
2025 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2025
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2025 edition is registered under ISBN 978-94-038-0342-5

9 771534 895004

ISSN 1534-8954

9 789403 803425

ISBN 978-94-038-0342-5

2025-05-16 First Edition

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2025 symposiumwas held in TheWirtschaftsuniversität Vienna, Austria and online from 4
May 2025 to 7 May 2025.

Organizing Committee
. Chip Davis. Gil Barmwater. Jon Wolfers. Mark Hessling. René Jansen. Rony G. Flatscher. Terry Fuller
1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 ooRexx Tutorial – Rony G. Flatscher 1

2 Meet the Message Paradigm – Rony G. Flatscher 20

3 Introduction to BSF4ooRexx850 (ooRexx/Java Language Bindings) – Rony G. Flatscher 30

4 From Rexx to NetRexx – René Vincent Jansen 53

5 Unicode and ooRexx: A brief introduction to TUTOR – Josep Maria Blasco 70

6 The format wars – Walter Pachl 82

7 The Rexx Parser – Josep Maria Blasco 93

8 Open Object Rexx 5.1 Classic Short Reference – Jochem Peelen 111

9 BREXX/MVS Overview – Peter Jacob 122

10 NetRexx 5.01 – Marc Remes 158

11 Building a High-Performance Rexx Virtual Machine and Toolchain – Adrian Sutherland
175

12 RexxLAWebsites (eating our own dog food) – Mark Hessling 185

13 Rexx Community Questionnaire – Till Winkler 193

14 cRexx’s plugin system – Peter Jacob 199

15 The New Rexx Debugger – DomWise 222

16 Rexxification of Pipelines – Jeff Hennick 236

17 The Rexx Highlighter – Josep Maria Blasco 258

18 Customizing ooRexx. – Gil Barmwater 280

19 AST to Parse Tree: A Multi-Editor Approach to Syntax Highlighting for Rexx and DSLs –
Adrian Sutherland 297

III

20 BSF4ooRexx850 JDOR: Java 2D Drawing for ooRexx – Elif Deger 309

21 Collection of Classes and Routines – Till Winkler 327

22 On Pipes and FastCGI – Michael Beer 333

23 Writing Web CGI with REXX – Larry Schacher 352

24 The Rexx TraceTool – Rony G. Flatscher 373

25 An update on status of the build system for ooRexx et al. – P.O. Jonsson 392

26 The Portable net-oo-rexx Package – Rony G. Flatscher 400

27 JDORFX: Providing 3-D Graphics to ooRexx – Philip Schaller 411

28 ooRexx 5.1.0 release update – Rony G. Flatscher 441

29 Python for ooRexx – Kaan Kuzugüdenli 455

IV

1

ooRexx Tutorial – Rony G. Flatscher

Date and Time

4 May 2025, 11:15:00 GMT

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

Session Abstract

The ooRexx programming language is based on Rexx and adds object-oriented
concepts like classes, objects, and themessage paradigm(inspired by SmallTalk)
to the Rexx language. In addition, ooRexx introduces directives that get carried
out by the interpreter in the new setup phase, followed by the execution phase,
inwhich the features introduced by the directives can be immediately exploited.
This tutorial first sketches the fundamental concepts of the programming language
Rexx and then introduces the most important additions of ooRexx to the Rexx
language, which are demonstrated in short, nutshell examples.

1

"ooRexx Tutorial"

The 2025 International Rexx Symposium

Vienna, Austria

May 4th – May 7th 2025

© 2025 Rony G. Flatscher (Rony.Flatscher@wu.ac.at)

Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Agenda

• Brief History

• Rexx Basics

• Object Rexx

– Some new features like

• USE ARG

– New: Directives

• ::ROUTINE, ::REQUIRES

• ::CLASS, ::ATTRIBUTE, ::METHOD

• (::ANNOTATE, ::CONSTANT, ::OPTIONS, ::RESOURCE)

• Roundup 2

3 Rony G. Flatscher / Till Winkler

Some Historical Bits on Rexx

● Created for IBM mainframes to make programming easier

compared to the rather awkward EXEC2

– Rexx design goals: "human centric", "keep the language small", "easy to

learn", "easy to understand hence easy to maintain"

– Rexx is still instrumental for IBM mainframe operating systems today!

● Extremely successful in the 80'ies

– Companies selling Rexx interpreters successfully, ANSI/INCITS standard (!)

● Object-oriented successor ("Object Rexx") in the 90'ies

– Open-sourced in 2005 by RexxLA.org – "open object Rexx" (ooRexx)

• Available for all major operating systems

• Possible to programme even MS Windows applications via OLE ...

4 Rony G. Flatscher / Till Winkler

Fundamental Rexx Concepts, 1

● "Everything is a string"

– If a string represents a number, one can carry out arithmetic

● Three instruction types

1)Assignment

• Variable name followed by the assignment operator (=) and an expression

2)Keyword instruction

• Keywords are English words conveying the intent of the keyword instruction, e.g.

SAY, DO, IF, LOOP, CALL, PARSE, SELECT, ITERATE, LEAVE, INTERPRET, …

• Makes Rexx code legible as if it was pseudocode

3)Commands

• A string passed to the operating system for execution (as if typed in a window)

3

5 Rony G. Flatscher / Till Winkler

Fundamental Rexx Concepts, 2

● White space can be freely used to format code for better legibility

– Space around operators gets removed

– White space between symbols will be reduced to a single space serving as

concatenation operator

– Hence indentations with white space not significant

● Case of symbols irrelevant

– Rexx uppercases everything outside of quoted strings

– No (frustrating) casing errors for novices

sum = 17 + 19
 hint = "/ 17+19:" sum
 say hint "/" upper("aü ß äöü ÄÖÜ A/ ? \\--// :-)")

SUM=17+19
HINT="/ 17+19:" SUM
SAY HINT "/" UPPER("aü ß äöü ÄÖÜ A/ ? \\--// :-)")

/ 17+19: 36 / Aü ß äöü ÄÖÜ A/ ? \\--// :-)

Output:

6 Rony G. Flatscher / Till Winkler

Fundamental Rexx Concepts, 3

● Rexx nutshell examples to stress fundamental concepts

– Illustrate the Rexx language

• Code intuitive and easy understandable as it looks like pseudo code

– Same examples in the popular Python language to allow direct

comparisons

• Cannot be understood without an introduction to many concepts of the

Python language

4

7 Rony G. Flatscher / Till Winkler

Nutshell Example, 1

Instructions

 /* an assignment instruction: */

a="hello world" /* assigns "hello world" to a variable named a */

 /* a keyword instruction: */

say a /* output: hello world */

 /* a command instruction: */

 /* a command (could be typed into a command line window) */

"echo Hello World 2" /* execute command */

 /* variable RC contains the command's return code, 0 means success */

if rc=0 then say "success!"

 else say "some problem occurred, rc="rc /* show return code */

hello world

Hello World 2

Success!

