
2018 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2023
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2018 edition is registered under ISBN 978-94-648-5716-0

9 771534 895004

ISSN 1534-8954

9 789464 857160

ISBN 978-94-648-5716-0

2023-05-31 First printing

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2018 symposium was held in Aruba, Dutch West Indies from 25 Mar 2018 to 29 Mar 2018.

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 NetRexx 3.07 New Features – René Vincent Jansen 1

2 Integrating NetRexx code in ooRexx 5.0 – Rony G. Flatscher 12

3 IBM Update: Ask the development team – Virgil Hein 19

4 Rexx Tutorial for Beginners – Rony G. Flatscher 69

5 The New BSF4ooRexx 6.00 – Rony G. Flatscher 100

6 ooRexxDoc 5.0 – Alexander Seik 123

7 Classic Rexx on MUSIC/SP – René Vincent Jansen 129

8 Open Object Rexx Tutorial – Rony G. Flatscher 142

9 Redirecting I/O for Commands to an External Environment – Gil Barmwater 164

10 Anatomy of a GUI (Graphical User Interface) Application for Rexx Programmers – Rony
G. Flatscher 180

11 NetRexx Graphical User Interfaces with Pivot – Jason Martin 235

III

1

NetRexx 3.07 New Features – René Vincent
Jansen

Date and Time

26 Mar 2018, 14:00:00 CET

Presenter

René Vincent Jansen

Presenter Details

René has used REXX since it appeared in TSO Extensions in the second half of
the eighties when he was a systems programmer at the Central Bank of The
Netherlands. He is an independent consultant since the turn of the century,
specializing in models andmeta models in order to rationalize data governance
andmodel driven development. He likes to program in any language as long as
it’s REXX.

1

NetRexx 3.07
New Features
René Vincent Jansen

29th International Rexx Language Symposium 2018

Aruba, Dutch West Indies

2

Agenda

Pipelines: SQLSelect Stage

Pipe the sql statement into it

From 3.07

Rexx() Constructor Unshared

Make it usable from Kotlin

From 3.07

RexxIO Runtime Improvements

Set/Push/PopOutputStream

From 3.07

2

3

Agenda

Annotations

From 3.06

OSProcess()

From 3.06

Runtime support for ADDRESS()

Rexx.soundex()

From 3.07

Method soundex() for Rexx strings

barre B600 = B600
Wheaton W350 = W350
Knuth K530 = K530
auerbach A612 = A612
Ekzampul E251 = E251
D-day D000 = D000
example E251 = E251
4-H H000 = H000
Burroughs B620 = B620
d jay D200 = D200
F.B.I. F000 = F000
Lissajous L222 = L222

Release Timeline for NetRexx 3.0x - 4.00

4

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

April
3.07 Beta
Testing and Fixes

MAY
3.07 GA

Complete Pipes for NetRexx Document

March
3.07-PRE

Sqlselect - RexxIO runtime

Java 7 lowest supported level

November
4.00 Beta
Java 9 support

August
4.00 PRE
Java 9 support

Java 7 lowest supported level

3

SQLSelect stage of pipelines

One of the first NetRexx programs I wrote

It only accepted input from its commandline input

It needed to accept input from a previous stage in the pipeline

It nows does, after some 20 years

This also prompted some experimentation with SQLite

Which works wonderful with NetRexx

5

Rexx() constructor unshared

Admittedly, this is not really useful for NetRexx but makes for a much better first

impression when using the Rexx class in Kotlin

Kotlin: upcoming, en-vogue language

It has a lot of the good things we know in NetRexx

Needs more investigation,

at least the first thing you try does not fail

If you are hired for a Kotlin project: yes, you can use Rexx

All the string functions we know from the 1980’s there

6

4

This one I liked in Kotlin

Open a file with its name and specify in on line how and where to handle each

record

It tempted me to do some work (at work) in Kotlin

Until I realised we can to this in about the same manner in NetRexx

7

Oneliner file
handler
Using a minor class and inheritable

properties

5

Support for this in RexxIO runtime class

Previously not documented, contains Say(), Ask(), AskOne()

Method file()

