

 { oorexx="command:commandReceived,update:updateReceived" }

5

6 Contact door_corridor "Door" (g_corridor)

 { oorexx="update:updateReceived" }

13

1 Group g_office "Office" <office>

2

3 Switch light_office_ceiling "Ceiling" (g_office)

 { oorexx="command:commandReceived,update:updateReceived" }

4 Switch light_office_table "Table" (g_office)

 { oorexx="command:commandReceived,update:updateReceived" }

5

6 Rollershutter shutter_office_left "Office Left" (g_office)

 { oorexx="command:commandReceived,update:updateReceived" }

7 Rollershutter shutter_office_right "Office Right" (g_office)

 { oorexx="command:commandReceived,update:updateReceived" }

8

9 Contact window_office_left "Office Left" (g_office)

 { oorexx="update:updateReceived" }

10 Contact window_office_right "Office Right" (g_office)

 { oorexx="update:updateReceived" }

1 use arg eventPublisher

2 .local~openHAB = eventPublisher

3 return .OpenHABProxy~new

4 ::requires OpenHAB.CLS

5

6 ::class OpenHABProxy

7

8 ::method commandReceived

9 use arg itemName, command

10 say "REXX noticed that " itemName " received command " command

11

12 ::method updateReceived

13 use arg itemName, state

14 say "REXX noticed that " itemName " received update " state

14

1 Switch bluetooth_device_in_range

 { bluetooth="45E43B6CA214", oorexx="update:bluetoothDevice" }

8 ::method bluetoothDevice

2 use arg itemName, state

3

4 if state~equals(.openHAB.state~ON) then

5 do

6 .openHAB~sendCommand("light_office_ceiling", .openHAB.command~ON)

7 .openHAB~sendCommand("light_office_table", .openHAB.command~ON)

8 .openHAB~sendCommand("light_corridor_ceiling_front", .openHAB.command~ON)

9 .openHAB~sendCommand("light_corridor_ceiling_back", .openHAB.command~ON)

10 end

Outlook

15

•

•

•

•

•

•

•

•

16

Questions?

Thank you!

17

18

2

IBM Rexx Language Update:Classic Rexx
and The Rexx Compiler – Virgil Hein

Date and Time

30 Mar 2015, 09:00:00 CET

Presenter

Virgil Hein

Presenter Details

Virgil has been with IBM for 38+ years working in software development. In
his current position as an IBM Business Manager he is responsible for all facets
of a set of mature technology products. This includes responsibility for strategy,
businessmanagement, development,marketing, sales, service, and support.Main
products include Office Vision products, BookManager, REXX, and OS/2. In this
position themain goals are focused onmaintaining/increasing customer satisfaction,
supporting customer efforts tomigrate to follow-on solutions, andfinding creative
means of increasingmature/growth product revenue. As the product owner for
the IBMREXXCompiler, Virgil is closely involvedwith a variety of REXX activities
both inside and outside of IBM.

Session Abstract

Virgil keeps us abreast of developmentswithin the IBM teams in charge of IBM’s
Rexx products.

19

IBM Software

© 2014, 2015 IBM Corporation

Virgil Hein, IBM
vhein@us.ibm.com

REXX Language Coding Techniques

1

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques2

Disclaimers

§ The information contained in this presentation is provided for
informational purposes only.

§ While efforts were made to verify the completeness and accuracy
of the information contained in this presentation, it is provided
“as is”, without warranty of any kind, express or implied.

§ In addition, this information is based on IBM’s current product
plans and strategy, which are subject to change by IBM without
notice.

§ IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this presentation or any other
documentation.

§ Nothing contained in this presentation is intended to, or shall have
the effect of:

– Creating any warranty or representation from IBM (or its affiliates or
its or their suppliers and/or licensors); or

– Altering the terms and conditions of the applicable license
agreement governing the use of IBM software.

20

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques3

Agenda

§ REXX products

§ REXX Enhancements (z/OS)

§ External environments and interfaces

§ Key functions and instructions

§ REXX data stack vs. compound variables

§ I/O

§ Troubleshooting

§ Programming style and techniques

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques4

REXX Session at SHARE

§ I am site editor of Destinationz.org. Destination z is an online
mainframe community of IBMers, those in mainframe
related jobs, academics and business partners. Looking
over your REXX Language Coding presentation you gave
at SHARE, I was wondering if you might be interested in
contributing an article to Destination z based off your
presentation?