Output:

hello world

Hello World 2

Success!

an assignment instruction

a="hello world" # assigns "hello world" to a variable named a

no keyword instruction for output, using built-in function print()

print(a)

no command instruction using module subprocess instead

import subprocess # import subprocess module

execute command

completedProcess=subprocess.run("echo Hello World 2", shell=True) # run

rc=completedProcess.returncode # fetch return code, an int

if rc==0:

 print("found!") # indentation mandatory (forcing a block)

else: # must use + (concatenation operator) with str() function

 print("some problem occurred, rc="+str(rc)) # turn rc into a string

Output:

8 Rony G. Flatscher / Till Winkler

Nutshell Example, 2

Blocks, Selection, Multiple Selections

max=5 /* number of repetitions */

loop a=1 to max /* loop block */

 select /* nested block # 1 */

 when a=1 then say a": first round"

 when a=2 then say a": second round"

 when a=3 then say a": third round"

 otherwise say "(a="a")"

 end

 if a=max then

 do /* nested block # 2 */

 say "-> a=max"

 say "-> last round!"

 say "-> loop will end"

 end

end

max=5 # number of repetitions

for a in range(1,max+1): # loop with range() function, must add 1 to max

 # must use str() function with + (concatenation operator)

 match a: # must be indented, "match" needs Python 3.10 or higher

 case 1: print(str(a)+": first round") # nested block # 1

 case 2: print(str(a)+": second round") # nested block # 1

 case 3: print(str(a)+": third round") # nested block # 1

 case _: print("(a="+str(a)+")") # default, nested block # 1

 if a==max: # must be indented, must use == instead of =
 print("-> a==max") # nested block # 2

 print("-> last round!") # nested block # 2

 print("-> loop will end") # nested block # 2

 1: first round

 2: second round

 3: third round

 (a=4)

 (a=5)

 -> a=max

 -> last round!

 -> loop will end

 1: first round

 2: second round

 3: third round

 (a=4)

 (a=5)

 -> a==max
 -> last round!

 -> loop will end

Output: Output:

5

9 Rony G. Flatscher / Till Winkler

Nutshell Example, 3

Parsing Strings

text = " John Doe Vienna Austria"

parse var text firstName lastName city country

say "first name:" firstName", last name:" lastName", city:" city

text = "Mary Doe Tokyo Japan"

parse var text firstName lastName city . /* ignore country */

say "first name:" firstName", last name:" lastName", city:" city

text = " John Doe Vienna Austria"

words = text.split() # create list of words

firstName = words[0] # assign to variable

lastName = words[1] # assign to variable

city = words[2] # assign to variable

print("first name:",firstName+",","last name:",lastName+",","city:",city)

text = "Mary Doe Tokyo Japan"

words = text.split() # create list of words

assign multiple elements in a single statement

firstName, lastName, city = [words[i] for i in (0, 1, 2)]

print("first name:",firstName+",","last name:",lastName+",","city:",city)

first name: John, last name: Doe, city: Vienna

first name: Mary, last name: Doe, city: Tokyo

first name: John, last name: Doe, city: Vienna

first name: Mary, last name: Doe, city: Tokyo

Output: Output:

 10

ooRexx: Some New Features

• Compatible with classic Rexx, TRL 2

– New sequence of execution of Rexx programs:

Phase 1 (load): Full syntax check of the Rexx program upfront

Phase 2 (setup): Interpreter carries out all directives (lead in with "::")

Phase 3 (execution): Start of program execution with line # 1

• rexxc[.exe]: compiles Rexx programs

– If same bitness and same endianness, on all platforms

• USE ARG (in addition to PARSE ARG)

– among other things allows for retrieving stems by reference (!)

• Line comments, led in by two dashes ("--")

-- comment until the line ends6

 11

Stem, Classic REXX

"stemclassic.rex"
s.1="Entry # 1"
s.2="Entry # 2"
s.0=2 /* total number of entries in stem */

call add2stem /* add to stem using an (internal) routine */

do i=1 to s.0 /* iterate over all stem array entries */
 say "#" i":" s.i
end
exit

add2stem: procedure expose s. -- allow access to stem
 n=s.0+1 /* add after last current entry */
 s.n="Entry #" n "added in add2stem()"
 s.0=n /* update total number of entries in stem */
 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

 12

Stem, REXX with USE ARG

"stemusearg.rex": No EXPOSE
s.1="Entry # 1"
s.2="Entry # 2"
s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */
 say "#" i":" s.i
end
exit

add2stem: procedure /* no "expose s." needed anymore ! */
 use arg s. /* USE ARG allows to directly refer to the stem */
 n=s.0+1 /* add after last current entry */
 s.n="Entry #" n "added in add2stem()"
 s.0=n /* update total number of entries in stem */
 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

7

 13

Stem, ooRexx USE ARG

"stemroutine1.rex": No EXPOSE
s.1="Entry # 1"
s.2="Entry # 2"
s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */
 say "#" i":" s.i
end

::routine add2stem
 use arg s. /* USE ARG allows to directly refer to the stem */
 n=s.0+1 /* add after last current entry */
 s.n="Entry #" n "added in add2stem()"
 s.0=n /* update total number of entries in stem */
 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

 14

Stem, ooRexx USE ARG

"stemroutine2.rex": No EXPOSE
s.1="Entry # 1"
s.2="Entry # 2"
s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */
 say "#" i":" s.i
end

::routine add2stem /* we can even use a different stem name */
 use arg abc. /* USE ARG allows to directly refer to the stem */
 n=abc.0+1 /* add after last current entry */
 abc.n="Entry #" n "added in add2stem()"
 abc.0=n /* update total number of entries in stem */
 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

8

 15

About Directives in ooRexx

• Always placed at the end of a Rexx program

– led in by "::" followed by the name of the directive

• "routine", "class", "attribute", "method", ...

