
2019 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2023
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2019 edition is registered under ISBN 000–0-0-0-0000-0-0-0

9 771534 895004

ISSN 1534-8954

2023-05-31 First printing

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2019 symposium was held in Hursley, United Kingdom from 22 Sep 2019 to 25 Sep 2019.

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 Tutorial: From Rexx to ooRexx – Rony G. Flatscher 1

2 40 Years of Rexx - a personal view – Mike Cowlishaw 15

3 Extending the ooRexx DateTime class – Jon Wolfers 41

4 The 2019 Edition of BSF4ooRexx – Rony G. Flatscher 53

5 Rexx Coding Techniques – Tracy Dean 68

6 Rexx on OS/2 – Roderick Klein 113

7 ooRexx 5 Yielding Swiss Army Knife Usability – Rony G. Flatscher 120

8 Jenkins - what is it and how is it used for NetRexx/ooRexx – P.O. Jonsson 143

9 Programming LSPF with ooRexx – René Vincent Jansen 155

10 Rexx from OS/2 to macOS - a travel in time and space – P.O. Jonsson 161

11 30 Years of Rexx CPS – René Vincent Jansen 189

12 Replacing the RxMessageBox() RexxUtil Function with BSF4ooRexx – Rony G. Flatscher
204

13 Physical Sensors on Raspberry Pi with Rexx/WPi – Mark Hessling 219

14 Useful ooRexx Features missing from REXX – Rony G. Flatscher 227

15 NetRexx 3.08 New Features Demo – René Vincent Jansen 245

16 Rexx Web and Application Servers and Rexx/JSON – Mark Hessling 252

17 Multi-line strings and ooRexx: A discussion – Gil Barmwater 260

18 Stems a Different Way - Introducing ’oo’ in ’ooRexx’ – Rony G. Flatscher 273

III

1

Tutorial: From Rexx to ooRexx – Rony G.
Flatscher

Date and Time

23 Sep 2019, 19:00:00 CET

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

Session Abstract

This tutorial introduces (”classic”)Rexxprogrammers to features ooRexxmakes
available,whichmakeRexxprogramming even easier. It concludeswith introducing
and demonstrating the creation and usage of Rexx classes in ooRexx, which is
very easy, yet powerful. With the proliferation of ooRexx on many platforms,
including IBMmainframes, classic Rexx programmers will benefit greatly from
this tutorial.

1

"Leaping from Classic to Object"

2019 International Rexx Symposium

Hursley, Great Britain

(September 2019)

© 2019 Rony G. Flatscher (Rony.Flatscher@wu.ac.at)

Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Agenda

• History

• Getting Object Rexx

• New procedural features

• New object-oriented features

• Roundup

2

 3

History, 1

• Begin of the 90'ies

– OO-version of Rexx presented to the IBM user

group "SHARE"

– Developed since the beginning of the 90'ies

• Originally led by IBM's Simon Nash (UK, Hursley)

• Later led by IBM's Rick McGuire (USA)

– 1997 Introduced with OS/2 Warp 4

• Support of SOM and WPS

– 1998 Free Linux version, trial version for AIX

– 1998 Windows 95 and Windows/NT

 4

History, 2

• 2004

– Spring: RexxLA and IBM join in negotiations about opensourcing
Object REXX

– November: RexxLA gets sources from IBM

– Opensource developers taking responsibility

• David Ashley, USA, OS2 guru, Linux freak, ooRexx aficionado

• Rick McGuire, USA, original lead developer

• Mark Hessling, Australia, Regina maintainer, author of numerous
great, opensource, openplatform Rexx function packages

• Rony G. Flatscher, Austria (Europe!), author of BSF4Rexx, ooRexx
tester of many years

• 2005

– Spring (March/April): RexxLA makes ooRexx freely available as
opensource and openplatform

• 2005-03-25: ooRexx 3.03

 5

History, 3

• Summer 2009

– ooRexx 4.0.0

– Kernel completely rewritten

• 32-bit and 64-bit versions possible for the first time

• New OO-APIs into the ooRexx kernel

– e.g. BSF4ooRexx allows for implementing Java

methods in Rexx !

• Latest release as of September 2019

– ooRexx 4.2, Feb 24, 2014

– AIX, Linux, MacOS, Windows

• ooRexx 5.0 in beta, about to be released?

