
2017 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2023
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2017 edition is registered under ISBN 978-94-648-5753-5

9 771534 895004

ISSN 1534-8954

9 789464 857535

ISBN 978-94-648-5753-5

2023-05-31 First printing

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2017 symposium was held in The Netherlands from 9 Apr 2017 to 12 Apr 2017.

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 Open Object Rexx Tutorial – Rony G. Flatscher 1

2 Rexx Scripts Hosted and Evaluated by Java – Rony G. Flatscher 15

3 Connecting to the Service Now API – Robert J. Wilson 50

4 JavaFX for ooRexx - Creating Powerful Portable GUIs – Rony G. Flatscher 59

5 Use cases: version tracking (z/OS) and Debian package archive (Linux) – Uwe Winter
126

6 Rexx Concepts and Facilities – Virgil Hein 132

7 OoRexx IntelliJ Plugin – Alexander Seik 181

8 Y-Innovate Build System for z/OS – Bobby Tjassens Keiser 191

9 Automating DB2 Data Migrations on z/OS with Rexx – René Vincent Jansen 204

10 ooRexx 5.00 New Features – Rony G. Flatscher 231

III

1

Open Object Rexx Tutorial – Rony G.
Flatscher

Date and Time

9 Apr 2017, 13:30:00 CET

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

1

"Leaping from Classic to Object"

2017 International Rexx Symposium

Amsterdam, The Netherlands

(April 2017)

© 2017 Rony G. Flatscher (Rony.Flatscher@wu.ac.at)

Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Agenda

• History

• Getting Object Rexx

• New procedural features

• New object-oriented features

• Roundup

2

 3

History, 1

• Begin of the 90s

– OO-version of Rexx presented to the IBM user

group "SHARE"

– Developed since the beginning of the 90'ies

– 1997 Introduced with OS/2 Warp 4

• Support of SOM and WPS

– 1998 Free Linux version, trial version for AIX

– 1998 Windows 95 and Windows/NT

 4

History, 2

• 2004

– Spring: RexxLA and IBM join in negotiations about opensourcing
Object REXX

– November: RexxLA gets sources from IBM

– Opensource developers taking responsibility

• David Ashley, USA, OS2 guru, Linux freak, ooRexx aficionado

• Rick McGuire, USA, original lead developer

• Mark Hessling, Australia, Regina maintainer, author of numerous
great, opensource, openplatform Rexx function packages

• Rony G. Flatscher, Austria (Europe!), author of BSF4Rexx, ooRexx
tester of many years

• 2005

– Spring (March/April): RexxLA makes ooRexx freely available as
opensource and openplatform

• 2005-03-25: ooRexx 3.03

 5

History, 3

• Summer 2009

– ooRexx 4.0.0

– Kernel fully rewritten

• 32-bit and 64-bit versions possible for the first time

• New OO-APIs into the ooRexx kernel

– e.g. BSF4ooRexx allows for implementing Java

methods in Rexx !

• Latest release as of April 2017

– ooRexx 4.2, Feb 24, 2014

– AIX, Linux, MacOSX, Windows

• ooRexx 5.0 in beta

 6

Getting "Open Object Rexx" ("ooRexx")
… for Free!

• http://www.RexxLA.org

– Choose the link to "ooRexx"

• http://www.ooRexx.org

– Homepage for ooRexx

– Links to Sourceforge

• Source

• Precompiled versions for AIX, Linux (Debian,

K/Ubuntu, Red Hat, Suse,), MacOSX, Solaris,

Windows

• Consolidated (great!) PDF- and HTML-rendered

documentation!

4

 7

New Procedural Features, 1

• Fully compatible with classic Rexx, TRL 2

– New: execution of a Rexx program

• Full syntax check of the Rexx program

• Interpreter carries out all directives (leadin with "::")

• Start of program

• "rexxc.exe": explicit tokenization of Rexx programs

• USE ARG in addition to PARSE ARG

– among other things allows for retrieving stems by

reference (!)

