
2021 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

10 May 2023

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2023
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2021 edition is registered under ISBN 978-94-648-5104-5

9 771534 895004

ISSN 1534-8954

9 789464 851045

ISBN 978-94-648-5104-5

2023-03-14 First printing

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2021 symposium was held Online from 7 Nov 2021 to 11 Nov 2021.

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 Tutorial: From Rexx to ooRexx – Rony G. Flatscher 1

2 Stems a Different Way - Introducing ’oo’ in ooRexx – Rony G. Flatscher 17

3 H2 Database JDBC API with NetRexx and BSF4ooRexx – Tony Dycks 34

4 BSF4ooRexx 6.41 Going GA – Rony G. Flatscher 64

5 cREXX Progress Update – Adrian Sutherland 85

6 Rexx in the RexxLAWebsite – Mark Hessling 97

7 Cross Platform, Cross Architecture Rexx Solutions Using the OSHI API – Tony Dycks 104

8 Setting up and running CMS Pipelines in NetRexx – Gil Barmwater 133

9 NetRexx 4: The Java Module System (JPMS) and the ADDRESS statement – Marc Remes
141

10 Rexx Profiling – René Vincent Jansen 153

11 Stable RPM Based Linux Distros for the Raspberry Pi 4 – Tony Dycks 174

12 BREXX for TSO, CREXX Built-in functions – Peter Jacob 192

13 Using Tomcat (a Java Web Server) to Create and Run Web Server Programs Written in
ooRexx – Rony G. Flatscher 204

III

1

Tutorial: From Rexx to ooRexx – Rony G.
Flatscher

Date and Time

7 Nov 2021, 16:00:00 CET

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

Session Abstract

Aimed at classic Rexxprogrammers, introducing someof the new, useful features
that ooRexx makes available, like: ”USE ARG” to fetch arguments like stems
by reference, the ability to define public routines and explicitly require Rexx
programs (”packages”) that contain collections of public routines. The tutorial
uses short nutshell examples to demonstrate these new features.

1

"From Rexx to ooRexx"

The 2021 International Rexx Symposium

Online ("Covid-19")

November 7th – November 11th 2021

© 2021 Rony G. Flatscher (Rony.Flatscher@wu.ac.at)

Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Agenda

• Brief History

• Getting Object Rexx

• Some new features like

–USE ARG

• New: Directives

–::ROUTINE, ::REQUIRES

–::CLASS, ::ATTRIBUTE, ::METHOD, ::CONSTANT

• Roundup 2

 3

Brief History, 1

• Begin of the 90s

– OO-version of Rexx (Object REXX) presented to the

IBM user group "SHARE"

– Developed since the beginning of the 90s

• Originally conceived by a team led by Simon Nash

• Rewritten product under the lead of Rick McGuire

– 1997 Introduced with OS/2 Warp 4

• Support of SOM and WPS

– 1998 Free Linux version, trial version for AIX

– 1998 Windows 95 and Windows/NT

 4

Brief History, 2

• RexxLA and IBM negotiate

– 2004 IBM handed over source code

– "Open Object Rexx (ooRexx) 3.0"

• Open source version of IBM's Object REXX

• Released by RexxLA: 2005-03-25

– ooRexx 4.0 (2009)

• New kernel, 32- and 64-bit became possible

– ooRexx 4.2 (2014)

– ooRexx 5.0 currently in beta, but better than 4.2!3

 5

Some New Features

• Compatible with classic Rexx, TRL 2

– New sequence of execution of Rexx programs:

Phase 1: Full syntax check of the Rexx program upfront

Phase 2: Interpreter carries out all directives (lead in with "::")

Phase 3: Start of program execution with line # 1

• rexxc[.exe]: compiles Rexx programs

– If same bitness and same endianness, on all platforms

• USE ARG in addition to PARSE ARG

– among other things allows for retrieving stems by reference (!)