 6

Getting "Open Object Rexx" ("ooRexx")
… for Free!

• http://www.RexxLA.org

– Choose the link to "ooRexx"

• http://www.ooRexx.org

– Homepage for ooRexx

– Links to Sourceforge

• Source

• Precompiled versions for AIX, Linux (Debian,

K/Ubuntu, Red Hat, Suse,), MacOS, Windows

• Consolidated (great!) PDF-rendered documentation!
4

 7

New Procedural Features, 1

• Compatible with classic Rexx, TRL 2

– New: execution of a Rexx program

• Full syntax check of the Rexx program

• Interpreter carries out all directives (leadin with "::")

• Start of program

• "rexxc.exe": explicit tokenization of Rexx programs

• USE ARG in addition to PARSE ARG

– among other things allows for retrieving stems by

reference (!)

 8

Example (ex_stem.rex)
"USE ARG" with a Stem

/* ex_stem.rex: demonstrating USE ARG */

info.1 = "Hi, I am a stem which could not get altered in a procedure!"
info.0 = 1 /* indicate one element in stem */
call work info. /* call procedure which adds another element (entry) */
do i=1 to info.0 /* loop over stem */
 say info.i /* show content of stem.i */
end
exit

work: procedure
 use arg great. /* note the usage of "USE ARG" instead of "PARSE ARG" */
 idx = great.0 + 1 /* get number of elements in stem, enlarge it by 1 */
 great.idx = "Object Rexx allows to directly access and manipulate a stem!"
 great.0 = idx /* indicate new number of elements in stem */
 return

/* yields:

 Hi, I am a stem which could not get altered in a procedure!
 Object Rexx allows to directly access and manipulate a stem!
*/

5

 9

New Procedural Features, 2

• Routine-directive

– same as a function/procedure

– if public, then even callable from another (!)

program

• Requires-directive

– allows for loading programs ("modules") with

public routines and public classes one needs

• User definable exceptions

 10

OO-Features Simply Usable by
Classic Rexx Programs

• "Environment"

– a directory object

• allows to store data with a key (a string)

• sharing information (coupling of) among different Rexx

programs

– ".local"

• available to all Rexx programs within the same Rexx

interpreter instance in a process

– ".environment"

• available to all Rexx programs running under all Rexx

interpreter instances within the same process

• gets searched after .local6

 11

Example (dec2roman.rex)
Classic Style
/* dec2roman.rex: turn decimal number into Roman style */
Do forever
 call charout "STDOUT:", "Enter a number in the range 1-3999: "; PARSE PULL number
 If number = 0 then exit
 say " --->" number "=" dec2rom(number)
End

dec2rom: procedure
 PARSE ARG num, bLowerCase /* mandatory argument: decimal whole number */
 a. = ""
 /* 1-9 */ /* 10-90 */ /* 100-900 */ /* 1000-3000 */
 a.1.1 = "i" ; a.2.1 = "x" ; a.3.1 = "c" ; a.4.1 = "m" ;
 a.1.2 = "ii" ; a.2.2 = "xx" ; a.3.2 = "cc" ; a.4.2 = "mm" ;
 a.1.3 = "iii" ; a.2.3 = "xxx" ; a.3.3 = "ccc" ; a.4.3 = "mmm" ;
 a.1.4 = "iv" ; a.2.4 = "xl" ; a.3.4 = "cd" ;
 a.1.5 = "v" ; a.2.5 = "l" ; a.3.5 = "d" ;
 a.1.6 = "vi" ; a.2.6 = "lx" ; a.3.6 = "dc" ;
 a.1.7 = "vii" ; a.2.7 = "lxx" ; a.3.7 = "dcc" ;
 a.1.8 = "viii"; a.2.8 = "lxxx"; a.3.8 = "dccc";
 a.1.9 = "ix" ; a.2.9 = "xc" ; a.3.9 = "cm" ;
 IF num < 1 | num > 3999 | \DATATYPE(num, "W") THEN
 DO
 SAY num": not in the range of 1-3999, aborting ..."
 EXIT -1
 END

 num = reverse(strip(num)) /* strip & reverse number to make it easier to loop */
 tmpString = ""
 DO i = 1 TO LENGTH(num)
 idx = SUBSTR(num,i,1)
 tmpString = a.i.idx || tmpString
 END

 bLowerCase = (translate(left(strip(bLowerCase),1)) = "L") /* default to uppercase */
 IF bLowerCase THEN RETURN tmpString
 ELSE RETURN TRANSLATE(tmpSTring) /* x-late to uppercase */