 8

Example (ex_stem.rex)
"USE ARG" with a Stem

/* ex_stem.rex: demonstrating USE ARG */

info.1 = "Hi, I am a stem which could not get altered in a procedure!"
info.0 = 1 /* indicate one element in stem */
call work info. /* call procedure which adds another element (entry) */
do i=1 to info.0 /* loop over stem */
 say info.i /* show content of stem.i */
end
exit

work: procedure
 use arg great. /* note the usage of "USE ARG" instead of "PARSE ARG" */
 idx = great.0 + 1 /* get number of elements in stem, enlarge it by 1 */
 great.idx = "Object Rexx allows to directly access and manipulate a stem!"
 great.0 = idx /* indicate new number of elements in stem */
 return

/* yields:

 Hi, I am a stem which could not get altered in a procedure!
 Object Rexx allows to directly access and manipulate a stem!
*/

5

 9

New Procedural Features, 2

• Routine-directive

– same as a function/procedure

– if public, then even callable from another (!)

program

• Requires-directive

– allows for loading programs ("modules") with

public routines and public classes one needs

• User definable exceptions

 10

OO-Features Simply Usable by
Classic Rexx Programs

• "Environment"

– a directory object

• allows to store data with a key (a string)

• sharing information (coupling of) among different Rexx

programs

– ".local"

• available to all Rexx programs within the same Rexx

interpreter instance in a process

– ".environment"

• available to all Rexx programs running under all Rexx

interpreter instances within the same process

• gets searched after .local6

 11

Example (dec2roman.rex)
Classic Style
/* dec2roman.rex: turn decimal number into Roman style */
Do forever
 call charout "STDOUT:", "Enter a number in the range 1-3999: "; PARSE PULL number
 If number = 0 then exit
 say " --->" number "=" dec2rom(number)
End

dec2rom: procedure
 PARSE ARG num, bLowerCase /* mandatory argument: decimal whole number */
 a. = ""
 /* 1-9 */ /* 10-90 */ /* 100-900 */ /* 1000-3000 */
 a.1.1 = "i" ; a.2.1 = "x" ; a.3.1 = "c" ; a.4.1 = "m" ;
 a.1.2 = "ii" ; a.2.2 = "xx" ; a.3.2 = "cc" ; a.4.2 = "mm" ;
 a.1.3 = "iii" ; a.2.3 = "xxx" ; a.3.3 = "ccc" ; a.4.3 = "mmm" ;
 a.1.4 = "iv" ; a.2.4 = "xl" ; a.3.4 = "cd" ;
 a.1.5 = "v" ; a.2.5 = "l" ; a.3.5 = "d" ;
 a.1.6 = "vi" ; a.2.6 = "lx" ; a.3.6 = "dc" ;
 a.1.7 = "vii" ; a.2.7 = "lxx" ; a.3.7 = "dcc" ;
 a.1.8 = "viii"; a.2.8 = "lxxx"; a.3.8 = "dccc";
 a.1.9 = "ix" ; a.2.9 = "xc" ; a.3.9 = "cm" ;
 IF num < 1 | num > 3999 | \DATATYPE(num, "W") THEN
 DO
 SAY num": not in the range of 1-3999, aborting ..."
 EXIT -1
 END

 num = reverse(strip(num)) /* strip & reverse number to make it easier to loop */
 tmpString = ""
 DO i = 1 TO LENGTH(num)
 idx = SUBSTR(num,i,1)
 tmpString = a.i.idx || tmpString
 END

 bLowerCase = (translate(left(strip(bLowerCase),1)) = "L") /* default to uppercase */
 IF bLowerCase THEN RETURN tmpString
 ELSE RETURN TRANSLATE(tmpSTring) /* x-late to uppercase */

 12

Example (routine1_dec2roman.rex)

/* routine1_dec2roman.rex: initialization */
 a. = ""
 /* 1-9 */ /* 10-90 */ /* 100-900 */ /* 1000-3000 */
 a.1.1 = "i" ; a.2.1 = "x" ; a.3.1 = "c" ; a.4.1 = "m" ;
 a.1.2 = "ii" ; a.2.2 = "xx" ; a.3.2 = "cc" ; a.4.2 = "mm" ;
 a.1.3 = "iii" ; a.2.3 = "xxx" ; a.3.3 = "ccc" ; a.4.3 = "mmm" ;
 a.1.4 = "iv" ; a.2.4 = "xl" ; a.3.4 = "cd" ;
 a.1.5 = "v" ; a.2.5 = "l" ; a.3.5 = "d" ;
 a.1.6 = "vi" ; a.2.6 = "lx" ; a.3.6 = "dc" ;
 a.1.7 = "vii" ; a.2.7 = "lxx" ; a.3.7 = "dcc" ;
 a.1.8 = "viii"; a.2.8 = "lxxx"; a.3.8 = "dccc";
 a.1.9 = "ix" ; a.2.9 = "xc" ; a.3.9 = "cm" ;
.local~dec.2.rom = a. /* save in .local-environment for future use */