Accepts a filename and constructs a BufferedReader

Returns RexxIO (static) to be able to chain methods

Method forEachLine()

accepts any implementation of the LineHandler interface

9

Other RexxIO changes: OutputStream

I noticed how everything that is prototyped with say always ends up needing to

be written to a file

We can redirect, but that means all System.out and System.err ends up in

between the output

We can open a PrintWriter and change all say statements to println()

Opening a file in a number of lines and changing all say statements is drudge

work

How about if we could just say something (in)to a file

Thats is what the experiment is about

10

6

setOutputStream

You can set an OutputStream on the RexxIO class (which is static)

For the first time, you can switch between stdout and stderr

You may also specify a FileOutputStream

All say output from that moment on will go to that file

Reset it by setting it back to System.out

Every say always flushes the output stream (and always did)

Even when this is taken into account:

On systems with slow consoles (read: windows):

The speedup is stunning when writing to a file

11

What if we want some say output going
to more outputstreams?

To make say output go to more streams (stdout, a file, stderr) we can:

pushOutputStream

Add one outputstream

popOutputStream

Remove the latest added outputstream

StdOut in RexxIO is now a ConcurrentLinkedDeque

Which should make it reasonable thread safe

12

7

Annotations (in 3.06)

Adding annotations was not avoidable due to the large amount of Java classes

using mandatory annotations - jUnit, vaadin, Jakarta Spring

Unlike generics, the way to handle these in NetRexx without language support

would be much more complex (though not impossible, everything becomes a

method call in the end)

For this reason, the parser was adapted to recognise and pass through

@annotations

This was not easy and there still are some snags

Most of the things you need do work, though

13

OSProcess - Runtime support for
ADDRESS and OUTTRAP (since 3.06)

NetRexx was designed with the following assumptions

Java is going to be used for I/O

Java interfaces are going to be used for native functionality

Java handles pretty much everything and native is not needed

Here NetRexx diverges from other dialects

Scripting is closely related to the (OS/Platform) environment

These can be building blocks for an ADDRESS command

Let’s see what ooRexx is doing with ADDRESS WITH

14

8

Soundex (3.07)

Rexx variables have to ways for comparison

 A strict (==) comparator

 A less strict (more what a human would do) comparator (=)

But it misses a loose comparator

For this, the Soundex algorithm is the standard

For data cleansing operations this was needed so often, it was put as a method on the

Rexx string

Why put it in the runtime

the algorithm is just not trivial enough to assume that language users will easily roll their

own

It is a good addition to the other two comparators

15

Soundex example & testset

We need to normalize a database that has a free field for street name

We know people have put in various forms of ‘unknown’

We know that ‘unknown’.soundex() is U525

We now find:

16

Unkown/ Onbekend

Unknown\ Onbekend

Unknown/Onbekend

Unknown/Onbeken

Unknown/ Onbekend

Unknown Onbekend

UNKNOWN /ONBEKND

Unknown /Onbekend

Unknown / Onbekend

unknown /onbekend

Unknown

Unknowm/ Onbekend

Unknnown/Onbekend

barre B600 = B600
Wheaton W350 = W350
Knuth K530 = K530
auerbach A612 = A612
Ekzampul E251 = E251
D-day D000 = D000
example E251 = E251
4-H H000 = H000
Burroughs B620 = B620
d jay D200 = D200
F.B.I. F000 = F000
Lissajous L222 = L222
Burrows B620 = B620
coöp C100 = C100
de la Rosa D462 = D462
Gauss G200 = G200
Donnell D540 = D540
Ghosh G200 = G200
Dracula D624 = D624
Ellery E460 = E460
he H000 = H000
Gutierrez G362 = G362
Drakula D624 = D624
Williams W452 = W452
Heilbronn H416 = H416
Du Pont D153 = D153
Robert R163 = R163
Pfister P236 = P236
Moskowitz M232 = M232
Euler E460 = E460
Hilbert H416 = H416
Rupert R163 = R163
Uhrbach U612 = U612
Moskovitz M213 = M213
Lukasiewic L222 = L222
Woolcock W422 = W422
Tymczak T522 = T522
Rubin R150 = R150
Swhgler S460 = S460

9

Soundex implementation

Somewhat dependent on language

The canonical form is for English

The numbers are dependent on pronunciation

In case of popular demand:

We need to make these strings swappable

17

NetRexx 4.00

NetRexx 3.X does not run on Java 9

This is due to an incompatible change by Java - the Oracle team

Reason for the change is the module system

NetRexx reads all jars and zip, and classes on the classpath for every compilation

This has become impossible now

Later this week we will have a workshop on reflection and method handles

Results of this workshop will be highly important to the future of NetRexx

18

10

19

Thank you for your attention
- Q? rvjansen@xs4all.nl or president@rexxla.org

29th International Rexx Language Symposium

Aruba, Dutch West Indies

11

2

Integrating NetRexx code in ooRexx 5.0 –
Rony G. Flatscher

Date and Time

26 Mar 2018, 15:00:00 CET

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

12

Integrating NetRexx Code in ooRexx 5.0

Rony G. Flatscher, WU
2018 International Rexx Symposium

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 2

Overview

● NetRexx integration with BSF4ooRexx

– Example

● ooRexx 5.0

● Integrating NetRexx into ooRexx 5.0

– Example

● Roundup and outlook

13

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 3

NetRexx Integration with BSF4ooRexx, 1

● BSF4ooRexx

– If NetRexx present, then it automatically turns
NetRexx objects into Rexx strings

– ooRexx can be used by NetRexx
● Apache's BSF framework

● Java's javax.script framework

● See samples coming with BSF4ooRexx!

– Each NetRexx class can be used by ooRexx
● Apache's BSF framework: must be precompiled!

● Java's javax.script framework: must supply source

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 4

NetRexx Integration with BSF4ooRexx, 2

● Example 1

– NetRexx source stored in a file

– JSR-223 (javax.script) to fetch NetRexx engine

– Getting default ScriptContext
● Adding an entry "javax.script.filename" according to the

JSR-223 specifications

– Using NetRexx engine to put an attribute into its
default ScriptContext

● Attribute "hi" gets a string from ooRexx

– NetRexx engine is used to run the NetRexx
program which fetches and shows the entries

14

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 5

NetRexx Integration with BSF4ooRexx, 3

manager = .bsf~new("javax.script.ScriptEngineManager")
nre=manager~getEngineByName("NetRexx") -- fetch NetRexx via JSR-223

signal on syntax
sc=nre~getContext -- get its default ScriptContext
filename="someNetRexxCode.nrx"
sc~setAttribute(nre~FILENAME, filename, sc~ENGINE_SCOPE)
nre~put("sc", sc)
nre~put("hi", "hello at" .dateTime~new)
say "(ooRexx) executing ["filename"] ..."
res=nre~eval(.bsf~new("java.io.FileReader", filename), sc)
exit

syntax:
 co=condition(o)
 say ppCondition2(co)
 exit -1

::requires BSF.CLS -- get Java bridge
::requires "rgf_util2.rex" -- get access to ppCondition2()

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 6

NetRexx Integration with BSF4ooRexx, 4

parse source s
say '(nrx) this is NetRexx speaking from:' s
say '(nrx) this is what got sent to me: ' hi
name="javax.script.filename"
say '(nrx)' name':' sc.getAttribute(name)

(ooRexx) executing [someNetRexxCode.nrx] ...
(nrx) this is NetRexx speaking from: Java method someNetRexxCode
(nrx) this is what got sent to me: hello at 2018-03-25T17:04:47.514436
(nrx) javax.script.filename: someNetRexxCode.nrx

● Output:

15

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 7

ooRexx 5.0

● Many new and useful features!

● ::RESOURCE directive

– Allows for storing any kind of text
● Possible to store code, e.g. NetRexx source code!

– .resources serves as the directory of resources

– Fetching a resource entry returns an array of strings

– Using ooRexx Array's toString method returns a
plain string

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 8

Integrating NetRexx Into ooRexx 5.0, 1

● Use a ::resource directive instead of a file

● Allows one to have all resources in one
package, the ooRexx program

● Will use JSR-223 to run the NetRexx program

16

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 9

Integrating NetRexx Into ooRexx 5.0, 2

manager = .bsf~new("javax.script.ScriptEngineManager")
nre=manager~getEngineByName("NetRexx") -- fetch NetRexx via JSR-223

signal on syntax
sc=nre~getContext -- get its default ScriptContext
filename="someNetRexxCode.nrx (really, it is a string)"
sc~setAttribute(nre~FILENAME, filename, sc~ENGINE_SCOPE)
nre~put("sc", sc)
nre~put("hi", "hello at" .dateTime~new)
say "(ooRexx) executing ["filename"] ..."
code=.resources~netRexxCode~toString
res=nre~eval(code, sc)
exit

syntax:
 co=condition(o)
 say ppCondition2(co)
 exit -1

::requires BSF.CLS -- get Java bridge
::requires "rgf_util2.rex" -- get access to ppCondition2()