 12

Example (routine1_dec2roman.rex)

/* routine1_dec2roman.rex: initialization */
 a. = ""
 /* 1-9 */ /* 10-90 */ /* 100-900 */ /* 1000-3000 */
 a.1.1 = "i" ; a.2.1 = "x" ; a.3.1 = "c" ; a.4.1 = "m" ;
 a.1.2 = "ii" ; a.2.2 = "xx" ; a.3.2 = "cc" ; a.4.2 = "mm" ;
 a.1.3 = "iii" ; a.2.3 = "xxx" ; a.3.3 = "ccc" ; a.4.3 = "mmm" ;
 a.1.4 = "iv" ; a.2.4 = "xl" ; a.3.4 = "cd" ;
 a.1.5 = "v" ; a.2.5 = "l" ; a.3.5 = "d" ;
 a.1.6 = "vi" ; a.2.6 = "lx" ; a.3.6 = "dc" ;
 a.1.7 = "vii" ; a.2.7 = "lxx" ; a.3.7 = "dcc" ;
 a.1.8 = "viii"; a.2.8 = "lxxx"; a.3.8 = "dccc";
 a.1.9 = "ix" ; a.2.9 = "xc" ; a.3.9 = "cm" ;
.local~dec.2.rom = a. /* save in .local-environment for future use */

::routine dec2roman public
 PARSE ARG num, bLowerCase /* mandatory argument: decimal whole number */

 a. = .local~dec.2.rom /* retrieve stem from .local-environment */
 IF num < 1 | num > 3999 | \DATATYPE(num, "W")THEN
 DO
 SAY num": not in the range of 1-3999, aborting ..."
 EXIT -1
 END

 num = reverse(strip(num)) /* strip & reverse number to make it easier to loop */
 tmpString = ""
 DO i = 1 TO LENGTH(num)
 idx = SUBSTR(num,i,1)
 tmpString = a.i.idx || tmpString
 END

 bLowerCase = (translate(left(strip(bLowerCase),1)) = "L") /* default to uppercase */
 IF bLowerCase THEN RETURN tmpString
 ELSE RETURN TRANSLATE(tmpSTring) /* x-late to uppercase */

7

 13

Example (use_routine1_dec2roman.rex)

/* use_routine1_dec2roman.rex */
Do forever
 call charout "STDOUT:", "Enter a number in the range 1-3999: "
 PARSE PULL number
 If number = 0 then exit
 say " --->" number "=" dec2roman(number)
End

::requires "routine1_dec2roman.rex" /* directive to load module with public routine */

 14

Example (routine2_dec2roman.rex)

/* routine2_dec2roman.rex: Initialization code */
 d1 = .array~of("", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix")
 d10 = .array~of("", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc")
 d100 = .array~of("", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm")
 d1000 = .array~of("", "m", "mm", "mmm")
.local~roman.arr = .array~of(d1, d10, d100, d1000) /* save in local environment */

::ROUTINE dec2roman PUBLIC /* public routine to translate number into Roman*/
 USE ARG num, bLowerCase /* mandatory argument: decimal whole number */

 IF num < 1 | num > 3999 | \DATATYPE(num, "W") THEN
 RAISE USER NOT_A_VALID_NUMBER /* raise user exception */

 num = num~strip~reverse /* strip & reverse number to make it easier to loop */
 tmpString = ""
 DO i = 1 TO LENGTH(num)
 tmpString = .roman.arr[i] ~at(SUBSTR(num,i,1)+1) || tmpString
 END

 bLowerCase = (bLowerCase~strip~left(1)~translate = "L") /* default to uppercase */
 IF bLowerCase THEN RETURN tmpString
 ELSE RETURN TRANSLATE(tmpSTring) /* x-late to uppercase */

8

 15

Example (use_routine2_dec2roman.rex)

/* use_routine2_dec2roman.rex */
Do forever
 call charout "STDOUT:", "Enter a number in the range 1-3999: "
 PARSE PULL number
 If number = 0 then exit
 say " --->" number "=" dec2roman(number)
End

::requires "routine2_dec2roman.rex" /* directive to load module with public routine */

 16

New Object-oriented Features, 1

• Allows for implementing abstract data types (ADT)

– "Data Type" (DT)

• a data type defines the set of valid values

• a data type defines the set of valid operations for it

• examples

– numbers: adding, multiplying, etc

– strings: translating case, concatenating, etc.

