
2006 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2024
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2006 edition is registered under ISBN 978–9-4-0-36-0-000-0

9 771534 895004

ISSN 1534-8954

2024-03-12 First Edition
2024-05-05 Second Edition

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2006 symposium was held in Austin, Texas, USA from 9 Apr 2006 to 13 Apr 2006.

Organizing Committee
. Chip Davis. David Ashley. Gil Barmwater. Lee Peedin. Mark Hessling. Rony G. Flatscher

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 Enhanced Arithmetic for Rexx – Mike Cowlishaw 1

2 But I don’t use objects... or do I? – Rick McGuire 18

3 Implementing BSF4Rexx with ooRexx on Linux and Windows – Lee Peedin 26

4 The Vienna Version of BSF4Rexx – Rony G. Flatscher 33

5 Creating OODialog Interfaces Without Access to the Resource Workshop – Jon Wolfers 51

6 The Watcher: An OO Development Case Study – Gil Barmwater 91

7 The ooRexx Collection Classes – Rick McGuire 98

8 Creating Cross Platform GUI Applications using BSF4Rexx and ooRexx – Lee Peedin 112

9 ooRexxUnit: A JUnit Compliant Testing Framework for ooRexx Programs – Rony G.
Flatscher 117

10 ooRexx on MacOS – René Vincent Jansen 129

11 ooRexx Utilities – David Ashley 148

12 The API is dead, long live the API – Rick McGuire 153

13 UNO.CLS: An (Open) Object Rexx Module for Universal Network Objects – Rony G.
Flatscher 166

14 Update on ooRexx Version 4 – David Ashley 185

15 Visual SlickEdit with Rexx, Part II – Gil Barmwater 188

16 Participating in an Open Source Project – David Ashley 193

17 Mainframe CVS at Rocket Software – Lisa Bates 199

III

1

Enhanced Arithmetic for Rexx – Mike
Cowlishaw

Date and Time

10 Apr 2006, 14:15:00 CET

Presenter

Mike Cowlishaw

Presenter Details

Mike Cowlishaw is the creator of REXX and has worked in both hardware and
software design and is currently the Editor of the IEEE 754 Standard for Floating-
PointArithmetic.He has long been interested in the human aspects of computing,
including the REXX and Java programming languages, colour perception, neural
networks, text editing,mapping, panorama viewers, and decimal arithmetic. He
is an IBM Fellow (retired), a Fellow of the Royal Academy of Engineering, and
a Visiting Professor in the Department of Computer Science at the University of
Warwick, UK.

1

Enhanced Rexx

Arithmetic

RexxLA, Austin ― 10 April 2006

Mike Cowlishaw

IBM Fellow

2

Overview

• Why is Rexx arithmetic decimal?

• Adoption by other standards and languages

• Enhancements and differences

• Adding the new type(s) to Rexx?

Copyright © IBM Corporation 2006. All rights reserved.

2

3

Origins of decimal arithmetic

• Decimal (base 10) arithmetic has been
used for thousands of years

• Algorism (Indo-Arabic
place value system)
in use since 800 AD

• Calculators and many
computers were decimal …

4

IBM 650 (in Böblingen)

Bi-quinary digit

3

5

Binary computers

• In the 1950s binary floating-point was
shown to be more efficient

– minimal storage space

– more reliable (20% fewer components)

• But binary fractions cannot exactly
represent most decimal fractions
(e.g., 0.1 requires an infinitely long binary
fraction: 0.00011001100110011…)

6

Where it costs real money…

• Add 5% sales tax to a $ 0.70 telephone
call, rounded to the nearest cent

• 1.05 x 0.70 using binary double is exactly

0.73499999999999998667732370449812151491641998291015625

(should have been 0.735)

• rounds to $ 0.73, instead of $ 0.74
4

7

Hence…

• Binary floating-point cannot be used for
commercial or human-centric applications
– cannot meet legal and financial requirements

• Decimal data and arithmetic are pervasive

• 55% of numeric data in databases are
decimal (and a further 43% are integers,
often held as decimal integers)

8

Why decimal hardware?

software penalty

add 210x – 560x

quantize 90x – 200x

multiply 40x – 190x

divide 260x – 290x

penalty = Java BigDecimal cycles ÷ DFPU clock cycles

Software is slow: typical Java BigDecimal add
is 1,708 cycles, hardware might take 8 cycles

5

9

Effect on real applications

• The ‘telco’ billing application
1,000,000 calls (two minutes)
read from file, priced, taxed,
and printed

Java
BigDecimal

C, C#
packages

Itanium
hand-tuned

% execution
time in decimal
operations

93.2% 72 – 78% 45% *

* IntelTM figure

10

The path to hardware…

• A 2 x (maybe more) performance
improvement in applications makes
hardware support very attractive

• Standard formats are essential for
language and hardware interfaces

– IEEE 754 is being revised (since 2001)

– incorporates IEEE 854 (radix-independent)

6

11

IEEE 754 agreed draft (‘754r’)

• Now has decimal floating-point formats
with decimal significands and arithmetic

– suitable for mathematical applications, too

• Fixed-point and integer decimal arithmetic
are subsets (no normalization)

• Compression maximizes precision and
exponent range of formats

12

IBM Product Plans

• Future processors will have decimal
floating-point units in hardware, compliant
with current 754r draft

• Appropriate software support:

– operating system

– compiler (GCC, IBM)

– database

– etc. 7

13

Other standards, etc.