• Line comments, led in by two dashes ("--")

-- comment until the line ends

 6

Stem, Classic REXX Example

"stemclassic.rex"
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem /* add to stem using an (internal) routine */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

exit

add2stem: procedure expose s. -- allow access to stem

 n=s.0+1 /* add after last current entry */

 s.n="Entry #" n "added in add2stem()"

 s.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

4

 7

Stem, REXX with USE ARG Example

"stemusearg.rex"
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

exit

add2stem: procedure /* no "expose s." needed anymore ! */

 use arg s. /* USE ARG allows to directly refer to the stem */

 n=s.0+1 /* add after last current entry */

 s.n="Entry #" n "added in add2stem()"

 s.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

 8

Stem, ooRexx USE ARG Example

"stemroutine1.rex"
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

::routine add2stem

 use arg s. /* USE ARG allows to directly refer to the stem */

 n=s.0+1 /* add after last current entry */

 s.n="Entry #" n "added in add2stem()"

 s.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

5

 9

Stem, ooRexx USE ARG Example

"stemroutine2.rex"
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

::routine add2stem /* we can even use a different stem name */

 use arg abc. /* USE ARG allows to directly refer to the stem */

 n=abc.0+1 /* add after last current entry */

 abc.n="Entry #" n "added in add2stem()"

 abc.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

 10

About Directives in ooRexx

• Always placed at the end of a Rexx program

– led in by "::" followed by the name of the directive

• "routine", "class", "attribute", "method", ...

• Instructions to the ooRexx interpreter before program starts

– Interpreter sequentially processes and carries out directives in

phase 2 of startup (phase 1 is the syntax checking phase)

– After all directives got carried out, phase 3 starts, the execution

of the Rexx program with line # 1

• An ooRexx program with directives

– Defines a "package" of routines and classes

– Rexx code before the first directive is named "prolog"
6

 11

::Routine Directive

• Syntax

::routine name [public]

– Interpreter maintains routines (and classes) per

Rexx program ("package")

– If optional keyword public is present, the routine can

be also directly invoked by another (!) Rexx program

 12

::ROUTINE Directive, Example

"routine.rex"
r=" 1 "

s=2

say "r="pp(r)

say "s="pp(s)

say

say "The result of 'r || 3 ' is:" pp(r || 3)

say "The result of 's || 3 ' is:" pp(s || 3)

say "The result of 'r + 3' is:" pp(r + 3)

say "The result of 's + 3' is:" pp(s + 3)

say

say "The result of 'r s' is:" pp(r s)

say "The result of 'r || s' is:" pp(r || s)

say "The result of 'r+s' is:" pp(r+s)

::routine pp -- enclose argument in square brackets

 parse arg value

 return "["value"]"

/* yields:

 r=[1]

 s=[2]

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: [23]

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: [5]

 The result of 'r s' is: [1 2]

 The result of 'r || s' is: [1 2]

 The result of 'r+s' is: [3]

*/

7

 13

::ROUTINE Directive, Example

"toolpackage.rex"
-- collection of useful little Rexx routines

::routine pp public -- enclose argument in square brackets

 parse arg value

 return "["value"]"

::routine quote public -- enclose argument in double-quotes

 parse arg value

 return '"' || value || '"'

 14

::ROUTINE Directive, Example

"call_package.rex"
call toolpackage.rex -- get access to public routines in "toolpackage.rex"

say quote('hello, my beloved world')

r=" 1 "

s=2

say "r="pp(r)

say "s="pp(s)

say

say "r="quote(r)

say "s="quote(s)

say

say "The result of 'r || 3 ' is:" pp(r || 3)

say "The result of 's || 3 ' is:" quote(s || 3)

say "The result of 'r + 3' is:" pp(r + 3)

say "The result of 's + 3' is:" quote(s + 3)

/* yields:

 "hello, my beloved world"

 r=[1]

 s=[2]

 r=" 1 "

 s="2"

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: "23"

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: "5"

*/

8

 15

::REQUIRES Directive

• Syntax

::requires package

– Interpreter in phase 2 will either

• Call (execute) the Rexx program named "package" on

behalf of the current Rexx program and make all its

public routines and classes upon return directly

available to us

• Or if the interpreter already required that "package"

will immediately make all its public routines and

classes available to us

– In this case "package" will not be called/executed anymore!

