## **ENERGY ECONOMICS**

Guido Pepermans, Joris Morbee, Marten Ovaere & Stef Proost

### **CONTENTS**

| REA | DERS GUIDE      | 15                          |    |
|-----|-----------------|-----------------------------|----|
|     |                 |                             |    |
|     | PTER O          |                             |    |
| Ecc | nomics Refresh  | ner                         | 17 |
| 1.  | Introduction    |                             | 17 |
| 2.  | The market      |                             | 18 |
|     | 2.1 Individua   | l demand                    | 18 |
|     | 2.2 Aggregate   | e demand                    | 19 |
|     | 2.3 Optimal a   | allocation of demand        | 20 |
|     | 2.4 Individua   | l supply function           | 20 |
|     | 2.5 Aggregate   | e supply                    | 21 |
|     | 2.6 Optimal a   | allocation of supply        | 21 |
|     | 2.7 Competiti   | ive market equilibrium      | 22 |
| 3.  | Linear demand   | l functions                 | 24 |
| 4.  | Market power    |                             | 26 |
|     | 4.1 Monopoly    | Ÿ                           | 26 |
|     | 4.2 Imperfect   | competition                 | 28 |
| 5.  | Who bears the   | costs of taxation?          | 30 |
| 6.  | Public goods    |                             | 31 |
| 7.  | External effect | S                           | 32 |
| 8.  | Conclusion      |                             | 33 |
| 9.  | Exercises       |                             | 34 |
| 10. | References      |                             | 34 |
| CHA | PTER 1          |                             |    |
|     | tory and future | of energy use               | 35 |
| 1.  | Introduction    |                             | 35 |
| 2.  |                 | gy use and energy prices    | 35 |
|     |                 | se in the production sector | 36 |
|     | 2.2 Energy us   | se by final consumers       | 39 |

|    | 2.3  | Main drivers of energy use                                          | 42 |
|----|------|---------------------------------------------------------------------|----|
| 3. |      | rgy in historical perspective                                       | 43 |
| ٥. | 3.1  | Income and population growth                                        | 44 |
|    | 3.2  | Energy use for household heating                                    | 45 |
|    | 3.3  | Energy use for power                                                | 47 |
|    | 3.4  | Price of lighting services                                          | 48 |
|    | 3.5  | What happened to energy prices and the price of energy service      |    |
|    |      | over the last 700 years?                                            | 48 |
|    | 3.6  | Energy consumption                                                  | 49 |
| 4. |      | are trends                                                          | 49 |
| 5. | Und  | lerstanding world energy markets                                    | 52 |
|    | 5.1  | Aggregate energy demand by type of energy                           | 52 |
|    | 5.2  | Aggregate energy supply by type of energy                           | 54 |
|    | 5.3  | Equilibrium on the energy markets                                   | 54 |
|    | 5.4  | Why is making scenarios for the future difficult?                   | 55 |
| 6. | Con  | clusion                                                             | 55 |
| 7. | Exe  | rcises                                                              | 56 |
| 8. | Refe | erences                                                             | 56 |
|    |      |                                                                     |    |
| 1. |      | oduction                                                            | 59 |
| 2. |      | ssifying resources                                                  | 60 |
| 3. | Opt  | imal allocation of a non-renewable resource over time – the $N$ per |    |
|    | 3.1  | Basic N-period model                                                | 62 |
|    | 3.2  | Basic N-period model with backstop                                  | 64 |
|    | 3.3  | Increasing marginal cost of extraction                              | 65 |
|    | 3.4  | Reserve dependent costs                                             | 66 |
|    | 3.5  | Comparative statics of the continuous extraction problem            | 66 |
|    | 3.6  | Higher discount rate                                                | 69 |
|    | 3.7  | An increase in the size of the resource stock                       | 69 |
|    | 3.8  | Effect of a higher marginal extraction cost                         | 70 |
|    | 3.9  | Increase in the expected demand                                     | 70 |
|    | 3.10 | A fall in the cost of the backstop technology                       | 71 |
|    | 3.11 | Interpretation of the comparative statics exercise                  | 72 |
| 4. |      | allocation of non renewable resources in a market economy           | 73 |
|    | 4.1  | Perfect competition case                                            | 73 |
|    | 4.2  | Monopoly case                                                       | 74 |
|    | 4.3  | Some more issues that arise in a market context                     | 76 |