• Java 5 BigDecimal (compatible arithmetic)

• C# and .Net ECMA and ISO standards

– arithmetic changed to match, and now allow
use of 745r decimal128

• ISO C and C++ are jointly adding decimal
floating-point as first-class primitive types

– work on adding to GCC almost complete

14

Other standards, etc.

• COBOL already has floating-point decimal,
adding new type for 2008 standard

• ECMAScript (JavaScript/JScript) edition 4
will add decimal type

• XML Schema 1.1 draft now has pDecimal

• New SPEC benchmarks (SPECjbb, etc.)8

15

Other standards, etc. [2]

• Other languages are adding decimal
arithmetic (Python, Eiffel, etc.)

• ANSI/ISO SQL … new types accepted in
principle (draft about to be submitted)

• Strong support expressed by Microsoft,
SHARE, academia, and many others

16

Differences from Rexx arithmetic

• The IEEE types are fixed size, encoded to get
maximum range and precision

… edge effects at the exponent extremes

Format precision normal range

32-bit 7 -95 to +96

64-bit 16 -383 to +384

128-bit 34 -6143 to +6144

9

17

Other differences [1]

• Full floating-point value set, including –0,
±infinity, and NaNs (Not-a-Number).

• Positive exponents are not forced to
integers (2E+3 + 0 is 2E+3, not 2000)

• Zeros have exponents (just like other
numbers) so can affect the exponent of
results (1 + 0.000 is 1.000, not 1)

18

Other differences [2]

• Trailing zeros are preserved for divide and
power operators (2.40/2 is 1.20, not 1.2)

• Subtraction rounds to length of result, not
lengths of operands (with numeric digits
5, 12222 – 10000.5 is 2221.5, not 2222)

• 0 ** 0 is an error (not 1), but n ** 0.5 is OK

10

19

IEEE 754r support in Rexx

• The differences are very minor, but are
sufficiently obscure that they could be
surprising

• Support would allow exact emulation of
other languages using the IEEE 754r
types (and potentially exploit hardware)

• Built-in much easier to use than a library

20

IEEE 754r support in Rexx

• Support could be very simple:

scientific
numeric form engineering

ieee

• Sets digits=16 (?), only digits 7, 16, 34
then allowed (or digits must already be
one of these three values)

11

21

Infinities and NaNs

• String: “Infinity” (etc.) could be a valid
number – but this could ‘surprise’ some
algorithms (a+b not an error)

– this really mostly affects the datatype BIF

• Could use original idea: ‘!’ = Infinity, ‘?’ =
NaN – and these are valid symbols now

– perhaps ‘??’ = sNaN (signaling NaN)

– ‘payloads’ on NaNs?

22

Ordering

• IEEE 754r has a total order for numbers

– –0 is ‘lower’ than +0

– 1.000 is ‘lower’ than 1.0

– +Infinity is ‘lower’ than ‘NaN’

– etc.

• Could define the strict comparison
operators to work this way on numbers

– risky … probably better to provide a BIF12

23

Useful BIFs

• IsNaN, IsInfinite

• Quantize (shorthand for format(x,,n))

• Normalize (strip trailing zeros)

• Num2ieeebits (convert actual bits)

– and vice versa

24

BIF changes

• DataType(x, ‘N’)

– could accept Infinities/NaNs

– or a new option (‘E’?) for extended numbers

• Format() would probably need some work

– (reduced exponent range)

• Sign(x) … need to be careful about –0

13

25

Implementation

• The decNumber C package supports both
IEEE 754r arithmetic and formats and the
ANSI X3.274 (Rexx) arithmetic

– and it’s open source (in GCC tree)…

• Includes enhanced power function, exp,
log10, ln (loge), square-root, quantize

26

Questions?

Google: decimal arithmetic14

27

28

Format details

15

29

IEEE 754r: common ‘shape’

• Sign and combination field fit in first byte

– combination field (5 bits) combines 2 bits of
the exponent (0−2), first digit of the coefficient
(0−9), and the two special values

– allows ‘bulk initialization’ to zero, NaNs, and
± Infinity by byte replication

Sign Comb. field Exponent Coefficient

30

Exponent continuation

Format
exponent

bits
bias normal range

32-bit 2+6 101 -95 to +96

64-bit 2+8 398 -383 to +384

128-bit 2+12 6176 -6143 to +6144

(All ranges larger than binary in same format.)

Sign Comb. field Exponent Coefficient

Simple concatenation

16

31

Coefficient continuation

Sign Comb. field Exponent Coefficient

• Densely Packed Decimal – 3 digits in
each group of 10 bits (6, 15, or 33 in all)

• Derived from Chen-Ho encoding, which
uses a Huffman code to allow expansion
or compression in 2–3 gate delays

17

2

But I don’t use objects... or do I? – Rick
McGuire

Date and Time

10 Apr 2006, 16:00:00 CET

Presenter

Rick McGuire

Presenter Details

As at 2008: Rick was the developer charged with integrating Mike Cowlishaw’s
original REXX interpreter into VM/CMS back in 1982. From 1982 until 1995, Rick
was IBM’s lead architect for REXX issues and principal developer of the Classic
REXX and Object REXX interpreters for OS/2. Since 1995, Rick has been heavily
involved in IBM projects involving programming languages, including 3 years
as a member of IBM’s Java Virtual Machine development team.

18