• Instructions to the ooRexx interpreter before program starts

– Interpreter sequentially processes and carries out directives in

the setup phase (phase 2) of startup

– After all directives got carried out, the execution phase of the

Rexx program starts by executing the first line

• An ooRexx program with directives

– Defines a "package" of routines and classes

– Rexx code before the first directive is also named "prolog"

 16

::Routine Directive

• Syntax

::routine name [public]

– Interpreter maintains routines (and classes) per

Rexx program ("package")

– If optional keyword public is present, the routine can

be also directly invoked by another (!) Rexx program

9

 17

::ROUTINE Directive, Example

"routine.rex"
r=" 1 "
s=2
say "r="pp(r)
say "s="pp(s)
say
say "The result of 'r || 3 ' is:" pp(r || 3)
say "The result of 's || 3 ' is:" pp(s || 3)
say "The result of 'r + 3' is:" pp(r + 3)
say "The result of 's + 3' is:" pp(s + 3)
say
say "The result of 'r s' is:" pp(r s)
say "The result of 'r || s' is:" pp(r || s)
say "The result of 'r+s' is:" pp(r+s)

::routine pp -- enclose argument in square brackets
 parse arg value
 return "["value"]"

/* yields:

 r=[1]

 s=[2]

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: [23]

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: [5]

 The result of 'r s' is: [1 2]

 The result of 'r || s' is: [1 2]

 The result of 'r+s' is: [3]

*/

 18

::ROUTINE Directive, Example

"toolpackage.rex"
-- collection of useful little Rexx routines

::routine pp public -- enclose argument in square brackets
 parse arg value
 return "["value"]"

::routine quote public -- enclose argument in double-quotes
 parse arg value
 return '"' || value || '"'

10

 19

::ROUTINE Directive, Example

"call_package.rex"
call toolpackage.rex -- get access to public routines in "toolpackage.rex"
say quote('hello, my beloved world')

r=" 1 "
s=2
say "r="pp(r)
say "s="pp(s)
say
say "r="quote(r)
say "s="quote(s)
say
say "The result of 'r || 3 ' is:" pp(r || 3)
say "The result of 's || 3 ' is:" quote(s || 3)
say "The result of 'r + 3' is:" pp(r + 3)
say "The result of 's + 3' is:" quote(s + 3)

/* yields:

 "hello, my beloved world"

 r=[1]

 s=[2]

 r=" 1 "

 s="2"

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: "23"

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: "5"

*/

 20

::REQUIRES Directive

• Syntax

::requires "package.rex"

– Interpreter in (setup) phase 2 will either

• Call (execute) the Rexx program in the file named

"package.rex" on behalf of the current Rexx program

and make all its public routines and classes upon

return directly available to us

• Or if the interpreter already has required that

"package.rex" it will immediately make all its public

routines and classes available to us

– In this case "package.rex" will not be called (executed) anymore!
11

 21

::REQUIRES-Directive, Example

"requires_package.rex"
say quote('hello, my beloved world')

r=" 1 "
s=2
say "r="pp(r)
say "s="pp(s)
say
say "r="quote(r)
say "s="quote(s)
say
say "The result of 'r || 3 ' is:" pp(r || 3)
say "The result of 's || 3 ' is:" quote(s || 3)
say "The result of 'r + 3' is:" pp(r + 3)
say "The result of 's + 3' is:" quote(s + 3)

::requires toolpackage.rex -- get access to public routines in "toolpackage.rex"

/* yields:

 "hello, my beloved world"

 r=[1]

 s=[2]

 r=" 1 "

 s="2"

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: "23"

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: "5"

*/

 22

The Message Paradigm, 1

• A programmer sends messages to objects

– The object looks for a method routine with the same

name as the received message

– If arguments were sent the object forwards them

– The object returns any value the method routine returns

• C.f. <https://en.wikipedia.org/wiki/Alan_Kay>

– One of the fathers of Smalltalk's "object-orientation"

• Programming languages with this paradigm, e.g.

– Smalltalk, Objective C, ...
12

 23

The Message Paradigm, 2

ooRexx

• Proper message operator "~" (tilde, "twiddle")

• In ooRexx everything is an "object"

– Hence one can send messages to everything!

• Example

say "hi, Rexx!"~reverse

-- same as in classic REXX:

say reverse("hi, Rexx!")

-- both yield (actually run the same code):

!xxeR ,ih

 24

The Message Paradigm, 3

ooRexx

• Creating "values" a.k.a. "objects", "instances"

Classic Rexx-style (strings only)

str="this is a string"

ooRexx-style (any class/type including .string class)

str=.string~new("this is a string")

13

 25

About Classic REXX Structures, 1

Important Usage of Stems

• Whenever structures ("records") are needed, stems get

used in classic REXX

• Example

– A person may have a name and a salary, e.g.

p.name = "Doe, John"

p.salary= "10500"

– E.g. a collection of data with a person structure

p.1.name = "Doe, John"; p.1.salary=10500

p.2.name = "Doe, Mary"; p.2.salary=8500

p.0 = 2

 26

About Classic REXX Structures, 2

Important Usage of Stems

• Whenever structures ("records") need to be

processed, every Rexx programmer must know the

exact stem encoding!

• Everyone must implement routines like increasing

the salary exactly like everyone else!

• If structures are simple and not used in many

places, this is o.k., but the more complex the more

places the structure needs to be accessed, the more

error prone this becomes!
14

 27

About ooREXX Structures, 1

Classes (Types, Structures)

• Any object-oriented language makes it easy to

define and implement structures!

– That is what they were designed for!

• The structure ("class", "type") usually consists of

– Attributes (data elements like "name", "salary"),

a.k.a. "object variables", "fields", ...

– Method routines (like "increaseSalary")

 28

About ooREXX Structures, 2

Classes (Types, Structures)

• ::CLASS Directive

–Denotes the name of the structure

–Can optionally be public

• ::ATTRIBUTE Directive

–Denotes the name of a data element, field

• ::METHOD Directive

–Denotes the name of a routine of the structure

–Defines the Rexx code to be run, when invoked15

 29

About ooREXX Structures, 3

Classes (Types, Structures)

• Once

–A structure ("class", "type" both of which are

synonyms of each other) got defined

–One can create an unlimited (!) number of

persons ("instances", "objects", "values", all of

which are synonyms)

• Each person will have its own copy of attributes

(data elements, fields)

• All persons will share/use the same method routines

that got defined for the structure (class, type)

 30

ooRexx Structure "Person"

"personstructure.rex"
p=.person~new("Doe, John", 10500)
say "name: " p~name
say "salary:" p~salary

::class person -- define the name

::attribute name -- define a data element, field, object variable
::attribute salary -- define a data element, field, object variable

::method init -- constructor method routine (to set the attribute values)
 expose name salary -- establish direct access to attributes
 use arg name, salary -- fetch and assign attribute values

/* yields:

 name: Doe, John

 salary: 10500

*/

16

 31

Defining the ooRexx Class (Type)

"person.cls"

::class person PUBLIC -- define the name, this time PUBLIC

::attribute name -- define a data element, field, object variable

::attribute salary -- define a data element, field, object variable

::method init -- constructor method routine (to set the attribute values)

 expose name salary -- establish direct access to attributes

 use arg name, salary -- fetch and assign attribute values

 32

Defining the ooRexx Class (Type)

"requires_person.rex"
p.1 = .person~new("Doe, John", 10500)
p.2 = .person~new("Doe, Mary", 8500)
p.0 = 2

sum=0
do i=1 to p.0
 say p.i~name "earns:" p.i~salary
 sum=sum+p.i~salary
end
say
say "Sum of salaries:" sum

::requires person.cls -- get access to the public class "person" in "person.cls"

/* yields:

 Doe, John earns: 10500

 Doe, Mary earns: 8500

 Sum of salaries: 19000

*/

17

 33

ooRexx Classes and Beyond ...