|          | CONTENTS                                                                  | 7          |
|----------|---------------------------------------------------------------------------|------------|
| 5.       | Extension of the theory to recyclable exhaustible resources               | 77         |
| 5.<br>6. | How does the model perform in reality?                                    | 79         |
|          | Conclusion                                                                | 80         |
| 7.<br>8. | Exercises                                                                 | 81         |
| 9.       | References                                                                | 81         |
| J.       | References                                                                | 01         |
|          | APTER 3                                                                   |            |
| En       | vironment                                                                 | 83         |
| 1.       | Introduction                                                              | 83         |
| 2.       | Basic environmental economics                                             | 83         |
|          | 2.1 Problem setting                                                       | 83         |
|          | 2.2 Ideal (or theoretically optimal) solution                             | 86         |
|          | 2.3 Non-cooperative solution                                              | 90         |
|          | 2.4 Centralized government solution                                       | 91         |
| 3.       | The effect of different environmental policy instruments on market prices |            |
|          | and profits                                                               | 94         |
|          | 3.1 An analytical illustration for the car market                         | 95         |
|          | 3.2 Effects of different instruments on profits                           | 100        |
| 4.       | Conclusion<br>Exercises                                                   | 102<br>102 |
| 5.       | References                                                                |            |
| 6.       | References                                                                | 103        |
| CH       | APTER 4                                                                   |            |
| Th       | e energy saving gap                                                       | 105        |
| 1.       | Introduction                                                              | 105        |
| 2.       | An investment model                                                       | 106        |
| 3.       | Empirical evidence on the investment inefficiency                         | 108        |
|          | Engineering estimates of energy saving cost curves                        | 109        |
|          | 3.2 Empirical estimates of returns on investment                          | 109        |
|          | 3.3 Cost-effectiveness of energy conservation programs                    | 110        |
|          | 3.4 Trade-offs between durable goods                                      | 110        |
|          | 3.5 Possible explanations of the energy efficiency gap                    | 111        |
| 4.       | Policy implications                                                       | 111        |
| 5.       | Conclusion                                                                | 112        |
| 6.       | Exercises                                                                 | 112        |
| 7.       | References                                                                | 112        |

|          | PTER 5                                                               |     |
|----------|----------------------------------------------------------------------|-----|
| Sus      | tainability                                                          | 115 |
| 1.       | Introduction                                                         | 115 |
| 2.       | Sustainability as a maximum of discounted utility                    | 115 |
| 3.       | Sustainability as guarantee for utility of future generations        | 118 |
| 4.       | Conclusion                                                           | 121 |
| 5.       | References                                                           | 121 |
| 0.       | Telefoneto .                                                         | 121 |
| CHA      | PTER 6                                                               |     |
| Eco      | nomics of Climate Change                                             | 123 |
| 1.       | Introduction                                                         | 123 |
| 2.       | Climate change is a worldwide issue                                  | 123 |
|          | 2.1 Emissions and climate                                            | 123 |
|          | 2.2 The origin of GHG emissions                                      | 128 |
|          | 2.3 The stock dimension of GHG emissions                             | 129 |
| 3.       | How to select a climate change strategy in an ideal world?           | 130 |
|          | 3.1 A broader perspective                                            | 130 |
|          | 3.2 What objective function to select an optimal level of reduction? | 131 |
|          | 3.3 Integrated assessment models to compute an optimal policy        | 133 |
|          | 3.4 Damage of climate change                                         | 135 |
|          | 3.5 Costs of emission abatement                                      | 137 |
|          | 3.6 What strategy for emission reduction?                            | 139 |
| 4.       | Economics of international climate agreements                        | 140 |
|          | 4.1 The one shot game                                                | 142 |
|          | 4.2 The repeated game                                                | 145 |
|          | 4.3 A catastrophic climate game                                      | 145 |
|          | 4.4 A way out according to economists: climate clubs                 | 146 |
| 5.       | Conclusion                                                           | 149 |
| 6.       | Exercises                                                            | 149 |
| 7.       | References                                                           | 149 |
| $C\Pi V$ | PTER 7                                                               |     |
|          | opean climate change policy                                          | 151 |
| 1.       | Introduction                                                         | 151 |
| 2.       | EU Climate change policy                                             | 151 |
|          | 2.1 International negotiation strategy of the EU                     | 151 |