 16

::REQUIRES-Directive, Example

"requires_package.rex"
say quote('hello, my beloved world')

r=" 1 "

s=2

say "r="pp(r)

say "s="pp(s)

say

say "r="quote(r)

say "s="quote(s)

say

say "The result of 'r || 3 ' is:" pp(r || 3)

say "The result of 's || 3 ' is:" quote(s || 3)

say "The result of 'r + 3' is:" pp(r + 3)

say "The result of 's + 3' is:" quote(s + 3)

::requires toolpackage.rex -- get access to public routines in "toolpackage.rex"

/* yields:

 "hello, my beloved world"

 r=[1]

 s=[2]

 r=" 1 "

 s="2"

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: "23"

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: "5"

*/

9

 17

The Message Paradigm, 1

• A programmer sends messages to objects

– The object looks for a method routine with the same

name as the received message

– If arguments were sent the object forwards them

– The object returns any value the method routine returns

• C.f. <https://en.wikipedia.org/wiki/Alan_Kay>

– One of the fathers of "object-orientation"

• Programming languages with this paradigm, e.g.

– Smalltalk, Objective C, ...

 18

The Message Paradigm, 2

ooRexx

• Proper message operator "~" (tilde, "twiddle")

• In ooRexx everything is an "object"

– Hence one can send messages to everything!

• Example

say "hi, Rexx!"~reverse

-- same as in classic REXX:

say reverse("hi, Rexx!")

-- both yield (actually run the same code):

!xxeR ,ih
10

 19

The Message Paradigm, 3

ooRexx

• Creating "values" a.k.a. "objects", "instances"

Classic Rexx-style (strings only)

str="this is a string"

ooRexx-style (any class/type including .string class)

str=.string~new("this is a string")

 20

About Classic REXX Structures, 1

Important Usage of Stems

• Whenever structures ("records") are needed, stems get

used in classic REXX

• Example

– A person may have a name and a salary, e.g.

p.name = "Doe, John"

p.salary= "10500"

– E.g. a collection of data with a person structure

p.1.name = "Doe, John"; p.1.salary=10500

p.2.name = "Doe, Mary"; p.2.salary=8500

p.0 = 2

11

 21

About Classic REXX Structures, 2

Important Usage of Stems

• Whenever structures ("records") need to be

processed, every Rexx programmer must know the

exact stem encoding!

• Everyone must implement routines like increasing

the salary exactly like everyone else!

• If structures are simple and not used in many

places, this is o.k., but the more complex the more

places the structure needs to be accessed, the more

error prone this becomes!

 22

About ooREXX Structures, 1

Classes (Types, Structures)

• Any object-oriented language makes it easy to

define and implement structures!

– That is what they were designed for!

• The structure ("class") usually consists of

– Attributes (data elements like "name", "salary"),

a.k.a. "object variables", "fields", ...

– Routines (like "increaseSalary"), a.k.a. "methods",

"method routines", ...

12

 23

About ooREXX Structures, 2

Classes (Types, Structures)

• ::CLASS Directive

–Denotes the name of the structure

–Can optionally be public

• ::ATTRIBUTE Directive

–Denotes the name of a data element, field

• ::METHOD Directive

–Denotes the name of a routine of the structure

–Defines the Rexx code to be run, when invoked

 24

About ooREXX Structures, 3

Classes (Types, Structures)

• Once

–A structure ("class", "type" both of which are

synonyms of each other) got defined

–One can create an unlimited (!) number of

persons ("instances", "objects", "values", all of

which are synonyms)

• Each person will have its own copy of attributes

(data elements, fields)

• All persons will share/use the same method routines

that got defined for the structure (class, type)
13

 25

ooRexx Structure "Person"

"personstructure.rex"
p=.person~new("Doe, John", 10500)

say "name: " p~name

say "salary:" p~salary

::class person -- define the name

::attribute name -- define a data element, field, object variable

::attribute salary -- define a data element, field, object variable

::method init -- constructor method routine (to set the attribute values)

 expose name salary -- establish direct access to attributes

 use arg name, salary -- fetch and assign attribute values

/* yields:

 name: Doe, John

 salary: 10500

*/

 26

Defining the ooRexx Class (Type)

"person.cls"