– "Abstract Data Type" (ADT)

• a generic schema defining a data type with

– attributes

– operations on attributes

9

 17

New Object-oriented Features, 2

• Object-oriented features of Rexx

– allow for implementing ADTs

– a predefined classification tree

– allow for (multiple) inheritance

– explicit use of metaclasses

– tight security manager (!)

• allows for implementing any security policy w.r.t. Rexx

programs

– untrusted programs from the net

– roaming agents

– company policy w.r.t. executing code in secured environment

 18

About Implementing ADTs, 1

• Rexx and ADTs

– Cannot define routines confined to a datatype!

– Attributes can be encoded as

• Rexx strings, e.g.

birthday="19590520 13:01"

• Rexx stems, e.g.

birthday.date="19590520"

Birthday.time="13:01"

– Quite complicated and can be error prone

• Rexx programmers must know exactly the

structure and all operations to implement!

10

 19

About Implementing ADTs, 2

• ooRexx

– Designed to easily implement ADTs

– Directives

::CLASS adt_name

::ATTRIBUTE attr_name

::METHOD meth_name

– An implemented ADT is sometimes termed

"class", sometimes "type", sometimes "structure"

– "Black box"

• Rexx users do not need to know any implementation

details in order to use classes/types/structures !

 20

About Objects and Messages

• "object"

– A synonym for "value of a specific type",

"instance"

– Possesses all attributes and methods of its class

– Only reacts upon receiving messages

• Message operator ~ (tilde, dubbed "twiddle")

• Followed by a message name, optionally with

arguments in parenthesis

• Searches and invokes the method with the

same name as the message name and returns

any return value from the method

11

 21

Example (dog.rex)
Defining Dogs ...

/* dog.rex: a program for dogs ... */

myDog = .Dog~new /* create a dog from the class */
myDog~name = "Sweety" /* tell the dog its name */
say "My name is:" myDog~name /* now ask the dog for its name */
myDog~bark /* come on show them who you are! */

::class Dog /* name of the implemented ADT */
::attribute name /* let it have an attribute */
::method bark /* let it be able to bark */
 say "Woof! Woof! Woof!"

/* yields:

 My name is: Sweety
 Woof! Woof! Woof!

*/

 22

Example (bigdog.rex)
Defining BIG Dogs ...

/* bgdoc.rex: a program for BIG dogs ... */

myDog = .BigDog~new /* create a BIG dog from the class */
myDog~name = "Arnie" /* tell the dog its name */
say "My name is:" myDog~name /* now ask the dog for its name */
myDog~Bark /* come on show them who you are! */

::class Dog /* define the class "Dog" */
::attribute name /* let it have an attribute */
::method bark /* let it be able to bark */
 say "Woof! Woof! Woof!"

 /* the following class reuses most of what is already
 defined for the class "Dog" via inheritance; it overrides
 the way a big dog barks */
::class BigDog subclass Dog /* define the class "BigDog" */
::method bark /* let it be able to bark like big dogs

 do, all in uppercase! :) */
 say "WOOF! WOOF! WOOF!"

/* yields:

 My name is: Arnie
 WOOF! WOOF! WOOF!

*/

12

 23

New Object-oriented Features, 3

• Object Rexx' classification tree

– Fundamental classes

• Object, Class, Method, Message

– Classic Rexx classes

• String, Stem, Stream

– Collection classes

• Array, CircularQueue, List, Queue, Supplier

• Directory, Properties, Relation and Bag, Table, Set

– index is set explicitly by programs

– Miscellaneous classes

• Alarm, Monitor, ...

 24

Example (fruit.rex)
A Bag Full of Fruits ...