|  |  |  | TS |  |
|--|--|--|----|--|
|  |  |  |    |  |

|     | 2.2   | European climate policy                                               | 153 |
|-----|-------|-----------------------------------------------------------------------|-----|
| 3.  | A c   | loser look at the experience with the ETS in the EU                   | 154 |
|     | 3.1   | The organization of the ETS system                                    | 154 |
|     | 3.2   | Price formation of CO <sub>2</sub> permits                            | 155 |
| 4.  | A c   | ritical assessment of the European climate policy                     | 160 |
|     | 4.1   | The extent of the European effort                                     | 160 |
|     | 4.2   | The effects on the international energy markets: can a unilateral ef- |     |
|     |       | fort be effective?                                                    | 161 |
|     | 4.3   | Choice of policy instruments                                          | 163 |
| 5.  | Wh    | ich way forward?                                                      | 163 |
|     | 5.1   | Credibility issues                                                    | 164 |
|     | 5.2   | A worldwide perspective on cost efficiency                            | 165 |
|     | 5.3   | Technology policies                                                   | 165 |
|     | 5.4   | Distinguishing between high rent and low rent fossil fuels            | 170 |
| 6.  | Cor   | nclusion                                                              | 170 |
| 7.  | Exe   | rcises                                                                | 170 |
| 8.  | Ref   | erences                                                               | 171 |
|     |       |                                                                       |     |
|     | APTEF |                                                                       |     |
| Coa |       |                                                                       | 173 |
| -   | ••    |                                                                       | 110 |
| 1.  | Intr  | oduction                                                              | 173 |
| 2.  | Son   | ne conventions and definitions                                        | 173 |
|     | 2.1   | Different types of coal                                               | 173 |
|     | 2.2   | Units                                                                 | 174 |
|     | 2.3   | Sources of data and forecasts                                         | 174 |
| 3.  | Mai   | n uses, consumers, producers and trade flows                          | 174 |
|     | 3.1   | Main uses                                                             | 174 |
|     | 3.2   | Main producers and consumers                                          | 177 |
|     | 3.3   | Trade flows                                                           | 177 |
| 4.  | Hov   | v much coal is there?                                                 | 177 |
|     | 4.1   | Proven reserves                                                       | 177 |
|     | 4.2   | Resources                                                             | 178 |
| 5.  | Eco   | nomics of the coal market                                             | 181 |
|     | 5.1   | Opening the coal sector to foreign trade                              | 181 |
|     | 5.2   | Theory of comparative advantage                                       | 181 |
|     | 5.3   | Opening a sector to trade                                             | 182 |
|     | 5.4   | Coal has high transport costs                                         | 184 |
| 6.  | Coa   | l market operations                                                   | 185 |
| 7.  | Mo    | delling the world coal market                                         | 187 |