::routine dec2roman public
 PARSE ARG num, bLowerCase /* mandatory argument: decimal whole number */

 a. = .local~dec.2.rom /* retrieve stem from .local-environment */
 IF num < 1 | num > 3999 | \DATATYPE(num, "W")THEN
 DO
 SAY num": not in the range of 1-3999, aborting ..."
 EXIT -1
 END

 num = reverse(strip(num)) /* strip & reverse number to make it easier to loop */
 tmpString = ""
 DO i = 1 TO LENGTH(num)
 idx = SUBSTR(num,i,1)
 tmpString = a.i.idx || tmpString
 END

 bLowerCase = (translate(left(strip(bLowerCase),1)) = "L") /* default to uppercase */
 IF bLowerCase THEN RETURN tmpString
 ELSE RETURN TRANSLATE(tmpSTring) /* x-late to uppercase */

7

 13

Example (use_routine1_dec2roman.rex)

/* use_routine1_dec2roman.rex */
Do forever
 call charout "STDOUT:", "Enter a number in the range 1-3999: "
 PARSE PULL number
 If number = 0 then exit
 say " --->" number "=" dec2roman(number)
End

::requires "routine1_dec2roman.rex" /* directive to load module with public routine */

 14

Example (routine2_dec2roman.rex)

/* routine2_dec2roman.rex: Initialization code */
 d1 = .array~of("", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix")
 d10 = .array~of("", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc")
 d100 = .array~of("", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm")
 d1000 = .array~of("", "m", "mm", "mmm")
.local~roman.arr = .array~of(d1, d10, d100, d1000) /* save in local environment */

::ROUTINE dec2roman PUBLIC /* public routine to translate number into Roman*/
 USE ARG num, bLowerCase /* mandatory argument: decimal whole number */

 IF num < 1 | num > 3999 | \DATATYPE(num, "W") THEN
 RAISE USER NOT_A_VALID_NUMBER /* raise user exception */

 num = num~strip~reverse /* strip & reverse number to make it easier to loop */
 tmpString = ""
 DO i = 1 TO LENGTH(num)
 tmpString = .roman.arr[i] ~at(SUBSTR(num,i,1)+1) || tmpString
 END

 bLowerCase = (bLowerCase~strip~left(1)~translate = "L") /* default to uppercase */
 IF bLowerCase THEN RETURN tmpString
 ELSE RETURN TRANSLATE(tmpSTring) /* x-late to uppercase */

8

 15

Example (use_routine2_dec2roman.rex)

/* use_routine2_dec2roman.rex */
Do forever
 call charout "STDOUT:", "Enter a number in the range 1-3999: "
 PARSE PULL number
 If number = 0 then exit
 say " --->" number "=" dec2roman(number)
End

::requires "routine2_dec2roman.rex" /* directive to load module with public routine */

 16

New Object-oriented Features, 1

• Allows for implementing abstract data types (ADT)

– "Data Type" (DT)

• a data type defines the set of valid values

• a data type defines the set of valid operations for it

• examples

– numbers: adding, multiplying, etc

– strings: translating case, concatenating, etc.

– "Abstract Data Type" (ADT)

• a generic schema defining a data type with

– attributes

– operations on attributes

9

 17

New Object-oriented Features, 2

• Object-oriented features of Rexx

– allow for implementing an ADT

– a predefined classification tree

– allow for (multiple) inheritance

– explicit use of metaclasses

– tight security manager (!)

• allows for implementing any security policy w.r.t. Rexx

programs

– untrusted programs from the net

– roaming agents

– company policy w.r.t. executing code in secured environment

 18

About Implementing ADTs, 1

• Rexx and ADTs

– Cannot define routines confined to a datatype!

– Attributes can be encoded as

• Rexx strings, e.g.

birthday="19590520 13:01"

• Rexx stems, e.g.

birthday.date="19590520"

Birthday.time="13:01"

– Quite complicated and can be error prone

• Rexx programmers must know exactly the

structure and all operations to implement!

10

 19

About Implementing ADTs, 2

• ooRexx

– Designed to easily implement ADTs

– Directives

::CLASS adt_name

::ATTRIBUTE attr_name

::METHOD meth_name

– An implemented ADT is sometimes termed

"class", sometimes "type", sometimes "structure"

– "Black box"

• Rexx users do not need to know any implementation

details in order to use classes/types/structures !