• ooRexx comes with a wealth of classes

– A lot of tested functionality for "free" ;-)

– E.g., the collection classes augment what stems are

capable of doing!

• Explore the collection classes and you will

immediately be much more productive!

• If seeking arrays, you have them: .Array class

– Consult the pdf-books coming with ooRexx, e.g.,

• "ooRexx Programming Guide" (rexxpg.pdf)

• "ooRexx Reference" (rexxref.pdf)

 34

Roundup

• ooRexx is great and compatible to classic REXX

– You can continue to program in classic REXX, yet use

ooRexx on Linux, MacOS, Windows, s390x...

• ooRexx adds a lot of flexibility and power to the REXX

language and to your fingertips

– One can take advantage of all of it immediately

– Simple to use because of the message paradigm

• Send ooRexx messages to Windows and MS Office ...

• Send ooRexx messages to Java ...

• Send ooRexx messages to …

• Get it and have fun! :-)
18

 35

Links

• RexxLA-Homepage (non-profit SIG, owner of ooRexx, BSF4ooRexx)

<http://www.rexxla.org/>

• OoRexx 5.1.0 on Sourceforge

<https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0/>

– Introduction to ooRexx on Windows, Slides ("Business Programming 1")

• <http://wi.wu.ac.at/rgf/wu/lehre/autowin/material/foils/>

• BSF4ooRexx850 on Sourceforge (ooRexx-Java bridge)

<https://sourceforge.net/projects/bsf4oorexx/>

– Introduction to BSF4ooRexx (Windows, Mac, Unix), Slides ("Business Programming 2")

• <http://wi.wu.ac.at/rgf/wu/lehre/autojava/material/foils/>

• Student's work, including ooRexx, BSF4ooRexx

<http://wi.wu.ac.at/rgf/diplomarbeiten/>

• JetBrains "IntelliJ IDEA", powerful IDE for all operating systems

– <https://www.jetbrains.com/idea/download>, free "Community-Edition"

• Students and lecturers can use the professional edition for free

– Alexander Seik's ooRexx-Plugin with readme (as of: 2025-05-07)

• <https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/2.5.0/>

• "Introduction to Rexx and ooRexx" (254 pages, covers ooRexx 4.2)

Google et.al., or, <https://www.facultas.at>

19

2

Meet the Message Paradigm – Rony G.
Flatscher

Date and Time

4 May 2025, 12:15:00 GMT

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

Session Abstract

ooRexx introduces and implements themessage paradigm(inspired by SmallTalk),
making it easy for programmers to conceptually interact with objects of any
complexity and environment. This tutorial explains and demonstratesmessages
using short, nutshell examples, thereby explaining howooRexx’s object-oriented
features work. It should become understandable why it is easy for beginners to
employ themessage paradigm successfully and to understand important object-
oriented concepts like method resolution and inheritance.

20

Department of Information Systems

and Operations Management

 Rony G. Flatscher / Till WinklerVienna University of Economics and Business Welthandelsplatz 1, D2-C A-1020 Vienna▪ ▪

I'm sorry that I long ago coined the term "objects" for this

topic because it gets many people to focus on the lesser

idea. The big idea is "messaging".

Alan Kay (https://en.wikipedia.org/wiki/Alan_Kay)

 Meet the Message Paradigm

International Rexx Symposium

May 4th through May 7th 2025, Vienna

2 Rony G. Flatscher / Till Winkler

Developing Business Programming

● Specialisation in "(Business) Information Systems"
– As customary at the time, the most popular languages were used to teach

beginners: Pascal, BASIC, COBOL, C, PROLOG, Visual Basic Script (VBS) /

Applications (VBA), Java, …

● Surprise when experimenting with the Rexx programming language
– Novices learn much faster and more in-depth than with popular languages

– Analysing the critical success factors showed that the most important aspect

was the programming language

● 35 years of participant observation (two lectures per semester)
– Observed difficulties yielded changes in: content, slides, nutshell examples,

infrastructure, presentation, ...

21

3 Rony G. Flatscher / Till Winkler

Some Historical Bits on Rexx

● Created for IBM mainframes to make programming easier

compared to the rather awkward EXEC2
– Rexx design goals: "human centric", "keep the language small", "easy to

learn", "easy to understand hence easy to maintain"

– Rexx is still instrumental for IBM mainframe operating systems today!

● Extremely successful in the 80'ies
– Companies selling Rexx interpreter successfully, ANSI/INCITS standard (!)

● Object-oriented successor ("Object Rexx") in the 90'ies
– Open-sourced in 2005 by RexxLA.org – "open object Rexx" (ooRexx)

● Available for all major operating systems

● Possible to program even MS Windows applications via OLE ...

4 Rony G. Flatscher / Till Winkler

Fundamental Rexx Concepts, 1

● "Everything is a string"
– If a string represents a number, one can carry out arithmetic's

● Three instruction types:
– 1) Assignment

● Variable name followed by the assignment operator (=) and an expression

– 2) Keyword instruction

● Keywords are English words conveying the intent of the keyword instruction, e.g. SAY,

DO, IF, LOOP, CALL, PARSE, SELECT, ITERATE, LEAVE, INTERPRET, …

● Makes Rexx code legible as if it was pseudo code

– 3) Commands

● A string passed to the operating system for execution (as if typed in a window)

22

5 Rony G. Flatscher / Till Winkler

Fundamental Rexx Concepts, 2

● White space can be freely used to format code for better legibility
– Space around operators gets removed

– White space between symbols will be reduced to a single space serving as abuttal

concatenation operator

– Hence indentations with white space not significant

● Case of symbols irrelevant
– Rexx uppercases everything outside of quoted strings

– No (frustrating) casing errors for novices

● Rexx nutshell examples to stress fundamental concepts
– Illustrate the language

– Same examples in the popular Python language to allow direct comparisons

6 Rony G. Flatscher / Till Winkler

Nutshell Example

"Instructions"

 /* an assignment instruction: */

a="hello world" /* assigns "hello world" to a variable named a */

 /* a keyword instruction: */

say a /* output: hello world */

 /* a command instruction: */

 /* a command (could be typed into a command line window) */

"echo Hello World 2" /* execute command */

 /* variable RC contains the command's return code, 0 means success */

if rc=0 then say "success!"

 else say "some problem occurred, rc="rc /* show return code */

hello world

Hello World 2

Success!