::class person PUBLIC -- define the name, this time PUBLIC

::attribute name -- define a data element, field, object variable

::attribute salary -- define a data element, field, object variable

::method init -- constructor method routine (to set the attribute values)

 expose name salary -- establish direct access to attributes

 use arg name, salary -- fetch and assign attribute values

14

 27

Defining the ooRexx Class (Type)

"requires_person.rex"
p.1 = .person~new("Doe, John", 10500)

p.2 = .person~new("Doe, Mary", 8500)

p.0 = 2

sum=0

do i=1 to p.0

 say p.i~name "earns:" p.i~salary

 sum=sum+p.i~salary

end

say

say "Sum of salaries:" sum

::requires person.cls -- get access to the public class "person" in "person.cls"

/* yields:

 Doe, John earns: 10500

 Doe, Mary earns: 8500

 Sum of salaries: 19000

*/

 28

ooRexx Classes and Beyond ...

• ooRexx comes with a wealth of classes

– A lot of tested functionality for "free" ;-)

– E.g., the collection classes augment what stems are

capable of doing!

• Explore the collection classes and you will

immediately be much more productive!

• If seeking arrays, you have them: .Array class

– Consult the pdf-books coming with ooRexx, e.g.,

• "ooRexx Programming Guide" (rexxpg.pdf)

• "ooRexx Reference Guide" (rexxref.pdf)15

 29

Roundup

• ooRexx is great and compatible to classic REXX

– You can continue to program in classic REXX, yet use

ooRexx on Linux, MacOS, Windows, s390x...

• ooRexx adds a lot of flexibility and power to the REXX

language and to your fingertips

– One can take advantage of all of it immediately

– Simple to use because of the message paradigm

• Send ooRexx messages to Windows and MS Office ...

• Send ooRexx messages to Java ...

• Send ooRexx messages to …

• Get it and have fun! :-)

 30

Links

• RexxLA-Homepage (non-profit SIG, owner of ooRexx, BSF4ooRexx)

<http://www.rexxla.org/>

• ooRexx 5.0 beta on Sourceforge

<https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/>

– Introduction to ooRexx on Windows, Slides ("Business Programming 1")

• <http://wi.wu.ac.at/rgf/wu/lehre/autowin/material/foils/>

• BSF4ooRexx on Sourceforge (ooRexx-Java bridge)

<https://sourceforge.net/projects/bsf4oorexx/>

– Introduction to BSF4ooRexx (Windows, Mac, Unix), Slides ("Business Programming 2")

• <http://wi.wu.ac.at/rgf/wu/lehre/autojava/material/foils/>

• Student's work, including ooRexx, BSF4ooRexx

<http://wi.wu.ac.at/rgf/diplomarbeiten/>

• JetBrains "IntelliJ IDEA", powerful IDE for all operating systems

– <https://www.jetbrains.com/idea/download>, free "Community-Edition"

• Students and lecturers can use the professional edition for free

– Alexander Seik's ooRexx-Plugin with readme (as of: 2021-11-07)

• <https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/2.0.4/>

• Introduction to ooRexx (254 pages, covers ooRexx 4.2)

 <https://www.facultas.at/Flatscher>

16

2

Stems a Different Way - Introducing ’oo’ in
ooRexx – Rony G. Flatscher

Date and Time

7 Nov 2021, 17:00:00 CET

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

Session Abstract

Aimed at classic Rexxprogrammers,who employ stemvariables in their programs
to encode data structures and/or collect values (”stem arrays”). ooRexx brings
an easy to employ infrastructure to define data structures in a more easy and
safer way, and also introduces an explicit array collection which can even be
sorted by rules the Rexx programmers set forward.

17

Stems a Different Way -

Introducing 'oo' in 'ooRexx

Tutorial: 2021-11-07, International RexxLA

Symposium (Online, "Covid-19")

First presented: 2019 – International Rexx

Symposium, Hursley, September 2019

Rony G. Flatscher (Rony.Flatscher@wu.ac.at, http://www.ronyRexx.net)

Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Overview

● Data type, abstract data type

– REXX: strings, stem variables ("stems")

– ooRexx in addition: Classes, Attributes, Methods

● Collecting values

– REXX (and ooRexx): "Stem arrays"

– ooRexx: real arrays

● Roundup

18