 20

About Objects and Messages

• "object"

– A synonym for "value of a specific type",

"instance"

– Possesses all attributes and methods of its class

– Only reacts upon receiving messages

• Message operator ~ (tilde, dubbed "twiddle")

• Followed by a message name, optionally with

arguments in parenthesis

• Searches and invokes the method with the

same name as the message name and returns

any return values from the method

11

 21

Example (dog.rex)
Defining Dogs ...

/* dog.rex: a program for dogs ... */

myDog = .Dog~new /* create a dog from the class */
myDog~name = "Sweety" /* tell the dog its name */
say "My name is:" myDog~name /* now ask the dog for its name */
myDog~bark /* come on show them who you are! */

::class Dog /* name of the implemented ADT */
::attribute name /* let it have an attribute */
::method bark /* let it be able to bark */
 say "Woof! Woof! Woof!"

/* yields:

 My name is: Sweety
 Woof! Woof! Woof!

*/

 22

Example (bigdog.rex)
Defining BIG Dogs ...

/* bgdoc.rex: a program for BIG dogs ... */

myDog = .BigDog~new /* create a BIG dog from the class */
myDog~name = "Arnie" /* tell the dog its name */
say "My name is:" myDog~name /* now ask the dog for its name */
myDog~Bark /* come on show them who you are! */

::class Dog /* define the class "Dog" */
::attribute name /* let it have an attribute */
::method bark /* let it be able to bark */
 say "Woof! Woof! Woof!"

 /* the following class reuses most of what is already
 defined for the class "Dog" via inheritance; it overrides
 the way a big dog barks */
::class BigDog subclass Dog /* define the class "BigDog" */
::method bark /* let it be able to bark like big dogs

 do, all in uppercase! :) */
 say "WOOF! WOOF! WOOF!"

/* yields:

 My name is: Arnie
 WOOF! WOOF! WOOF!

*/

12

 23

New Object-oriented Features, 3

• Object Rexx' classification tree

– Fundamental classes

• Object, Class, Method, Message

– Classic Rexx classes

• String, Stem, Stream

– Collection classes

• Array, CircularQueue, List, Queue, Supplier

• Directory, Properties, Relation and Bag, Table, Set

– index is set explicitly by programs

– Miscellaneous classes

• Alarm, Monitor, ...

 24

Example (fruit.rex)
A Bag Full of Fruits ...

/* fruit.rex: a bag, full of fruits ... */

Fruit_Bag = .bag~of("apple", "apple", "pear", "cherry", "apple", "banana", ,
 "plum", "plum", "banana", "apple", "pear", "papaya", ,
 "peanut", "peanut", "peanut", "peanut", "peanut", "apple", ,
 "peanut", "pineapple", "banana", "plum", "pear", "pear", ,
 "plum", "plum", "banana", "apple", "pear", "papaya", ,
 "peanut", "peanut", "peanut", "apple", "peanut", "pineapple", ,
 "banana", "peanut", "peanut", "peanut", "peanut", "peanut", ,
 "apple", "peanut", "pineapple", "banana", "peanut", "papaya", ,
 "mango", "peanut", "peanut", "apple", "peanut", "pineapple", ,
 "banana", "pear")

SAY "Total of fruits in bag:" Fruit_Bag~items
SAY

Fruit_Set = .set~new~union(Fruit_Bag)
SAY "consisting of:"
DO fruit OVER Fruit_Set
 SAY right(fruit, 21) || ":" RIGHT(Fruit_Bag~allat(fruit)~items, 3)
END

13

 25

Example (fruit.rex)
Output

Total of fruits in bag: 56

consisting of:
 plum: 5
 cherry: 1
 pear: 6
 mango: 1
 banana: 7
 peanut: 20
 pineapple: 4
 papaya: 3
 apple: 9

 26

Open Object Rexx ("ooRexx")
Roundup

• Adds features, long asked for, e.g.