::resource netRexxCode
 parse source s
 say '(nrx) this is NetRexx speaking from:' s
 say '(nrx) this is what got sent to me: ' hi
 name="javax.script.filename"
 say '(nrx)' name':' sc.getAttribute(name)
::END

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 10

Integrating NetRexx Into ooRexx 5.0, 3

::resource netRexxCode
 parse source s
 say '(nrx) this is NetRexx speaking from:' s
 say '(nrx) this is what got sent to me: ' hi
 name="javax.script.filename"
 say '(nrx)' name':' sc.getAttribute(name)
::END

(ooRexx) executing [someNetRexxCode.nrx (really, it is a string)] ...
(nrx) this is NetRexx speaking from: Java method someNetRexxCode
(nrx) this is what got sent to me: hello at 2018-03-25T17:34:31.229503
(nrx) javax.script.filename: someNetRexxCode.nrx (really, it is a string)

● Output:

17

2018-03-26 Integrating NetRexxcode in ooRexx 5.0 11

Roundup and Outlook

● BSF4ooRexx allows

– Full access to compiled NetRexx programs/classes

– Full access to JSR-223
● ooRexx programs can run NetRexx programs from

source using BSF4ooRexx

– ooRexx 5.0 programs can embed the source

● Outlook

– If possible to compile and access NetRexx classes
● ooRexx programs can use NetRexx e.g. for lambdas and

any unforeseen need to use NetRexx classes on the fly!

18

3

IBM Update: Ask the development team –
Virgil Hein

Date and Time

26 Mar 2018, 18:30:00 CET

Presenter

Virgil Hein

Presenter Details

Virgil has been with IBM for 38+ years working in software development. In
his current position as an IBM Business Manager he is responsible for all facets
of a set of mature technology products. This includes responsibility for strategy,
businessmanagement, development,marketing, sales, service, and support.Main
products include Office Vision products, BookManager, REXX, and OS/2. In this
position themain goals are focused onmaintaining/increasing customer satisfaction,
supporting customer efforts tomigrate to follow-on solutions, andfinding creative
means of increasingmature/growth product revenue. As the product owner for
the IBMREXXCompiler, Virgil is closely involvedwith a variety of REXX activities
both inside and outside of IBM.

19

IBM z Systems

IBM Rexx Language Update:

Classic Rexx and The Rexx Compiler

Virgil Hein IBM

vhein@us.ibm.com

March 2018

IBM z Systems

Disclaimers

2 IBM Rexx Language Update: Classic Rexx and The Rexx Compiler © 2014, 2016 IBM Corporation

 The information contained in this presentation is provided for
informational purposes only.

 While efforts were made to verify the completeness and accuracy of
the information contained in this presentation, it is provided “as is”,
without warranty of any kind, express or implied.

 In addition, this information is based on IBM’s current product plans
and strategy, which are subject to change by IBM without notice.

 IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this presentation or any other
documentation.

 Nothing contained in this presentation is intended to, or shall have
the effect of:

• Creating any warranty or representation from IBM (or its affiliates or
its or their suppliers and/or licensors); or

• Altering the terms and conditions of the applicable license agreement
governing the use of IBM software.

20

IBM z Systems

Agenda

3 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 HLASM TextBook

 REXX products

 External environments and interfaces

 Key functions and instructions

 REXX compound variables vs. data stack

 I/O

 Troubleshooting

 Programming style and techniques

 REXX Enhancements (z/OS)

IBM z Systems

HLASM TextBook

4 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 HLASM TextBook V 1.00

 Marist College web site:
http://idcp.marist.edu/enterprisesystemseducation/Assembler%20Language%20Programming

%20for%20IBM%20z%20System%20Servers.pdf

 HLASM TextBook V 2.00

 PDF: Assembler Language Programming for IBM Systems Z Servers V2.00

21