21

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques5

REXX Interpreter and Libraries

§ The Interpreter executes (interprets) REXX code “line by line”

– Included in all z/OS and z/VM releases

§ A REXX library is required to execute compiled programs

– Compiled REXX is not an LE language

§ Two REXX library choices:

– (Runtime) Library – a priced IBM product

– Alternate library – a free IBM download

• Uses the native system’s REXX interpreter

§ At execution, compiled REXX will use whichever library is
available:

– (Runtime) Library

– Alternate Library

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques6

The REXX Products

§ IBM Compiler for REXX on zSeries Release 4

– z/VM, z/OS: product number 5695-013

§ IBM Library for REXX on zSeries Release 4

– z/VM, z/OS: product number 5695-014

§ VSE

– Part of operating system

§ IBM Alternate Library for REXX on zSeries Release 4

– Included in z/OS base operating system (V1.9 and later)

– Free download for z/VM (and z/OS)
http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html

§ REXX Interpreter

– Included in all z/OS and z/VM releases

22

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques7

Why Use a REXX Compiler?

§ Program performance

– Known value propagation

– Assign constants at compile time

– Common sub-expression elimination

– stem.i processing

§ Source code protection

– Source code not in deliverables

§ Improved productivity and quality

– Syntax checks all code statements

– Source and cross reference listings

§ Compiler control directives

– %include, %page, %copyright, %stub, %sysdate, %systime, %testhalt

IBM Software

© 2014, 2015 IBM Corporation

REXX Enhancements in z/OS V2.1

23

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

REXX Enhancements in z/OS V2.1 and later

§ EXECIO enhanced to support I/O with RECFM=U, VS, VBS

§ RECFM=U,VS,VBS support also added to callable I/O interface

§ New TRAPMSG function allows IRX... messages, if issued from a

command invoked by the EXEC, to be captured via OUTTRAP

§ STORAGE function now supports 64-bit addresses for both reading

from and writing to storage.

§ Empty sequential data set can be part of a concatenation accessed

by EXECIO, CLIST I/O, PRINTDS if it is SMS managed

§ LISTDSI enhanced (REXX and CLIST)
– RACF/NORACF operand
– Multi Volume Support
– Handles data sets with extended attributes

§ Other smaller requirements

9

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Overview

§ Over the years many customers have asked for the capability to handle I/O
to data sets containing records with Variable Spanned (VS, VBS)
RECFM, and with data sets having undefined (U) RECFM. This includes
the ability to handle spanned files generated by SMF, or to read load
library type undefined files.

§ Problem Statement / Need Addressed
– Provide the capability to read or write RECFM=VS, VBS, U type data

sets under REXX.

Note: RECFM=VS/VBS files do not support update mode (DISKRU).

§ Solution
– EXECIO support extended

§ Benefit / Value
– The power of REXX and EXECIO can be used to process data sets

with RECFM attributes that were formerly not supported.

10

24

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Usage & Invocation

§ There is no change to the execio syntax. Just enhanced capabilities.

§ Example 1. Use EXECIO to read records from an input RECFM=VS file and write
them to a new file having RECFM=VBS. (Assumes input LRECL <= 240).

/* REXX */
"ALLOC FI(INVS) DA('userid.test.vs') SHR REUSE"
ALLOCRC = RC
"ALLOC FI(OUTVBS) DA('userid.test.newvbs') SPACE(1) TRACKS " ,
 " LRECL(240) BLKSIZE(80) RECFM(V B S) DSORG(PS) NEW REUSE"
ALLOCRC = MAX(RC,ALLOCRC)
execio_rc = 0 /* Initialize */
error = 0 /* Initialize */
IF ALLOCRC = 0 THEN
 do
 /**/
 /* When spanned records are read, each logical record is the */
 /* collection of all spanned segments of that record on DASD. */
 /**/
 "execio * DISKR INVS (STEM inrec. FINIS" /* Read all records */
 if rc /= 0 then
 error = 1 /* Read Error occurred */
 end

11

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Usage & Invocation

§ Example 1 continued

 ELSE
 do

 say 'File allocation error ...'

 error = 1 /* Error occurred */

 end

IF error = 0 then /* If no d is ok */

 DO

 "execio "inrec.0" DISKW OUTVBS (STEM inrec. FINIS" /* Write all

 records read to the new file */

 if rc=0 then

 do

 say 'Output to new VBS file completed successfully'

 say 'Number of records copied ===> ' inrec.0

 end

 else

 do

 say 'Error writing to new VBS file '

 error = 1 /* Error occurred */

 end

 END

12

25

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Usage & Invocation

§ Example 2. Use EXECIO to read a member of a RECFM=U file and change the
first occurrence of the word 'TSOREXX ' within each record to 'TSOEREXX'
before rewriting the record. If a record is not changed, it need not be
rewritten.