– Variables (stems) by reference (USE ARG)

– Public routines available to other programs (concept of modules)

– Very powerful and complete implementation of the OO-paradigm

• Availability

– Free

– Opensource

– Openplatform

• Precompiled versions for: AIX, Linux (rpm, deb), MacOSX, Solaris, Windows

98/NT/2000/XP/Vista/W7/W8

• Rony G. Flatscher, „Introduction to Rexx and ooRexx“, order

form: http://www.facultas.at/flatscher

• TBD: http://www.RonyRexx.net 14

2

Rexx Scripts Hosted and Evaluated by Java
– Rony G. Flatscher

Date and Time

10 Apr 2017, 08:00:00 CET

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

15

"RexxScript" – Rexx Scripts Hosted and

Evaluated by Java (Package javax.script)

Rony G. Flatscher (Rony.Flatscher@wu.ac.at), WU Vienna
"The 2017 International Rexx Symposium", Amsterdam, The Netherlands

April 9th – 12th, 2017

Abstract. The latest version of BSF4ooRexx (a Rexx-Java bridge) implements a Rexx
script engine ("RexxScript") according to the specifications laid out in the Java package
javax.script. This article explains the core concepts of javax.script for hosting and
evaluating script programs from Java and introduces the new "RexxScript" implementation
with features that are supposed to ease devising and debugging "Rexx scripts" for Rexx
and Java programmers alike. Working stand-alone nutshell examples will demonstrate the
new features and will also showcase the available possibilities to interact with the Java
supplied ScriptContext from the evaluated Rexx scripts hosted by Java programs.

1 Introduction

The Java specification request group 223 ("JSR-223") [1] was formed in 2003 to

create a Java package for scripting by eventually defining the Java package

javax.script in the course of three years.1 This package was introduced with Java 6

in December 2006 and standardizes how Java interacts with scripting languages

of any kind.2

The BSF4ooRexx package [4] implements a full functional, bidirectional bridge

between ooRexx [5] and Java [6] that allows on the one hand ooRexx to interact

with Java objects and on the other hand allows Java to interact with ooRexx

objects and run ooRexx programs. BSF4ooRexx is based on the Apache Software

Foundation's "Bean Scripting Framework (BSF)" [7] that predates the JSR-223

specifications by almost a decade.

With the advent of ooRexx 4.03 in 2009 [8] the scripting language got a new

kernel with a comprehensive set of native APIs modeled after Java's JNI [10]. Over

the course of the next years BSF4Rexx was rewritten to take advantage of the new

kernel and has been renamed to "BSF4ooRexx" to indicate that the new features

1 The author served as an expert in the JSR-223 group. The downloadable JSR-223 specifications
can be found at [2].

2 The Java 1.8/8 documentation for the package javax.script can be found in [3].

3 At the time of this writing beta versions of ooRexx 5.0 became available for download at [9].

2017-10-12 13:28:15 1/19
16

are only available with ooRexx 4 and higher ([11]4, [12]5). As one of the results

this ooRexx to Java bridge has become able to allow for implementing abstract

Java classes, Java interface classes and (abstract) Java methods in ooRexx, such

that Java method invocations will transparently cause appropriate ooRexx

messages to be sent to the proxy ooRexx objects.

In the fall of 2016 work on BSF4ooRexx begun with the goal to make ooRexx

available to Java via the javax.script package. This would allow Java programmers

accustomed to JSR-223 to employ ooRexx for their scripting purpose, without a

need to learn the Apache BSF package as is a prerequisite for using BSF4ooRexx

from the Java side. In addition any existing Java application that allows the users

for identifying a scripting language merely by its name would gain the support for

Rexx and ooRexx scripts by merely installing the BSF4ooRexx package!6

This article will first give an overview of the most important concepts and classes

of the javax.script package, which then is followed by the introduction of the

BSF4ooRexx implementation called "RexxScript" together with the newly

introduced "RexxScript annotations".

All the examples in this article will demonstrate and explain how to put the

javax.script and RexxScript infrastructure to work for the benefits of Java and/or

ooRexx programmers.

4 [11] discusses some of the shortcomings of BSF4Rexx that were due to the industry standard
Rexx SAA (IBM's System Application Architecture) APIs from the 80's. With the new APIs in the
ooRexx 4.0 kernel it became possible to implement Rexx proxy objects for Java, real-time
handling of Java events, enabling the implementation of abstract Java methods with Rexx
methods, communicating Rexx conditions to Java and last, but not least, to allow Rexx to throw
specific Java exceptions. As these new features depend on the new ooRexx 4.0, BSF4Rexx from
then on was renamed to BSF4ooRexx.