Output:

hello world

Hello World 2

Success!

an assignment instruction

a="hello world" # assigns "hello world" to a variable named a

no keyword instruction for output, using built-in function print()

print(a)

no command instruction using module subprocess instead

import subprocess # import subprocess module

execute command

completedProcess=subprocess.run("echo Hello World 2", shell=True) # run

rc=completedProcess.returncode # fetch return code, an int

if rc==0:

 print("found!") # indentation mandatory (forcing a block)

else: # must use + (concatenation operator) with str() function

 print("some problem occurred, rc="+str(rc)) # turn rc into a string

Output:

23

7 Rony G. Flatscher / Till Winkler

Concepts Added by ooRexx, 1

● ooRexx has been influenced by SmallTalk including its message paradigm

● ooRexx adds message expressions and directive instructions

● "In ooRexx everything is an object (synonyms: value, instance)"

– An object is conceptually regarded as if it was a living thing

– One can only interact with an object by sending it messages

● A message expression consists of a receiver, the message operator ~ (tilde) and

the message name, optionally followed by arguments in parentheses

– The receiver will search a method by the name of the received message,

invokes it and returns any result to the sender

– No one can invoke methods directly but the receiver (encapsulation)!

– The sender does not need to know anything about implementation details

8 Rony G. Flatscher / Till Winkler

Nutshell Example

Messages

say reverse("olleh") -- classic Rexx BIF (built-in function)

say "olleh"~reverse -- message to string object

hello

hello

Output:

hello world

hello world

Output:

a="dlrowolleh" -- assign string to variable
 -- use built-in-functions (BIFs) reverse(), substr()
say substr(reverse(a),1,5) substr(reverse(a),6)

 -- use String methods reverse and substr
say a~reverse~substr(1,5) a~reverse~substr(6)

24

9 Rony G. Flatscher / Till Winkler

Concepts Added by ooRexx, 2

● Directive instruction
– If present then always placed at the end of a program

– Led in by two consecutive colons (::) serving as an eye catcher

● Directives can be used to cause ooRexx to create classes with attributes and methods

during the setup phase

::CLASS name, ::ATTRIBUTE name, ::METHOD name, …

● Classes with attributes and methods
– Can be defined with directive instructions or dynamically at runtime

– Instances get created by sending the class the message new

● The new method will create the object and before returning it, the newly created object

gets the message init sent with the arguments supplied to the new message, if any
– Hence, defining a method named init will always run at construction time (constructor)

10 Rony G. Flatscher / Till Winkler

Nutshell Example

Creating A Class with Directives and Dynamically

say ".dog:" .dog -- string value of the class
d=.dog~new -- create and assign a dog
d~bark -- let the dog bark
say "d:" d", an instance of:" d~class

::class dog -- class directive
::method bark -- method routine directive
 say "wuff!" -- code to run

.dog: The DOG class

wuff!

d: a DOG, an instance of: The DOG class

Output:

clz: The DOG class

wuff!

d: a DOG, an instance of: The DOG class

Output:

clz=.object~subclass("DOG") -- create the dog class
say "clz:" clz -- string value of the class
m =.method~new("bark", 'say "wuff!"') -- create method
clz~define("bark",m) -- define as instance method for class

d=clz~new -- create and assign a dog
d~bark -- let the dog bark
say "d:" d", an instance of:" d~class

Dynamic creation

25

11 Rony G. Flatscher / Till Winkler

Ad Messages, 1

● Quickly familiar, intuitive for novices

● Seeing objects as living things makes it easy to accept behaviours and concepts like

– The new method of a class will send the init message to the newly created object (a

method named init is therefore a constructor)

– An object using the class hierarchy to locate the method to invoke (inheritance)

– Multiple inheritance (!) deviating the search carried out by the object

– Intercepting messages for which no method could be found as the object then

sends the unknown message to itself (simply implement a method unknown)

– The variables self (reference to the object that invoked the method) and super

(reference to the immediate superclass) in methods

– As objects know how to find and invoke methods, the sender does not need to know

that (black box) at all, alleviating the (novice) programmer

12 Rony G. Flatscher / Till Winkler

Ad Messages, 2

● Addressing complex software infrastructures can be made easy for

message senders (programmers)
– Create a proxy class in ooRexx for the sender that processes the received messages,

marshals the received arguments and unmarshals the return value

● Example Windows and Windows programs
– ooRexx for Windows has ooRexx classes for Windows support

– The ooRexx OLEObject class is the proxy class for interacting via OLE (Object Linking

and Embedding) with any OLE Windows component

● Its unknown method will intercept all messages for which no method can be found on the

ooRexx side, such that it gets forwarded to the proxied Windows object by searching and

invoking the appropriate Windows method

● To exploit this functionality no implementation knowledge of COM or OLE is needed!

26

13 Rony G. Flatscher / Till Winkler

Nutshell Example

Programming Excel Using ooRexx Messages

excApp = .OLEObject~new("Excel.Application") -- create Excel object
excApp~visible = .true -- make Excel visible
sheet = excApp~Workbooks~Add~Worksheets[1] -- add and get sheet
 -- set titles from an ooRexx array
titleRange=sheet~range("A1:C1") -- get title cell range
titleRange~value = .array~of("Argentina", "Brasil", "Chile")
titleRange~font~bold = .true -- make font bold
sheet~range("A2:C5")~value = createRows(4) -- create and assign array
excApp~displayAlerts = .false -- no alerts (should file exist already)
fileName=directory()"\test.xlsx" -- save in current directory
Say 'fileName:' fileName -- show fully qualified file name
sheet~SaveAs(fileName) -- save file (no alerts, see above)
excApp~quit -- quit (end) Excel

::routine createRows -- return two-dimensional array with random data
 use arg items -- fetch argument
 arr=.array~new -- create Rexx array
 do i=1 to items -- create random(min,max) numbers
 arr[i,1] = random(0,1000) -- Argentina
 arr[i,2] = random(1001,2000) -- Brazil
 arr[i,3] = random(2001,3000) -- Chile
 end
 return arr -- return two-dimensional Rexx array

fileName: C:\Program Files\JetBrains\IntelliJ IDEA 2023.3.6\jbr\bin\test.xlsxPossible Output:

14 Rony G. Flatscher / Till Winkler

Ad Messages, 3

● Addressing complex software infrastructures can be made easy for

message senders (programmers)
– Create a proxy class in ooRexx for senders that processes the received messages,

marshals the received arguments and unmarshals the return value

● Example Java and Java class libraries
– BSF4ooRexx850 for Windows, macOs and Linux implements an ooRexx-Java bridge

– Its BSF class is the ooRexx proxy class for interacting with Java

● Its unknown method will intercept all messages for which no method can be found on the

ooRexx side, such that it gets forwarded to the proxied Java object by searching and

invoking the appropriate Java method

● To exploit this functionality no implementation knowledge of BSF4ooRexx850 is needed!