|     | 7.1 Perfect competition model                             | 187         |
|-----|-----------------------------------------------------------|-------------|
|     | 7.2 Non-competitive models                                | 188         |
| 8.  | History of the coal market in Western Europe              | 188         |
|     | 8.1 Second World War – 1970                               | 188         |
|     | 8.2 From 1974-2004                                        | 189         |
|     | 8.3 From 2004 onwards                                     | 190         |
| 9.  | Conclusion                                                | 191         |
| 10. | Exercises                                                 | 192         |
| 11. | References                                                | 192         |
| CHA | APTER 9                                                   |             |
| Oil | l                                                         | 195         |
| 1.  | Introduction                                              | 195         |
| 2.  | Some conventions and definitions                          | 195         |
|     | 2.1 The different types of oil                            | 195         |
|     | 2.2 Units                                                 | 197         |
|     | 2.3 Sources of data and forecasts                         | 197         |
| 3.  | Main uses, consumers, producers and trade flows           | 197         |
|     | 3.1 Main uses                                             | 197         |
|     | 3.2 Consumption and main producers                        | 203         |
|     | 3.3 Trade flows                                           | 204         |
| 4.  | How much oil is there?                                    | 205         |
|     | 4.1 Proven reserves                                       | 205         |
|     | 4.2 Resources                                             | 206         |
| 5.  | Trading in the oil market                                 | 208         |
| 6.  | Two simple models for the world oil market                | 209         |
|     | 6.1 A simple oil market model with short and long run equ | ilibria 211 |
|     | 6.2 An imperfect competition model for the oil market     | 214         |
| 7.  | Understanding the history of the world oil market         | 219         |
|     | 7.1 Before 1970                                           | 219         |
|     | 7.2 After 1970                                            | 221         |
|     | 7.3 And the future?                                       | 226         |
| 8.  | Policies to stabilise or decrease oil prices              | 226         |
|     | 8.1 Emergency and strategic stockpiles                    | 226         |
|     | 8.2 Import taxes                                          | 227         |
|     | B.3 Decreasing the oil dependency of the economy          | 227         |
|     | 8.4 Climate change policy and the world oil market        | 227         |
| 9.  | Price formation of oil products                           | 228         |
| 10. | Conclusion                                                | 230         |

|            |       |                                                           | CONTENTS | 11  |
|------------|-------|-----------------------------------------------------------|----------|-----|
| 11         | Evo   | rcises                                                    |          | 230 |
| 11.<br>12. |       | erences                                                   |          | 233 |
| 12.        | Ken   | erences                                                   |          | 233 |
| CH         | APTEF | 110                                                       |          |     |
| Ga         | S     |                                                           |          | 235 |
| 1.         | Intr  | oduction                                                  |          | 235 |
| 2.         | Son   | ne conventions and definitions                            |          | 235 |
|            | 2.1   | Different types of gas                                    |          | 235 |
|            | 2.2   | Units                                                     |          | 236 |
|            | 2.3   | Sources of data and forecasts                             |          | 236 |
| 3.         | Mai   | n uses, consumers, producers and trade flows              |          | 236 |
|            | 3.1   | Main uses                                                 |          | 236 |
|            | 3.2   | Main producers                                            |          | 238 |
|            | 3.3   | Trade flows                                               |          | 239 |
| 4.         | Ног   | w much gas is there?                                      |          | 242 |
|            | 4.1   | Proven reserves                                           |          | 242 |
|            | 4.2   | Resources                                                 |          | 244 |
| 5.         | Eco   | nomics of the gas market                                  |          | 245 |
|            | 5.1   | High transport costs                                      |          | 245 |
|            | 5.2   | The hold-up problem for specific transport infrastructure |          | 246 |
|            | 5.3   | Price discrimination                                      |          | 247 |
|            | 5.4   | Netback pricing of natural gas and take or pay contracts  |          | 247 |
|            | 5.5   | A Cournot equilibrium                                     |          | 248 |
| 6.         | His   | tory of the gas market in Western Europe                  |          | 249 |
|            | 6.1   | Before 1973                                               |          | 249 |
|            | 6.2   | From 1974-2004                                            |          | 250 |
|            | 6.3   | Since 2004                                                |          | 252 |
| 7.         |       | delling the European gas market                           |          | 253 |
|            | 7.1   | Structure of the model                                    |          | 253 |
|            | 7.2   | Downstream: behavior of traders                           |          | 254 |
|            | 7.3   | Upstream: behavior of producers                           |          | 256 |
|            | 7.4   | Empirical specification                                   |          | 258 |
| 8.         |       | e security of European gas supply                         |          | 262 |
|            | 8.1   | Introduction                                              |          | 262 |
|            | 8.2   | Transporting Russian gas to Europe                        |          | 263 |
|            | 8.3   | How to deal with unreliable Russian gas supply?           |          | 264 |

Will the development of shale gas contribute to the security of gas

268

269

8.4

9.