5 [12] documents the new possibilities that BSF4ooRexx introduced by 2012, namely allowing the
configuration of Rexx interpreter instances for the first time, including the ability to configure
and implement Rexx exit handlers and Rexx command handlers in Java. The appendix takes
advantage of BSF4ooRexx "omnipotency" for ooRexx camouflaging Java as ooRexx: it
demonstrates how this infrastructure allows the implementation of Rexx exits and Rexx
command handlers even in pure Rexx itself!

6 One such example is JavaFX which allows for using any script code in FXML files by merely
stating with an XML process instruction the name of the script engine to use when code in
external files or in event handlers has to be executed from that FXML file.

2017-10-12 13:28:15 2/19
17

2 The javax.script Package

This section introduces briefly the purpose and how the Java classes defined in

the javax.script7 package interact in order to become able to understand the Java

script framework if one wishes to exploit it. A service provider for a script engine

must implement the Java interface classes javax.script.ScriptEngineFactory8 and

javax.script.ScriptEngine9 for evaluating (executing) script code.

A ScriptEngine maintains a ScriptContext that manages the environment in which

the script gets evaluated and which uses a numerically indexed collection of

Bindings which each represent a collection of name-value pairs ("attributes") that a

script should be able to access. SimpleScriptContext10 implements the Java

interface ScriptContext which in turn uses the Java class SimpleBindings which

implements the Java interface Bindings.

The ScriptEngineManager maintains all available script engines (using the Java

service provider mechanism11) and allows for maintaining a Bindings that is to be

used by all script engines it created12.

Code 1 demonstrates how a Java program uses the ScriptEngineManager to load

the JavaScript engine and then uses it to evaluate (execute, run) a simple

JavaScript program which will output the string: Hello world from JavaScript!.

The Java host program is free to add any information to any available Bindings of

the ScriptContext to use for evaluating a script. For each invocation (evaluation) of

a script the Java host should supply at least the following entries in the

ScriptContext's ENGINE_SCOPE (a constant number with the value 100) Bindings, if

possible:

7 This article will omit the package name javax.script to ease reading.

8 This class holds information about the script engine and with the method getScriptEngine
returns a ScriptEngine implementation that will allow for evaluating (executing) script code.

9 Implementing a ScriptEngine is eased considerably, if one merely extends the class Abstract-
ScriptEngine.

10This implementation uses two Bindings, one with the numeric index 100 (ENGINE_SCOPE),
which maintains attributes (name-value pairs) for the current script evaluation, and one with the
numeric index 200 (GLOBAL_SCOPE), which maintains attributes that are meant to be shared
among all scripts that get executed by a Java host program. It would be possible to supply an
own implementation of the Java ScriptContext interface, which might allow for more than the
two default Bindings ENGINE_SCOPE and GLOBAL_SCOPE.

11A script engine implementation needs to supply the fully qualified name of its ScriptEngine-
Factory in the file META-INF/services/javax.script.ScriptEngineFactory of its package.

12This Bindings is indexed with the numeric value 200 (GLOBAL_SCOPE) in the ScriptContext.

2017-10-12 13:28:15 3/19
18

• in the case of supplying argument(s) to the script, a Java Array object of

type Object can be created and should be stored under the name

"javax.script.argv"13,

• if the script was read from a file name, then the Java host should supply

that name (a String) with the name "javax.script.filename"14.

The Java scripting framework defines two optional interface classes, Compilable

and Invocable. The optional Compilable interface defines two compile methods to

allow compilation of scripts into CompiledScript objects that can be (re-)used to

evaluate (run, execute) compiled scripts and to get access to their script engine.

The optional Invocable interface defines a method getInterface which expects the

resulting object to implement the methods of the supplied Java class object, a

method invokeFunction that allows to run top-level routines (procedures,

functions) in the ScriptEngine and invokeMethod that allows to execute methods

in a script object.

13This is a standardized name for which the class ScriptEngine constant named ARGV defines the
String value "javax.script.argv".

14This is a standardized name for which the class ScriptEngine constant named FILENAME defines
the String value "javax.script.filename".

2017-10-12 13:28:15 4/19

import javax.script.*;
public class Test_00_js
{
 public static void main (String args[])
 {
 ScriptEngineManager sem=new ScriptEngineManager();
 ScriptEngine se =sem.getEngineByName("JavaScript");
 try
 {
 se.eval("print (\"Hello world from JavaScript!\");");
 }
 catch (ScriptException sExc)
 {
 System.err.println(sExc);
 }
 }
}

Code 1: A Java program using the JavaScript engine.