27

15 Rony G. Flatscher / Till Winkler

Nutshell Example

Communicating with Java Objects Using ooRexx Messages

dim=.bsf~new("java.awt.Dimension",111,222)
say "dim: " dim", dim~class:" dim~class
say "dim~toString:" dim~toString -- Java method
 -- use Java fields as if ooRexx attributes
say "dim~width: " dim~width -- Java field
say "dim~height: " dim~height -- Java field
dim~setSize(333,444) -- Java method
say "dim~toString:" dim~toString -- Java method
 -- use Java fields as if ooRexx attributes
dim~width=555 -- setting Java field
dim~height=666 -- setting Java field
say "dim~toString:" dim~toString -- Java method

::requires "BSF.CLS" -- get ooRexx-Java bridge

dim: java.awt.Dimension@1c4af82c, dim~class: The BSF

class

dim~toString: java.awt.Dimension[width=111,height=222]

dim~width: 111

dim~height: 222

dim~toString: java.awt.Dimension[width=333,height=444]

dim~toString: java.awt.Dimension[width=555,height=666]

Output:

Hit <enter> on the keyboard to proceed (end) ...

Output:

jf = .bsf~new("javax.swing.JFrame", "Title By ooRexx") -- create JFrame
style = 'style="color: blue; font-family: serif; font-size: 18;"'
lblText = '<html><em' style'> Hi there! (by ooRexx) </html>'
lbl = .bsf~new("javax.swing.JLabel", lblText) -- create JLabel
jf~add(lbl) -- add JLabel to JFrame
jf~setSize(280,70) -- set size
jf~setLocation(50,200) -- set JFrame's location on screen
jf~visible=.true -- make JFrame visible
jf~toFront -- place JFrame in front of all windows
say 'Hit <enter> on the keyboard to proceed (end) ...'
parse pull data -- wait until user presses <enter>

::requires "BSF.CLS" -- get ooRexx-Java bridge

16 Rony G. Flatscher / Till Winkler

Roundup

● Message paradigm

– Easy and intuitive (easy for novices as well)

– All important object-oriented concepts can be informally (!) explained and understood (easy to

understand for novices as well)

● Proxy classes allow the message paradigm to be extended to other software systems

– Windows COM/OLE, proxy class OLEObject (supplied by ooRexx)

– Java, proxy class BSF (supplied by BSF4ooRexx850)

– interestingly, novice students do not care and are not afraid! :-)

● They "only" send messages and need not know any implementation details!

● The supplied nutshell examples allow novices to exploit OLE and Java

– Windows: MS Excel, MS Word, MS PowerPoint, AOO swriter, LO scalc, …

– Java: from (secure!) socket programming to JavaFX GUIs!

28

17 Rony G. Flatscher / Till Winkler

Some References

● Open and free slides (odp upon request)
– R. G. Flatscher, “Introduction to Programming with ooRexx and BSF4ooRexx 1. 1-7.” [PDF slides]:

● <https://wi.wu.ac.at/rgf/wu/lehre/autowin/material/foils/>

– R. G. Flatscher, “Introduction to Programming with ooRexx and BSF4ooRexx 2. 8-14.” [PDF slides]:

● <https://wi.wu.ac.at/rgf/wu/lehre/autojava/material/foils/>

● T. Winkler, "Collection of Rexx References". <https://wi.wu.ac.at/rgf/rexx/rexxref/searchref.html>
– Maintained at: <https://gitlab.com/dylwi/rexx-references>

● R. G. Flatscher and G. Müller, “'Business Programming' – Critical Factors from Zero to Portable GUI Programming in Four

Hours,” in 6th BEE-Conference, Plitvice Lakes, Croatia, 2021, pp. 76-82.
– <https://research.wu.ac.at/files/32933925/2021_BusinessProgramming_BEE2021_accordingToGuidelines.pdf>

● R.G. Flatscher, "Proposing ooRexx and BSF4ooRexx for Teaching Programming and Fundamental Programming Concepts",

in 2023 Program Guide ISECON: Information Systems Education Conference, Dallas/Plano, Tx, 2023, pp. 89-102.
– <https://research.wu.ac.at/files/41301564/ISECON23_Flatscher_Proposing_ooRexx_article.pdf>

● T. Winkler and R. G. Flatscher, “Cognitive Load in Programming Education: Easing the Burden on Beginners with REXX.” In

Central European Conference on Information and Intelligent Systems. 2023, pp. 171-178.
– <https://research.wu.ac.at/files/46150789/CECIIS_CLT_REXX.pdf>

18 Rony G. Flatscher / Till Winkler

Some Links

● Portable zip archives (no installation needed): ooRexx 5.1.0, oorexxshell, dbusoorexx, bsf4oorexx
– <https://www.ronyrexx.net/xfer/portable>

● Note: bsf4oorexx (ooRexx-Java bridge) needs Java installed

● Installation packages
– ooRexx 5.1.0:

● <https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0>

– BSF4ooRexx (ooRexx-Java bridge, needs Java preinstalled):

● <https://sourceforge.net/projects/bsf4oorexx/files/GA/BSF4ooRexx-850.20240304-GA/>

● Selected seminar papers, Bachelor and Master thesis with ooRexx, BSF4ooRexx, dbusoorexx
– <https://wi.wu.ac.at/rgf/diplomarbeiten/>

● Non-profit Rexx Language Association (owner of ooRexx):
– <https://www.RexxLA.org>

● Web page with Rexx related resources maintained by R.G. Flatscher:
– <https://ronyrexx.net>

29

3

Introduction to BSF4ooRexx850
(ooRexx/Java Language Bindings) – Rony
G. Flatscher

Date and Time

4 May 2025, 13:15:00 GMT

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

Session Abstract

The ”Bean Scripting Framework for ooRexx bridges ooRexx and Java. It allows
ooRexx programs to use all Java classes and Java objects as if they were ooRexx
classes and ooRexx objects. This way, it becomes possible to take full advantage
of all the functionality Java classes offer in a platform-independent manner.
Among other things, it enables ooRexx programs to create and use the most
complex graphical user interface applications without needing to learn Java or
write Java code.Nutshell exampleswill demonstrate howeasy ooRexxprogrammers
can exploit all of Java. (The bridge also allows Java programmers to send Rexx
messages to ooRexx objects.)

