
2013 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2024
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2013 edition is registered under ISBN 978-94-037-3322-7

9 771534 895004

ISSN 1534-8954

9 789403 733227

ISBN 978-94-037-3322-7

2024-01-07 First printing

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2013 symposium was held in Raleigh-Durham area, North Carolina, USA from 5May 2013
to 8 May 2013.

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 Embedding Assets in REXX code – Frank Clarke 1

2 Defensive Programming with Rexx – Les Koehler 7

3 NetRexx Server Pages – René Vincent Jansen 13

4 Installing and Managing Multiple ooRexx Versions – Gil Barmwater 28

5 Processing XML Documents with SAX Using BSF4ooRexx – Rony G. Flatscher 30

6 Processing XML Documents with DOM Using BSF4ooRexx – Rony G. Flatscher 46

7 Creating Cross-Platform GUIs with BSF4ooRexx – Rony G. Flatscher 69

8 HTML done ISPF style – Marc Irvin 86

9 Rexx/PFIO - A Rexx Interface to PiFace Digital I/O board for the Raspberry Pi – Mark
Hessling 93

10 NetRexx on the Raspberry Pi – René Vincent Jansen 101

III

1

Embedding Assets in REXX code – Frank
Clarke

Date and Time

6 May 2013, 13:30:00 CET

Presenter

Frank Clarke

Presenter Details

Retired IBM PL/I programmer learned CLIST in 1973 and REXX in 1988. He has
been building utility software for programmers since 1973.

1

Embedding Assets
into

REXX Code

Frank Clarke
2013

What?

!  Panels and skeletons (among other things) are
permanently welded to the source code

!  ...so that all* the elements are in one place

(* some limitations apply)
2

Why?

!  HUGE savings in I/O

!  Ease of maintenance

!  Simpler distribute/install

How?

The embedded elements are 'hidden' in a REXX
comment at the back of the source:

/* Embedded elements follow the source as a comment:

))) PLIB DISPL01 identifies this as a panel named 'DISPL01'

)ATTR

...

))) SLIB LOADJOB identifies this as a skeleton named 'LOADJOB'

//&uid.A JOB (&zacctnum.),'DEFAULT JOBCARDS',

...

*/

3

Extracting the Element – pt 1

Transfer the data to the queue

 do while sourceline(currln) <> "/*"

 text = sourceline(currln) /* save with a short name */

 if Left(text,3) = ")))" then do /* package the queue */
 . . .
 end /* package the queue */

 else push text /* onto the top of the stack */

 currln = currln - 1 /* previous line */

 end /* while */

Extracting the Element – pt 2

If this is a new DDName…

if Left(text,3) = ")))" then do /* package the queue */

 parse var text ")))" ddn mbr . /* PLIB PANL001 maybe */
 if Pos(ddn,ddnlist) = 0 then do /* doesn't exist */

 ddnlist = ddnlist ddn /* keep track */
 $ddn = ddn || Random(999)
 $ddn.ddn = $ddn /* PLIB247, maybe */

 address TSO "ALLOC FI("$ddn")" fb80po.0

 "LMINIT DATAID(DAID) DDNAME("$ddn")"
 daid.ddn = daid

 end
 . . .
 end

4

Extracting the Element – pt 3

Create a new member

 daid = daid.ddn

 "LMOPEN DATAID("daid") OPTION(OUTPUT)"

 do queued()

 parse pull line
 "LMPUT DATAID("daid") MODE(INVAR) DATALOC(LINE) DATALEN(80)"

 end

 "LMMADD DATAID("daid") MEMBER("mbr")"

 "LMCLOSE DATAID("daid")"

Make the Libraries Active

 dd = ""

 do Words(ddnlist) /* each LIBDEF DD */

 parse value ddnlist dd with dd ddnlist
 $ddn = $ddn.dd /* PLIB322 <- PLIB */
 "LIBDEF ISP"dd "LIBRARY ID("$ddn") STACK"

 end

 ddnlist = ddnlist dd

5

Other Examples

Many of the routines on my code examples web page:
(home.roadrunner.com/~mvsrexx/REXX/) make use of
this technique. Any of them displaying this warning:

|**-***-***-***-***-***-***-***-***-***-***-***-***-***-***-***-**|
| |
| WARNING: EMBEDDED COMPONENTS. |
| See text following TOOLKIT_INIT |
| |
|**-***-***-***-***-***-***-***-***-***-***-***-***-***-***-***-**|

 use DEIMBED.

