Algorithms and Data Structures

Lucien Sina

9.12.2024

Contents

1 Introduction

2 Algorithms and Their Analysis

2.1

2.2

2.3

24

2.6

2.7

Abstraction Levels of Problem Descriptions . . .
2.1.1 Example: Membership Check in a Set . .
Assessment of Algorithm Quality

2.1 Correctness
2.2.2 Understandability
2.2.3 Ease of Implementation . .
2.24 Efficiency (Runtime and Memory)
2.2.5 Trade-offs Between Criteria
Runtime and Memory of Algorithms
2.3.1 Measurement of Runtime
Constructing a Runtime Function That Makes Ser
2.4.1 TIntroduction
2.4.2 Abstraction of Runtime
2.4.3 Case Study: Searching in an Array
2.4.4 Using O-Notation
2.4.5 Exercises and Solutions
2.4.6 Final Word

Calculation Rules and Runtimes of Basic Control Structures . . .

2.5.1 Elementary Operations and Sequences . .
2.5.2 Runtime of Some Basic Control Structures
Improving an Algorithm
2.6.1 Runtime Analysis.

2.6.2 Improved Algorithm with Early Termination

2.6.3 Runtime Anal
2.6.4 Optimized Algorithm with Binary Search
2.6.5 Runtime Analysis
2.6.6 Demonstration
General O-Notation

2.7.1 Definitions
2.7.2 Relations Bet

iii

CONTENTS

2.7.4 Example: Runtime of contains and containsy

3 Data Structures, Algebras, Abstract Data Types

3.1
3.2

3.3

3.4
3.5

Contexts
Abstraction Levels
3.2.1 Algebra as Data Type

3.2.2 Next Steps: Formalizing Data Types and Algebras
Algebras and Data Types
3.3.1 Example Signature
3.3.2 Two Approaches for Specification .
Exercise: Algebra for a Counter
Polymorphic and Monomorphic Data Types

4 Basic Concepts

4.1

4.2
4.3

Algorithm
4.1.1 Key Concepts
Definitions of Algebra, ADT, and Model .
Exercises and Solutions for Chapter 1: Ba:
4.3.1 Exercise 1.1: Algorithm
4.3.2 Exercise 1.2: Signature, Algebra, and ADT
4.3.3 Exercise Data Types and Data Structures

4.3.4 Exercise 1.4: Monomorphic and Polymorphic ADTs
4.3.5 Exercise 1.5: Implementation of Data Structures

5 Programming and Data Structures

5.1
5.2

5.6

Construction of Data Structures
Programming Languages
Data Types in Java
5.3.1 Primitive Data Types
Primitive Data Types in Java
Arrays
5.5.1 Example . .
5.5.2 Value Range of an Array Type . .
5.5.3 Address Calculation
5.5.4 Efficiency of Array Access . . .
5.5.5 Arrays as Representational Tools
5.5.6 Example: Iterating Through an Array

5.5.7 Specific Array Ranges

5.5.8 Java-Sp B i

5.6.1 Structure of a Class Definition
5.6.2 Methods in Cla;
5.6.3 Realizing Algebra or Abstract Data Types.
Records
5.7.1 Definition of Records
5.7.2 Examples of Record Definitions

42

CONTENTS

6

<

©

5.7.3 Operations on Records
5.7.4 Value Range of a Record Type
5.7.5 Representation and Address Calculation
5.7.6 Constant Time Access

Dynamic Data Structures

6.1 Pointer TYPOS - « « o o oo e
6.1.1 Definition of Pointer Types
6.1.2 Pointer Variable Declaration and Usage . . .
6.1.3 Graphical Representation of Pointers
6.1.4 Importance of Pointers in Dynamic Data Strucu.ues

6.2 Dereferencing and Garbage Collection

6.3 Reference Types in Java
6.3.1 Assignments

6.4 Method Calls in Java

Additional data structures
7.1 Enumeration Types
7.2 Subrange Types
T3 Sets ...

Elementary Data Types

81 Lists
8.1.1 Lists with First, Rest, Append and Concat

8.2 Lists with Explicit Positions

List Implementations
9.1 Double-Linked List
9.2 TImplementation of Double-Linked List Operations . R
9.2.1 Creating an Empty List
9.2.2 Accessing the First Position
Inserting Elements
Concatenating Lists
Finding Elements
Deleting Elements
9.3 gunple Linked List
9.4 Linked Lists in Arrays

Stacks
10.1 Stack Specification L
10.2 Stack Implementation

Queues

11.1 Queue Operations and Extensions

11.2 Algebraic Specification of Queues

11.3 Queue Signature
11.3.1 Diagram Representation . .

50
50
50
52
53
54

vi CONTENTS

11.4 Applications of Queues 84
1.5 Java Queue Implementation 84
11.5.1 Queue Implementation Using a Cyclic Array 85

11.5.2 Queue Implementation Using Two Stacks 86

11.5.3 Comparison of the Two Implementations 87

12 Mappings 89
12.1 Characteristics of Mappings 89
12.2 Finite and Scalar Domain Mappings 89
12.3 Large or Sparse Domains 90
12.4 Summary of Mapping Implementations 91