30

Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems

and Operations Management

 IntroductionToBSF4ooRexx850
ooRexx/Java Language Bindings

Easily exploiting Java from ooRexx on all operating

system platforms

The 2025 International Rexx Symposium

Vienna, Austria

May4th – May 7th 2025

2 Prof. Rony G. Flatscher

Overview

● Some information on Java and an example of using ooRexx to exploit it

● Some important things to know about Java

● Introducing the ooRexx package (program) BSF.CLS
– Camouflages Java as ooRexx

– Makes it possible to simply send ooRexx messages to Java (class) objects

– Provides some important utility features

● Download links

● Roundup

● Addenda!
– Also demonstrates how Java can send ooRexx objects messages!

31

3 Prof. Rony G. Flatscher

Java

● Programming language with the following notable features
– Compiles to machine instructions ("bytecode") of an artificial processor

– Needs a "Java virtual machine (JVM)" to execute the bytecode

● JVMs are available for all important operating systems and hardware architectures

● Hence, a Java class or a Java program, once compiled can be run everywhere!

– Distributed with a (huge) "Java runtime environment (JRE)"

● A huge Java class library that offers everything that an application may possibly need
– E.g. Socket classes for Internet programming, GUI classes for graphical user interfaces, …

● Uncountable third party Java class libraries, most available as open-source (e.g. ASF)

– Most important programs get programmed with Java (even Android applications!)

– Many professional applications that are not programmed in Java offer Java APIs

● E.g. SAP, OpenOffice/LibreOffice, …

● Hence Java is truly a programmer's "treasure trove" for all operating systems!

4 Prof. Rony G. Flatscher

BSF4ooRexx850

● External Rexx function package
– Allows to interact with the Java runtime environment (JRE)

● Exploit functionality of Java classes

● Exploit functionality of Java objects

– ooRexx 5.0 or later, Java 8 or later

– Package "BSF.CLS"

● Camouflages Java as ooRexx (Java appears to be dynamic and message based)

● Supplies class BSF and public routines

● "Everything that is available in Java becomes directly available to

ooRexx !"
– Java: "write once, run everywhere!"

● Windows, MacOS, Linux, …

32

5 Prof. Rony G. Flatscher

BSF4ooRexx: An Example, 1

● The following example
– Uses the ::requires directive to load the ooRexx-Java bridge

::requires "BSF.CLS"

● Directives get processed in the setup phase, right before the program starts

– Creates an instance of the Java class named java.awt.Dimension and interacts

with it via ooRexx messages that denote the method names to run

● Studying the documentation of the Java class java.awt.Dimension one can see which

Java methods are available for use

– Displays the string that the message toString returns

– Changes the values for the width and height fields

– Displays the string that the message toString returns

6 Prof. Rony G. FlatscherPackage: java.awt

dim=.bsf~new("java.awt.Dimension", 100, 200) -- create with width and height
say dim~toString -- show string value

::requires BSF.CLS -- get Java support

java.awt.Dimension[width=100,height=200]

BSF4ooRexx: An Example, 2

Output:

33

7 Prof. Rony G. Flatscher

Downloading Java (Usually Free and Open-source)

● JRE versus JDK
– JRE: "Java Runtime Environment", no compiler

– JDK: "Java Development Kit", compiler & tools

● Java/OpenJDK 8 LTS ("long term support")
– Released spring 2014, supported until 2030 (Oracle, Azul), 2031 (Liberica)

● Java/OpenJDK 21 LTS ("long term support", "modular Java")
– Released fall 2023, supported at least until 2031 (Oracle, Azul), 2031 (Liberica)

● Suggestion: download OpenJDK with JavaFX support, e.g.
– Scroll down to see all versions pick the JavaFX installation package

● Full JDK: <https://bell-sw.com/pages/downloads/> ("Liberica", 2025-04-28)

● JDK FX: <https://www.azul.com/downloads/> ("Azul", 2025-04-28)

8 Prof. Rony G. Flatscher

Things to Know About Java, 1

● Strictly typed language
– Primitive types

● boolean, byte, char,short,int,long,float,double

– Object-oriented types

● Any Java class, e.g.
– java.awt.Dimension, java.lang.String, java.lang.System, ...

● Wrapper classes for primitive types
– java.lang.Boolean, java.lang.Byte, java.lang.Character,

java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double

– "boxing": wraps up a primitive value into a wrapper object

– "unboxing": retrieves a primitive value from its wrapper object

34

9 Prof. Rony G. Flatscher

Things to Know About Java, 2

● Case sensitive
– Upper- and lowercase significant!

● Classes organized in packages
– Package names may be compound

● E.g. "java.lang"

– Fully "qualified class name" includes package name

● e.g. "java.lang.String"

– "Unqualified class name"

● e.g. "String"

10 Prof. Rony G. Flatscher

Things to Know About Java, 3

● A Java class may consist of
– Fields (comparable to ooRexx attributes) and

– Methods (comparable to ooRexx methods)

● Fields and methods
– Static fields and static methods

● Sometimes dubbed "class fields" and "class methods"

● Available to the class object and its instances

– Otherwise "instance methods"

● Only available to instances of a Java class

35

11 Prof. Rony G. Flatscher

Things to Know About Java, 4

● A Java class, its fields and methods may be
– "public"

● These can be accessed by the "world" (everyone)

– "private"

● Only accessible within the Java class

– "protected"

● Only accessible within Java classes of the same package and subclasses

– None of the above modifiers given ("package private")

● Only accessible within Java classes of the same package, but to noone else

12 Prof. Rony G. Flatscher

Things to Know About Java, 5

● Excellent documentation ("JavaDoc")
– Extensive set of interlinked HTML documents

● Created right from the comments in Java sources

– Can be studied on the Internet, search e.g. with

javadoc 8 java.awt.Dimension

javadoc 8 Dimension

javadoc 21 java.awt.Dimension

javadoc 21 Dimension

● Documentation can be downloaded to local computer, e.g.
– Java/JDK 8 LTS ("long term support"):

● <https://www.oracle.com/java/technologies/javase-jdk8-doc-downloads.html> (2025-04-28)

– Java/JDK 21 LTS ("long term support"):

● <https://www.oracle.com/java/technologies/javase-jdk21-doc-downloads.html> (2025-04-28)

36

13 Prof. Rony G. Flatscher

A Javadoc Example (JDK8LTS), 1

Search keywords:

Javadoc 8 System

14 Prof. Rony G. Flatscher

A Javadoc Example (JDK8LTS), 2

37

15 Prof. Rony G. Flatscher

BSF.CLS: Camouflages Java as ooRexx

● ooRexx proxy class "BSF"
– Allows to create Java objects

– Requires the fully qualified Java class name

● Invoking Java methods
– Just send the name of the method as a message to the Java object