/* fruit.rex: a bag, full of fruits ... */

Fruit_Bag = .bag~of("apple", "apple", "pear", "cherry", "apple", "banana", ,
 "plum", "plum", "banana", "apple", "pear", "papaya", ,
 "peanut", "peanut", "peanut", "peanut", "peanut", "apple", ,
 "peanut", "pineapple", "banana", "plum", "pear", "pear", ,
 "plum", "plum", "banana", "apple", "pear", "papaya", ,
 "peanut", "peanut", "peanut", "apple", "peanut", "pineapple", ,
 "banana", "peanut", "peanut", "peanut", "peanut", "peanut", ,
 "apple", "peanut", "pineapple", "banana", "peanut", "papaya", ,
 "mango", "peanut", "peanut", "apple", "peanut", "pineapple", ,
 "banana", "pear")

SAY "Total of fruits in bag:" Fruit_Bag~items
SAY

Fruit_Set = .set~new~union(Fruit_Bag)
SAY "consisting of:"
DO fruit OVER Fruit_Set
 SAY right(fruit, 21) || ":" RIGHT(Fruit_Bag~allat(fruit)~items, 3)
END

13

 25

Example (fruit.rex)
Output

Total of fruits in bag: 56

consisting of:
 plum: 5
 cherry: 1
 pear: 6
 mango: 1
 banana: 7
 peanut: 20
 pineapple: 4
 papaya: 3
 apple: 9

 26

Open Object Rexx ("ooRexx")
Roundup

• Adds features, long asked for, e.g.

– Variables (stems) by reference (USE ARG)

– Public routines available to other programs (concept of modules)

– Very powerful and complete implementation of the OO-paradigm

• Availability

– Free

– Opensource

– Openplatform

• Precompiled versions for: AIX, Linux (rpm, deb), MacOSX, Solaris, Windows

98/NT/2000/XP/Vista/W7/W8

• Rony G. Flatscher, „Introduction to Rexx and ooRexx“, order

form: http://www.facultas.at/flatscher

• TBD: http://www.RonyRexx.net 14

2

40 Years of Rexx - a personal view – Mike
Cowlishaw

Date and Time

24 Sep 2019, 10:00:00 CET

Presenter

Mike Cowlishaw

Presenter Details

Mike Cowlishaw is the creator of REXX and has worked in both hardware and
software design and is currently the Editor of the IEEE 754 Standard for Floating-
PointArithmetic.He has long been interested in the human aspects of computing,
including the REXX and Java programming languages, colour perception, neural
networks, text editing,mapping, panorama viewers, and decimal arithmetic. He
is an IBM Fellow (retired), a Fellow of the Royal Academy of Engineering, and
a Visiting Professor in the Department of Computer Science at the University of
Warwick, UK.

Session Abstract

Whydoes the name ’Rexx’ have adouble-x?When andhowdidRexx get started?
Whatwas the context? Howdid Rexx get added to IBM operating systems? And
why is its decimal arithmetic so important? In this talk,Mike Cowlishaw, author
of the Rexx language, will answer these and other questions. He’ll also share
his own thoughts on the background, design, and highlights (and a couple of
lowlights) of the evolution of Rexx.

15

40 years of Rexx

Hursley

 23 September 2019

Mike Cowlishaw
http://speleotrove.com/mfc/

 Rexx40

― a personal view

2

Overview

40 years of Rexx; a timeline …

Copyright © Mike Cowlishaw 2019, IBM Corporation 2004.
All rights reserved.

16

3

Overview

40 years of Rexx; a timeline …

… or, in reality, 50 years …

4

Rexx roots go back 50 years…

 In 1969 my mathematics teacher at
Monkton Combe School, Julian Bewick,
taught me to program using a pseudo-
assembler (paper-executed) called
‘minlan’; I soon learned FORTRAN IV and
wrote an interpreter for minlan …

… and on 28 September 2019 we’ll be
celebrating those early days at the school! 17

5

Then … (1970-1974)

• MFC: Pre-University student with IBM (1970)

– PL/I compiler, compiler for minlan, etc.

