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Preface

Efficient algorithms and data structures lie at the heart of computer science,
forming the foundation of solving complex problems in programming and be-
yond. The ability to design, analyze, and implement algorithms is essential for
tackling the diverse challenges faced by programmers. This book aims to equip
readers with the tools and insights ne to navigate this fascinating field.

To address the core problem areas in computer science, programmers must
learn to create new algorithms by skillfully combining existing ones. Equally
important is the ability to analyze these algorithms in terms of runtime ef-
ficiency and memory usage. Data structures, which organize information to
enable efficient algorithmic operations, are another crucial focus of this book.

A clear distinction will be made between data types—the abstract, specification-
oriented view of organizing data—and data structures, which represent the
concrete implementations of these data types. Readers will discover that a single
data type may have multiple implementations, each with its own trade-offs. By
exploring these distinctions, this book will help develop a deep understanding
of how to select and design efficient solutions for different scenarios.

To fully benefit from this book, a basic proficiency in programming is recom-
mended. Familiarity with a language like Java will be particularly useful. For
readers seeking foundational programming skills, I encourage consulting my pre-
vious book on programming, which introduces the essential concepts required
for effective coding. Additionally, while some mathematical skills can enhance
your understanding, I have made a conscious effort to develop all necessary
mathematical conc as part of this book.

To reinforce learning, the book provides numerous exercises, complete with
solutions. These exercises are designed to solidify the theoretical concepts and
give hands-on experience with practical implementations.

‘Whether you are a student, a programmer, or simply curious about algo-
rithms and data structures, this book is structured to guide you through the
subject step by step. T hope it serves as a valuable resource in your journey into
this essential area of computer science.
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Chapter 1

Introduction

Algorithms operate on data structures, and data structures contain algorithms
as components. Consequently, algorithms and data structures are inseparably
linked. In this book, we aim to classify algorithms and data structures within
the context of related concepts such as functions, procedures, abstract data
types, data types, algebras, types, clas and modules.

At the most abstract level, we employ mathematics to formalize the spec-
ifications of algorithms and data structures. An algorithm realizes a function,
which serves as a specification for that algorithm. Likewise, an algorithm itself
is a specification of a procedure, function, or method that must eventually be
implemented.

It is important to note that algorithms are typically not presented as com-
puter programs. Instead, they are described on a higher, more human-readable
level to facilitate communication. However, a computer program can serve as
one way to describe an algorithm. In other words, a computer program is an
algorithm, but the description of an algorithm is usually not limited to being a
computer program.

In the first chapter, we will focus on the analysis of algorithms, specifically
examining their runtime and memory usage.

On the side of data structures, we begin with abstract concepts such as
abstract data types and algebras, which define concrete data types. A
data structure is an implementation of an algebra or an abstract data type at
the algorithmic level. Data structures themselves can then be implemented in
programming languages. At the programming level, we encounter key concepts
such as data types, classes, and modules.

This structured approach allows us to bridge the gap between high-level ab-
stract concepts and their concrete implementations in programming, providing
a comprehensive understanding of algorithms and data structures.
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