/* REXX */

/* Alloc my Load Lib data set having RECFM=U BLKSIZE=32000 LRECL=0 */

"ALLOC FI(INOUTDD) DA('apar2.my.load(mymem)') SHR REUSE"

readcnt = 0 /* Initialize rec read cntr */

updtcnt = 0 /* Initialize rec update cntr */

error = 0 /* Initialize flag */

EoF = 0 /* Initialize flag */

do while (EoF=0 & error=0) /* Loop while more recs/no err */

 "execio 1 DISKRU INOUTDD (STEM inrec." /* Read a rec for update */

 if rc = 0 then /* If read ok */

 do /* Replace 1st occurrence of 'TSOREXX' in record by 'TSOEREXX'

 and write it back */

 readcnt = readcnt + 1 /* Records read */

 z = POS('TSOREXX ',inrec.1,1) /* Find target within rec */

 if z /= 0 then /* If found, replace it */

 do

 inrec.1 = SUBSTR(inrec.1,1,z-1)||'TSOEREXX'|| ,

 SUBSTR(inrec.1,z+LENGTH('TSOEREXX')) /*Replace it*/

 "execio 1 DISKW INOUTDD (STEM inrec." /* Rewrite the update

 made to the last record read*/

13

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Usage & Invocation

§ Example 2 continued
 if rc > 0 then /* If error */
 error=1 /* Indicate error */
 else
 updtcnt = updtcnt + 1 /* Incr update count */
 end
 else /* Else nothing changed, nothing
 to rewrite */
 NOP /* Continue with next record */
 end
 else /* Else non-0 RC */
 if rc=2 then /* if end-of-file */
 EoF=1 /* Indicate end-of-file */
 else
 error=1 /* Else read error */
 end /* End do while */
 "execio 0 DISKW INOUTDD (FINIS" /* Close the file */
 if error = 1 then
 say '*** Error occurred while updating file '
 else
 say updtcnt' of 'readcnt' records were changed'
 "FREE FI(INOUTDD)"

 exit 0

14

26

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Overview

§ TRAPMSG – a new TSO/E REXX function used in conjunction with
OUTTRAP to permit REXX to trap REXX messages (i.e. IRX..... msgs)
in some instances. Prior to this, no IRX.... msg could be trapped.

§ Problem Statement / Need Addressed
– REXX IRX..... messages should be trappable via OUTTRAP just as

other output (e.g. such as say output from nested execs) is
trappable.

§ Solution
– Use TRAPMSG('on') to tell REXX to treat REXX msg output in the

same was as any other output, for purposes of trapping.

§ Benefit / Value
– REXX msgs issued by nested execs, and by host commands

invoked by REXX (e.g. execio) can now be trapped into an
OUTTRAP variable, rather than always being written to screen.

– CLIST error msgs from CLISTs invoked by REXX also now
trappable.

15

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Usage & Invocation

§ TRAPMSG() - returns current setting. /* OFF perhaps */

§ TRAPMSG('ON' | 'OFF') - enables or disables output trapping for IRX....

msgs. Default is 'OFF'

16

27

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Usage & Invocation

§ Example 1: A REXX exec invokes execio without allocating the indd file.
 EXECIO will return RC=20 and an error message. By trapping the
message with OUTTRAP, the exec can decide what to do with the error.
(This same technique can be used to trap the IRX0250E message if
execio were to take an abend, like a space B37 abend.)

 ===

 msgtrapstat = TRAPMSG('ON') /* Save current status and set

 TRAPMSG ON to allow REXX msgs to be trapped */

 outtrap_stat = OUTTRAP('line.') /* Enable outtrap */

 /**/

 /* Invoke TSO host cmd, execio, and trap any error msgs issued */

 /**/

 "execio 1 diskr indd (stem rec. finis"

 if RC = 20 then /* If execio error occurred */

 do i=1 to line.0

 say '==> ' line.i /* Write any error msgs */

 end

 outtrap_stat = OUTTRAP('OFF') /* Disable outtrap */

 msgtrapstat = TRAPMSG('OFF') /* Turn it off */

 exit 0

17

IBM Software

© 2014, 2015 IBM CorporationREXX Language Coding Techniques

Usage & Invocation

§ Example 2: A REXX exec turns on OUTTRAP and TRAPMSG and invokes
a second REXX exec. The second REXX exec gets an IRX0040I
message due to an invalid function call. Exec1 is able to trap the
message issued from exec2.

Note that if exec1 had made the bad function call, it could not trap the error message because a
function message is considered at the same level as the exec. This is similar to the fact that an exec
can use OUTTRAP to trap SAY statements from an exec that it invokes, but it cannot trap its own SAY
output.

 ===

 /* REXX - exec1 */

trapit = OUTTRAP('line.')

trapmsg_stat = TRAPMSG('ON')

call exec2

do i=1 to line.0 /* Display any output trapped from exec2 */

 say '==> ' line.

end

trapit = OUTTRAP('OFF')

trapmsg_stat = TRAPMSG('OFF')

exit 0

/* REXX - exec2 */

say 'In exec2 ...'

time = TIME('P') /* Invalid time operand, get msg IRX0040I*/

return time

18

28