13 Binary Trees 93
13.1 Definition 93
13.1.1 Binary Trees 94

13.1.2 Leaves and Subtrees 94

13.1.3 Nodes and Their Classification 95

13.1.4 Paths, Ancestors, and Descendants 95

13.1.5 Subtrees and Path Lengths 96

13.1.6 Height and Depth 96

13.2 Characteristics of Binary Trees 97

13.2.1 Maximum Height of a Binary Tree 97

13.2.2 Minimal Height of a Binary Tree 98
13.2.3 Exact Minimal Height of a Binary Tree 98
13.2.4 Relationship Between Leaves and Inner Nodes 99
13.2.5 Summary of Characteristics 100

13.3 Algebra Tree
13.3.1 Sorts
13.3.2 Operations
13.3.3 Set Definition .
13.3.4 Function Definitions
13.3.5 Recursive Structures
13.3.6 Tree Traversals

7 Exercise: Computing Tree Height .

13.4 Binary Tree Java Implementations . . 102
13.4.1 With Pointers. 102
13.4.2 With Array Embedding
13.4.3 Complexity Comparison

14 General Trees
14.1 Definition
14.1.1 Tlustration
14.2 General Tree Implementations
14.2.1 Implementation with Arrays . .
14.2.2 Implementation with Binary Trees 109

CONTENTS vii

15 Exercises 111
15.1 Exercise 1: Algebra for a Cyclical List (Ring) 111
15.2 Exercise 2: Java Implementation of Listy Operations 112
15.3 Exercise 3: Representing and Differentiating Polynomials with

Listyo 114

15.4 Exercise 4: Polynomial Addition Using a Linked List ... 114
15.5 Exercise 5: Implementing Stack and Queue Using Listy 116
15.6 Exercise 6: Extending the Algebraic Specification of Trees 118
15.7 Exercise 7: Ancestor Check Using Tree Traversals 118
5.8 Exercise 8: Non-Recursive Tree Traversal Using Stacks 119

16 Final Words 121
16.1 Recommended Books by Lucien Sina 121

16.1.1 Logic
16.1.2 Programming
16.2 Literature

viii CONTENTS

CONTENTS

© 2025 by Lucien Sina. All rights

ISBN: 9789403830537

Printed by Bookmundo

CONTENTS

Preface

Efficient algorithms and data structures lie at the heart of computer science,
forming the foundation of solving complex problems in programming and be-
yond. The ability to design, analyze, and implement algorithms is essential for
tackling the diverse challenges faced by programmers. This book aims to equip
readers with the tools and insights ne to navigate this fascinating field.

To address the core problem areas in computer science, programmers must
learn to create new algorithms by skillfully combining existing ones. Equally
important is the ability to analyze these algorithms in terms of runtime ef-
ficiency and memory usage. Data structures, which organize information to
enable efficient algorithmic operations, are another crucial focus of this book.

A clear distinction will be made between data types—the abstract, specification-
oriented view of organizing data—and data structures, which represent the
concrete implementations of these data types. Readers will discover that a single
data type may have multiple implementations, each with its own trade-offs. By
exploring these distinctions, this book will help develop a deep understanding
of how to select and design efficient solutions for different scenarios.

To fully benefit from this book, a basic proficiency in programming is recom-
mended. Familiarity with a language like Java will be particularly useful. For
readers seeking foundational programming skills, I encourage consulting my pre-
vious book on programming, which introduces the essential concepts required
for effective coding. Additionally, while some mathematical skills can enhance
your understanding, I have made a conscious effort to develop all necessary
mathematical conc as part of this book.

To reinforce learning, the book provides numerous exercises, complete with
solutions. These exercises are designed to solidify the theoretical concepts and
give hands-on experience with practical implementations.

‘Whether you are a student, a programmer, or simply curious about algo-
rithms and data structures, this book is structured to guide you through the
subject step by step. T hope it serves as a valuable resource in your journey into
this essential area of computer science.

CONTENTS

Chapter 1

Introduction

Algorithms operate on data structures, and data structures contain algorithms
as components. Consequently, algorithms and data structures are inseparably
linked. In this book, we aim to classify algorithms and data structures within
the context of related concepts such as functions, procedures, abstract data
types, data types, algebras, types, clas and modules.

At the most abstract level, we employ mathematics to formalize the spec-
ifications of algorithms and data structures. An algorithm realizes a function,
which serves as a specification for that algorithm. Likewise, an algorithm itself
is a specification of a procedure, function, or method that must eventually be
implemented.

It is important to note that algorithms are typically not presented as com-
puter programs. Instead, they are described on a higher, more human-readable
level to facilitate communication. However, a computer program can serve as
one way to describe an algorithm. In other words, a computer program is an
algorithm, but the description of an algorithm is usually not limited to being a
computer program.

In the first chapter, we will focus on the analysis of algorithms, specifically
examining their runtime and memory usage.

On the side of data structures, we begin with abstract concepts such as
abstract data types and algebras, which define concrete data types. A
data structure is an implementation of an algebra or an abstract data type at
the algorithmic level. Data structures themselves can then be implemented in
programming languages. At the programming level, we encounter key concepts
such as data types, classes, and modules.

This structured approach allows us to bridge the gap between high-level ab-
stract concepts and their concrete implementations in programming, providing
a comprehensive understanding of algorithms and data structures.

2%