Conclusion

supply in Europe?

| 10.<br>11. | Exercises<br>References                                    | 270<br>271 |
|------------|------------------------------------------------------------|------------|
|            | APTER 11 ructure of Electricity markets                    | 273        |
| 1.         | Introduction                                               | 273        |
| 2.         | Some conventions and definitions                           | 274        |
| 3.         | Main uses, consumers, producers and trade flows            | 274        |
|            | 3.1 Main uses                                              | 274        |
|            | 3.2 Electricity consumption                                | 275        |
|            | 3.3 Electricity generation by fuel                         | 275        |
|            | 3.4 Trade flows                                            | 276        |
| 4.         | Electricity liberalization                                 | 276        |
|            | 4.1 Structure of the electricity network                   | 276        |
|            | 4.2 Electricity liberalization                             | 277        |
| 5.         | Electricity market design                                  | 281        |
|            | 5.1 Level 1: Degree of liberalization                      | 281        |
|            | 5.2 Level 2: The existence of different markets            | 283        |
|            | 5.3 Level 3: The design of individual markets              | 287        |
| 6.         | Electricity market design in the European Union            | 287        |
|            | 6.1 The energy law-making process in the European Union    | 287        |
|            | 6.2 The European Target Electricity Model                  | 288        |
|            | 6.3 Current state of the European Target Electricity Model | 291        |
| 7.         | Electricity market design in the United States             | 292        |
|            | 7.1 Liberalized and integrated regions                     | 292        |
|            | 7.2 Different operating models                             | 293        |
| 8.         | Conclusion                                                 | 294        |
| 9.         | References                                                 | 294        |
| СП         | APTER 12                                                   |            |
|            | ectricity Economics                                        | 297        |
| 1.         | Introduction                                               | 297        |
| 2.         | Generation                                                 | 297        |
|            | 2.1 The cost of different generation technologies          | 297        |
|            | 2.2 The revenues of different generation technologies      | 299        |
|            | 2.3 Optimal investment in generation technologies          | 302        |
|            | 2.4 Optimal pricing and investment in generation capacity  | 305        |

|    | 2.5   | Average-cost pricing vs. real-time pricing                           | 313 |
|----|-------|----------------------------------------------------------------------|-----|
|    | 2.6   | Summary                                                              | 316 |
| 3. | Trai  | nsmission                                                            | 316 |
|    | 3.1   | Graphical analysis                                                   | 316 |
|    | 3.2   | Numerical illustration                                               | 318 |
| 4. | Gen   | eration and transmission                                             | 321 |
|    | 4.1   | Optimal locations for generation and consumption                     | 321 |
|    | 4.2   | Numerical illustration                                               | 324 |
| 5. | Con   | clusion                                                              | 326 |
| 6. | Exe   | rcises                                                               | 326 |
| 7. | Refe  | erences                                                              | 328 |
|    |       |                                                                      |     |
| CH | APTER | 13                                                                   |     |
|    | newa  |                                                                      | 329 |
| 1. | Intr  | oduction                                                             | 329 |
| 2. |       | ewable generation in the world                                       | 330 |
| 3. |       | erent renewable technologies                                         | 332 |
| 4. |       | lel of an electricity sector with CO <sub>2</sub> -reducing policies | 334 |
|    | 4.1   | Theoretical model                                                    | 335 |
|    | 4.2   | Policies considered                                                  | 340 |
|    | 4.3   | Optimal policy                                                       | 345 |
|    | 4.4   | Calibration of the model for the US electricity sector               | 345 |
|    | 4.5   | Evaluation of the model                                              | 350 |
| 5. |       | opean union renewables policy                                        | 351 |
| J. | 5.1   | European renewable energy directive                                  | 351 |
|    | 5.2   | Choice of policy instruments                                         | 352 |
|    | 5.3   | Case study: How cost-effective is green power support in Germany?    | 353 |
|    |       | Technological change                                                 | 354 |
|    | 5.4   |                                                                      |     |
|    | 5.5   | Which was forward for the FILE                                       | 355 |
| 0  | 5.6   | Which way forward for the EU?                                        | 357 |
| 6. |       | clusion                                                              | 358 |
| 7. |       | rcises                                                               | 359 |
| 8. | Kefe  | erences                                                              | 360 |