● Supply the arguments as documented, if any
– Type conversions between ooRexx and Java are done automatically by BSF4ooRexx, if

necessary

– Return values are automatically converted by BSF4ooRexx, if necessary

16 Prof. Rony G. Flatscher

BSF.CLS: Creating Java Objects

● ooRexx proxy class "BSF"
– Allows to create Java objects

– Needs at least fully qualified Java class name

● Possible arguments for creating Java objects
– Can be found by studying the "Constructor" section in the Javadocs

– Supply the arguments as documented after the fully qualified Java class name

argument

● Type conversions ("marshalling") between ooRexx and Java are done automatically

by BSF4ooRexx, if necessary

38

17 Prof. Rony G. Flatscher

-- see Javadocs: search Internet with "javadoc java.awt.Color"
red=.bsf~new("java.awt.Color",255,0,0) -- create color red
say "red:" red~toString -- toString will show the RGB values

myColor=.bsf~new("java.awt.Color",100,200,3) -- create an individual color
say "myColor:" myColor~toString
brighter=myColor~brighter -- get a brighter color
say "brighter:" brighter~toString

::requires "BSF.CLS" -- get ooRexx-Java bridge

red: java.awt.Color[r=255,g=0,b=0]

myColor: java.awt.Color[r=100,g=200,b=3]

brighter: java.awt.Color[r=142,g=255,b=4]

BSF.CLS: Creating Java Objects, Example

Output (maybe):

18 Prof. Rony G. Flatscher

BSF.CLS: Camouflages Java as ooRexx

● Allows to load any Java class
– bsf.loadClass(JavaClassName)

● Java class name
– Use of the exact case is mandatory !

– Java class name must be fully qualified !

● Allows accessing static (class) methods and fields (attributes)
– Example uses java.lang.System's static getProperty() method to query the Java

version from ooRexx

39

19 Prof. Rony G. Flatscher

-- see Javadocs: search Internet with "javadoc java.lang.System"
clz=bsf.loadClass("java.lang.System") -- loads the Java class
say "java.version:" clz~getProperty("java.version")

::requires "BSF.CLS" -- get ooRexx-Java bridge

java.version: 1.8.0_162

BSF.CLS: Loading a Java Class, Example

Output (maybe):

20 Prof. Rony G. Flatscher

BSF.CLS: Camouflages Java as ooRexx

● Allows to import any Java class
– bsf.import(JavaClassName)

● Java class name
– Use of the exact case is mandatory !

– Java class name must be fully qualified !

● Imported Java class can be treated as if it were an ooRexx class
– Allows to use the ooRexx "new"-method to create instances of the imported

Java class

● Possible arguments for creating Java objects can be found by studying the

"Constructor" section in the Javadocs

40

21 Prof. Rony G. Flatscher

-- see Javadocs: search Internet with "javadoc java.awt.Color"
clzColor=bsf.importClass("java.awt.Color") -- import Java class

red=clzColor~red -- get static field for red color
say "red:" red~toString -- toString will show the RGB values

myColor=clzColor~new(100,200,3) -- create an individual color
say "myColor:" myColor~toString
brighter=myColor~brighter -- get a brighter color
say "brighter:" brighter~toString

::requires "BSF.CLS" -- get ooRexx-Java bridge

red: java.awt.Color[r=255,g=0,b=0]

myColor: java.awt.Color[r=100,g=200,b=3]

brighter: java.awt.Color[r=142,g=255,b=4]

BSF.CLS: Importing a Java Class, Example

Output (maybe):

22 Prof. Rony G. Flatscher

BSF.CLS: Camouflages Java as ooRexx

● Accessing, setting Java fields
– ooRexx treats public fields as ooRexx attributes

– Java "get" and "set" pattern methods for Java fields honored by BSF4ooRexx

● Just use the field name following "get" and "set" only

– Static fields can be accessed via the

● Java class object or

● Any of its instances

41

23 Prof. Rony G. Flatscher

-- see Javadocs: search Internet with "javadoc java.awt.Dimension"

dim=.bsf~new("java.awt.Dimension", 100, 200)
say dim~toString
dim~height=321 -- treat field height as if it was an ooRexx attribute
dim~width =1024 -- treat field width as if it was an ooRexx attribute
say dim~toString

::requires BSF.CLS -- get Java support

java.awt.Dimension[width=100,height=200]

java.awt.Dimension[width=1024,height=321]

BSF.CLS: Java Fields As ooRexx Attributes

Output:

24 Prof. Rony G. Flatscher

BSF.CLS

● About respecting case
– Case of fully qualified Java class name

● Always significant!

● Case of fields and method names insignificant!
– Eases coding considerably

42

25 Prof. Rony G. Flatscher

BSF.CLS: Creating Java Arrays, 1

● Java arrays
– Strictly typed

– Fixed capacity

– Indices start with value "0"

● Public routine "bsf.createJavaArray(...)"
– Arguments

● First argument gives the Java type
– Fully qualified Java class name or Java class object

● Each further argument is an integer value, denoting the maximum elements in that

dimension

26 Prof. Rony G. Flatscher

BSF.CLS: Creating Java Arrays, 2

● Public routine "bsf.createJavaArray(...)"
– Resulting Java array can be used as if it was an ooRexx array object!

● Indices start at "1" as with ooRexx arrays!

● Possesses the fundamental ooRexx array methods like "AT", "[]", "PUT", "[]=",

"supplier", and "makeArray"

● Can be therefore used in ooRexx "DO ... OVER" and "DO WITH ... OVER" loops

43

27 Prof. Rony G. Flatscher

-- create a two-dimensional (5x10) Java Array of type String

arr=.bsf~bsf.createJavaArray("java.lang.String", 5, 10)

arr[1,1]="First Element in Java array." -- place an element

arr~put("Last Element in Java array.", 5, 10) -- place another one

do o over arr -- loop over elements in array (makearray)

 say o

end

say

do with index i item o over arr -- loop over elements in array (supplier)

 say i":" o

end

::requires BSF.CLS -- loads Java support

First Element in Java array.

Last Element in Java array.

1,1: First Element in Java array.

5,10: Last Element in Java array.

BSF.CLS: Creating a Java Array

Output:

28 Prof. Rony G. Flatscher

BSF4ooRexx: BSFCreateRexxProxy, 1

● RexxProxy
– A Java object that proxies an ooRexx object

– Allows Java to send messages to ooRexx objects

– Any method invocations on the Java object will be forwarded as an ooRexx

message to the proxied ooRexx object

● All arguments supplied to the Java method are forwarded in the same sequence with

the ooRexx message

● BSF4ooRexx always appends an additional argument, "slotDir" (an ooRexx directory

object) to the ooRexx message, which will contain information about the Java method

invocation

44