• BSc Electrical & Electronic Engineering (1974)

– University of Birmingham

– Vacation jobs at IBM Hursley and IBM Bristol

– lots of caving

– First paper: “The Characteristics and Use of
 Lead-Acid Cap Lamps” (1974)

6

Then … (1974-1979)

• IBM Hursley: Test Tools Team (1974−1979)

– building hardware for
 testing terminals such
 as the 3279 …

 The team (December 1978)

 (Ron Bowater, Doug Buttimer, Dave

 Milward, MFC)

18

7

Then … (1974-1979)

• IBM Hursley: Test Tools Team (1974−1979)

– building hardware for
 testing terminals such
 as the 3279 …

 The team (October 2018)

 (Dave Milward, Doug Buttimer,

 Ron Bowater, MFC, Nick Butler)

 … 2019 reunion today!

8

Microlink

• Used existing coax
terminal link (ANR)
to attach bipolar
microcomputers
(such as the 250ns
Signetics 8X300)
to mainframe

• Software included
OS, Compilers,
circuit layout …

19

9

Own-time projects

• Mostly PL/I and S/360 Assembler
– Archaeological mapping (1974)

– Cave surveying programs (1976)

– Several compilers and interpreters (1976+)

• STET, a STructured Editing Tool (1977)

– and lots of other VM/CMS tools

• Rex (started 20 March 1979)

– a biggie: 4,000 hours to 1982

10

How old was I?

well, 40 years is 40 years …

20

11

How old was I? (1979 pix)
 A

fte
r C

u
e

v
a

 T
o

y
u

 ―
 G

u
in

n
e

s
s
 c

e
re

m
o

n
y

12

Why Rex?

• CMS had EXEC … a bit like DOS BAT
 &CONTROL OFF

 &IF &INDEX EQ 0 &GOTO -GO
 EXEC DCOPT DROP
 &IF &RETCODE GE 12 &EXIT
 -GO
 &STACK RT …

• EXEC 2: clean design, but just as ugly

– language committee (Stephenson et al.)

– hooks for vanilla CMS by Michel Hack 21

13

The first Rex programs

• ADDR EXEC … searches nickname file for
nickname, displays name and address

• SEND EXEC … send file to a local user

• CONC XEDIT … concatenate & flow macro

• … and lots of testcases

14

Who used Rex?

• First distributable code was in May 1979;
until then, only the one user

• The first real users (pioneers, guinea pigs,
trend-setters, …) were

– Ray Mansell (Hursley, UK)

– Les Koehler (Raleigh, NC)

… lots of useful feedback
22

15

How did it catch on?

• Internal IBM network, VNET, rapidly growing

• VM Newsletter
(Peter Capek)

• Word of mouth,
Xmas card …

• Add-ons (Steve
Davies’ functions
and many others)

16

Was there a Rex motto?

• Sort of. Pinned to the wall over my desk in
Hursley was …

23

17

Was there a Rex motto?

• Sort of. Pinned to the wall over my desk in
Hursley was …

Keep the language small

….. < 32 KB!

18

Why decimal arithmetic?

• One type = characters = decimal

– avoids many problems (e.g., 0.9/10 = 0.089999996)

– see http://speleotrove.com/decimal/decifaq1.html

• Current is third iteration, May―July 1981

– lots of input from language committee

– … and from users in 43 countries

– … and from a noisy ‘no more changes’ lobby
24

19

Why are ‘!’ and ‘?’ in symbols?

• I always intended to complete the
arithmetic by adding Infinity and NaN

! was to be used for Infinity
? was to be used for NaN

• Code freeze for product meant these and
other changes (e.g., stream I/O) omitted
– so EXECIO had to be used for files

20

1981: How did it become ‘official’?

• Internal CMS included XEDIT-editor-based
tools, almost all developed using Rex

• Claude Hans in Endicott decided to add Rex
even before EXEC 2 shipped; Rick McGuire
involved from March 1981

• SHARE talk in 1981 … Ted Johnston (SLAC)
asked IBM CEO (Frank Cary) for Rex 25

21

1981: A setback…

• IBM PC announced in August

 The very first thread on the new ‘IBMPC
FORUM’ was: “who’s writing Rex for the
PC?” − many keen volunteers …

• … but a group in San Jose was officially
funded to write Rex for PC − so no one
else tried; unfortunately they wrote it in
Pascal − so the project failed

22

1982: Why ‘REXX’?

• Trademark search in 1982 found an
unrelated product called Rex-80

• Lawyers insisted that ‘X’ be added …
… and ‘REXX’ not be used in product name
… and acronym was expanded

• Estimated cost of the change: $1,000,000 +
26