| CH. | APTER                                               | R 14                                                        |     |
|-----|-----------------------------------------------------|-------------------------------------------------------------|-----|
| Ele | ectric                                              | ity economics with renewables                               | 363 |
| 1.  | Int                                                 | roduction                                                   | 363 |
| ١.  | 1.1                                                 | Intermittent versus dispatchable generation                 | 364 |
|     | 1.2                                                 | Unforecastable versus forecastable intermittency            | 364 |
|     | 1.3                                                 | Security versus adequacy                                    | 365 |
| 2.  |                                                     | sic model of generation investment                          | 366 |
|     | 2.1                                                 | Total cost curves                                           | 366 |
|     | 2.2                                                 | Residual load duration curve                                | 367 |
|     | 2.3                                                 | Price duration curve                                        | 368 |
| 3.  | The                                                 | e effect of intermittent renewables                         | 370 |
|     | 3.1                                                 | The effect on the residual load duration curve              | 370 |
|     | 3.2                                                 | The effect on the price duration curve                      | 371 |
|     | 3.3                                                 | The effect on conventional generation capacity              | 372 |
|     | 3.4                                                 | Commissioning and decommissioning of power plants in Europe |     |
|     |                                                     | and the US                                                  | 375 |
| 4.  | De                                                  | creasing the cost of intermittency                          | 375 |
|     | 4.1                                                 | Combining renewable technologies                            | 375 |
|     | 4.2                                                 | Storage                                                     | 376 |
|     | 4.3                                                 | Demand response                                             | 378 |
| 5.  | Val                                                 | ue of intermittent renewables                               | 379 |
| 6.  | Inv                                                 | estment in intermittent renewables                          | 382 |
| 7.  | Exe                                                 | ercises                                                     | 385 |
| 8.  | Ref                                                 | erences                                                     | 385 |
| 4.0 | (NIO) *                                             | # EDOCAMENTO                                                | 207 |
| AC  | <nuv< td=""><td>VLEDGEMENTS</td><td>387</td></nuv<> | VLEDGEMENTS                                                 | 387 |
| NO  | TES                                                 |                                                             | 389 |

# ECONOMICS REFRESHER

#### 1 Introduction

'Economics' studies how scarce resources can best be used to satisfy different and ample needs. As on the one hand resources are limited, but on the other hand the needs of economic agents are superfluous, choices have to be made. This dilemma of choice in economics can be captured in 4 basic questions:

- What can be produced and in what quantity?
- How are goods and services produced?
- Who are the goods and services produced for?
- Who takes the economic decisions, and what process leads to these decisions?

The answers to these questions are largely given by the process of a market economy. In the next section we discuss the building blocks of this market economy, more specifically for the electricity market.

The objective of this chapter is to elaborate on the basic concepts that are used in the rest of the book to discuss the energy market. The basic principles of the functioning of a market are explained by using a 'partial equilibrium analysis' (i.e., study one market and keep all the others constant). By the end of this chapter, the reader should be able to understand and use the following important concepts:

- Individual demand, aggregate demand, willingness to pay (WTP)
- Supply of one firm, aggregate supply in industry
- Efficient allocation of a quantity over a set of consumers
- Efficient production of a quantity by a set of producers
- Producer and consumer surplus
- Perfect competition market equilibrium
- Imperfect competition
- External effects
- Public goods

#### 2. The market

Private decisions are at the basis of the functioning of the market. These decisions follow from the belief that they will lead to an advantage for the decision-maker. If someone buys a can of cola, this only happens because that person believes the cola is worth its price. The seller of the cola only sells the can because he knows that it will result in some kind of profit for him. Since the transactions take place on a voluntary basis, all parties involved will find their advantage (or at least no disadvantage) in the deals. It is this search for interesting transactions that leads to an equilibrium in the market. In this equilibrium an *equilibrium price* occurs, which is the price where demand for a certain good or service equals the supply for that good or service.

#### 2.1 Individual demand

The quantity of electricity that a consumer wishes to use depends on many factors, such as the price of electricity, the price of other energy sources (gas, coal...), the consumer's preferences, his budget, the season, the moment of the day... Bringing all these factors into our analysis would result in a very complex case. So in a first step, only the relation between the price of electricity and the quantity demanded is considered, while the value of all other factors is assumed to be a given. A possible graphical representation of this relationship, the demand function, is shown in Figure 0.1. Throughout the course, we will occasionally use linear demand functions. In section 3 we illustrate where these linear demand functions originate from.