6

2

Defensive Programming with Rexx – Les
Koehler

Date and Time

6 May 2013, 15:00:00 CET

Presenter

Les Koehler

Presenter Details

About the speaker: Les has been involved with REXX since he received the initial
distribution of Mike Cowlishaw’s first Specification on 1 May 1979 at the IBM
Research Triangle Park Lab just outside Raleigh NC, where they had a VM/370
mainframe and Les developed VM tools and applications.

7

24th International Rexx
Language Symposium

5-8 May 2013
Durham, NC USA

Sponsored by
Rexx Language Association

You're Not Paranoid If...
Defensive Programming In Rexx

A User Experience

Les Koehler
6 May 2013

Table of Contents

Abstract

The environment and the problem

First attempt - Using the MSG command

Writing to a file

Log Results

Zeroing In On The Problem

Saved Again

Progress messages and logging

Summary and Conclusion

Abstract

I define "Defensive Programming" as the ability to
preserve run time data so that problem
determination in case of failure is straight
forward.

Thus, I will present techniques I've learned to use
in my code that make it easier to debug problems
after the fact.

The environment and the problem

When I first started using The Hessling Editor
(THE) with my Windows 2000 Gateway pc, I was
puzzled by some behavior after I had made some
(I thought) simple changes to its profile.the

First attempt - Using the MSG command

Initially, I used a msg? flag and the msg
command:

8

 if msg? then 'msg whatever'

However, it soon became apparent that what was
really needed was a file that could be examined
later.

Writing to a file

Here is the subroutine used to write to the file:

LOGIT: Procedure Expose sigl
 mysigl=sigl
 Parse Arg logargs
 If logargs='' Then logargs=Sourceline(mysigl+1)
 Parse Value Right(Space(Date(),0),9,0) Time('L') With ds ts
 logfile='C:\MyTHEstuff\msglog.log'
 .stream~new(logfile)~~lineout(ds ts logargs '@' mysigl)~close
 Return

An entry in the file would look like this:

19Mar2013 23:37:24.416000 -- Initial @ 53

when created by the following snippet of code:

If initial() Then Do
 If log? Then Call logit
-- Initial

An arbitrary string can also be passed to LOGIT:

 If log? Then Call logit 'PROFILE Starting.' ,
 Initial()='initial() 'ctr='ctr ,
 'fid='fid '@' thisline()

Here I was capturing the initial() flag that

indicates that this is the first execution of the
profile, as well as an internal ctr variable to count
the number of executions.

The same methodology was used in several
place to record various information so I could find
out what was wrong with the changes I had
made.

Log Results

The file showed me:

PROFILE Starting. Initial()=1 ctr=1
USERPROF starting!: EDITV CTR= 1 Passed CTR= 1
 Passed initial?= 1 INITIAL()=1
PROFILE Starting. Initial()=1 ctr=2
USERPROF starting!: EDITV CTR= 2 Passed CTR= 2
 Passed initial?= 1 INITIAL()=1
USERPROF ending!: EDITV CTR= 2 Passed CTR= 2
 Passed initial?= 1 INITIAL()=1
PROFILE Ending. Initial()=1 ctr=2
USERPROF ending!: EDITV CTR= 2 Passed CTR= 1
 Passed initial?= 1 INITIAL()=1
PROFILE Ending. Initial()=1 ctr=1

clearly showing that something was causing the
profile to recursively execute!

Zeroing In

I added some more calls to LOGIT which
produced:

9