19

3 The RexxScript Implementation

BSF4ooRexx defines a Rexx script package org.rexxla.bsf.engines.rexx.jsr22315 –

also known as "RexxScript" package" – which contains the implementations of a

Rexx script factory named RexxScriptFactory, a Rexx script engine named

RexxScriptEngine and a Rexx specific implementation of CompiledScript, the

RexxCompiledScript class. The RexxScriptFactory class is made known via the Java

service provider interface conventions11, such that after BSF4ooRexx got installed

the RexxScriptEngine can be used transparently by Java programmers. Code 2

demonstrates how a Java host program uses the ScriptEngineManager to load the

Rexx engine and then uses it to evaluate (execute, run) a simple Rexx program

which will output the string: REXXout>Hello world from Rexx!16.

In addition to what the ScriptEngine interface defines, the RexxScriptEngine

implements among other things the following functionality:

• the optional interface Compilable, which allows for tokenizing Rexx

programs/scripts and reuse them as CompiledScripts, the public method

getCurrentScript returns the latest compiled (tokenized) Rexx script17,

15The BSF4ooRexx Javadocs document all BSF4ooRexx Java classes.

16The prefix "REXXout>" is supplied by the RexxScriptEngine whenever a Rexx program uses the
SAY keyword statement in order to distinguish Rexx output from any other output from a Java
program. This allows one to distinguish the output from Java and Rexx programs.

17The RexxScriptEngine caches the last evaluated (executed) Rexx program or script.

2017-10-12 13:28:15 5/19

import javax.script.*;
public class Test_00_rex
{
 public static void main (String args[])
 {
 ScriptEngineManager sem=new ScriptEngineManager();
 ScriptEngine se =sem.getEngineByName("Rexx");
 try
 {
 se.eval("say \"Hello world from Rexx!\"");
 }
 catch (ScriptException sExc)
 {
 System.err.println(sExc);
 }
 }
}

Code 2: A Java program using the RexxScript engine.

20

• the optional interface Invocable, which allows for using Rexx objects for

carrying out the abstract Java methods defined in Java interface classes18,

running public Rexx routines19 and sending Rexx objects messages20 from

Java.

• Redirection of the Rexx .input, .output, .error , .debuginput and

.traceoutput monitors to the Java input Reader, output Writer and error

Writer objects as supplied via the current ScriptContext. This allows Rexx

output to be loggable along with the Java output and gets controlled by the

static boolean field bRedirectStandardFiles.

• In order to ease spotting Rexx input or output the RexxScriptEngine will

prefix any Rexx input or output with the strings "REXXin?>" (.input),

"REXXout>" (.output), "REXXerr>" (.error), "REXXdbgIn?>" (.debuginput) and

"REXXtrc>" (.traceouptut) to ease spotting Rexx output and the kind of

interaction with the Java Reader and Writer objects for debugging and

analyzing purposes.

The RexxCompiledScript class extends CompiledScript and implements the

Invocable interface and in addition adds the following public methods:

• getFileName: returns the filename,

• getScriptSource: returns the source code as a String,

• getEditedScriptSource: returns the source code as a String that was

tokenized and gets actually executed. This String is different to what

getScriptSource returns, if RexxScript annotations (see below) are

18 Invocable restricts the getInterface method to work for a single Java interface class. BSF4ooRexx
by default allows any number of Java interface classes to be implemented in a single ooRexx
class. Cf. BSF4ooRexx' external Rexx function BSFCreateRexxProxy.

19The RexxScript engine by default behaves differently compared to ooRexx: the RexxEngine will
collect the Rexx package of an evaluated Rexx scripts and add that package to the next Rexx
script to evaluate (execute). This way a RexxEngine – and the scripts it runs – will gain access to
all public routines and public classes that have been created in its lifetime when evaluating
Rexx scripts and programs. This behavior matches the behavior of quite many script engines,
especially those that are deployed in the context of HTML. (ooRexx never adds packages
automatically to all Rexx programs, a Rexx programmer must do that by explicitly using the
::REQUIRES directive.)

20BSF4ooRexx allows Java programmers to wrap Rexx objects as Java RexxProxy objects and send
them any Rexx messages they have a need for from Java. If a Rexx script returns Rexx objects
as a result to Java, then BSF4ooRexx will wrap it up as a Java RexxProxy object (package
org.rexxla.bsf.engines.rexx). [11]

2017-10-12 13:28:15 6/19
21