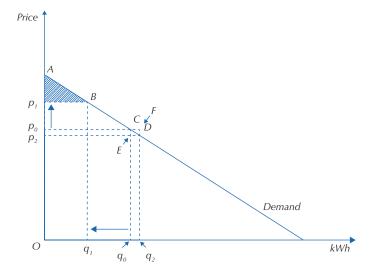



FIGURE 0.1. Individual demand.

The demand function is expressed as D(q), with D'(q) < 0. In general the relation between the quantity demanded and the price is negative. If the price of 1 kWh of electricity is  $p_1$  then demand will be  $q_1$  kWh. If the price would decrease to  $p_0$ , demand will increase to  $q_0$  kWh. In the same sense, the demand curve also gives us the maximum price the consumer wants to pay for a certain unit of electricity (in kWh). This price is an indication of the value the consumer attaches to this kWh, and is therefore also called the 'willingness to pay' (WTP). So for the  $q_0$  th kWh, the consumer is willing to pay a price  $p_0$ .

The benefits the consumer receives from buying electricity are shown in Figure 0.1 as well. If the market price for a kWh is  $p_1$ , a quantity of  $q_1$  is consumed. We can see that the consumer is willing to pay more than  $p_1$  for each of these kWh (except for the last unit, for which the consumer wants to pay exactly  $p_1$ ). The value attributed by the consumer to these quantities is higher, so the consumer retrieves a surplus from this transaction, the *consumer surplus*. For the first kWh the advantage equals  $A-p_1$ . This advantage can be calculated similarly for all the units, so that the total consumer advantage of consuming  $q_1$  at a price  $p_1$  sums up to the surface of the triangle  $p_1AB$ .

#### 2.2 Aggregate demand

Market demand for electricity results from summing the demand for electricity over all consumers, for each price level. This is shown in Figure 0.2. Demand from consumer a and demand from consumer b (horizontally) sums op to demand a + b.

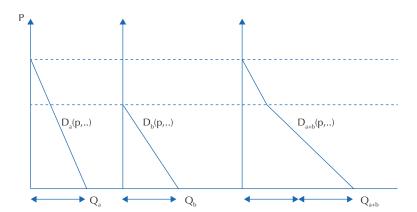



FIGURE 0.2. Aggregate demand.

#### 2.3 Optimal allocation of demand

From a demand side point of view, the optimal allocation of a good is such that the marginal willingness to pay is equal for all consumers. If a total quantity Z is offered, then the allocation of Z among consumer a and b is such that the total 'value' for consumers is maximized, which is shown in Figure 0.3. In this way, those who need it most also get it, or those who would be prepared to pay the highest price get it.

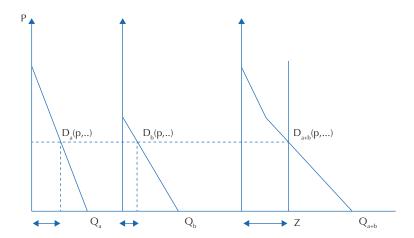



FIGURE 0.3. Optimal allocation among consumers.

#### 2.4 Individual supply function

The second party involved in a market transaction is the seller or the supplier of a good or service. Again, supply of electricity is defined by many different factors, such as the price of primary energy sources (coal, oil, gas, nuclear), available technologies etc. And again it is standard practice to focus on the relation between the price of the good or service and the quantity that is offered on the market at that price, keeping all other factors constant.

In the typical case there is a positive relation between the price and the quantity offered. Figure 0.4 illustrates such a relation for the supply of electricity. For example, at a price of  $p_0$  a quantity of  $q_0$  is supplied, while at a higher price  $p_1$  supply also increases, to  $q_1$ . We can also read on the graph at which minimum price a producer is willing to supply a certain quantity on the market. This price should be high enough to cover the additional costs of producing this additional unit or kWh. This cost is also called the *marginal cost* of production. When a supplier or producer receives a