
The

A-to-Z
Guide

To the

Agile

Galaxy
Not the answer to life, the universe, and

everything — but pretty close

	2	

Ó Erwin Verweij, 2025

The A-to-Z Guide to the Agile Galaxy

ISBN: 9789 4650 16290 Hardcover

ISBN: 9789 4652 04192 Paperback

Version 1.0

www.ifacilitate.eu

The writer has attempted, to the best of their caffeine-fueled abilities, to cite

sources where appropriate, available, and not lost in the Agile multiverse.

However, if you believe you hold rights to any part of this guide — an idea, a

metaphor, a misplaced acronym, or a very specific definition of “value” —

please contact the publisher. Or send a polite intergalactic transmission.

No part of this publication may be reproduced, reshuffled, reframed, or

launched into the public domain without the written (yes, actual)

permission of the publisher or the author.

Not telepathically. Not via Slack. Not by shouting it across the office.

Let’s keep it civil. And legal. Mostly.

	 3	

	4	

	 5	

	6	

	 7	

Introduction: In Which We Attempt to Explain the

Unexplainable
Far out in the mostly ignored western spiral arm of the galaxy, there orbits a small,

thoroughly average yellow sun. Circling this sun, at the cosmically irrelevant

distance of approximately 150 million kilometers, is a small, mostly harmless blue
planet — inhabited by a species of ape-descended life forms so alarmingly

primitive that they still believe quarterly planning somehow makes them Agile.

This planet has a problem.

A portion of its inhabitants work on projects and services in ways that make them

deeply and profoundly unhappy. This is odd, because the projects and services
themselves are not unhappy. They’re fine. It’s the humans that seem to suffer. Some

attempt to solve this existential gloom by moving colorful stickies with numbers on

them from one column to another. It’s adorable. The problem, naturally, remained.

Many projects failed. Some succeeded only halfway. And so, in true panicked

fashion, the people decided to the solving answer.

An answer that would take years to understand,

would be frequently misused,
and would eventually be buried beneath a tidal wave of frameworks, certifications,

and Jira plugins.

That answer… was Agile.

Agile became the misunderstood, underfed child of modern work. And to navigate

the frequently confusing universe of frameworks, methods, buzzwords, and

interstellar nonsense, this guide was written.

It exists to give a helping hand to the traveler hitchhiking through the not-always-
clear Agile cosmos. The knowledge in this guide is far from complete. It will,

occasionally, contradict itself. When that happens, conversation is always the best

way forward — ideally over coffee, not in a Slack thread.

Welcome to the Agile Universe.

It’s not always bright, it’s not always logical — but it’s ours.

Enjoy the ride. 🪐📘

	8	

	 9	

Disclaimer: No Worries

 (But Also, Don’t Take This Too Seriously)

This is not the ultimate guide to everything.

There are other guides far better suited for that sort of ambition — some with

bigger budgets, more footnotes, or actual editors.

The guide currently in your possession simply lifts the corner of the Agile

curtain and offers you a peek inside. What you do with that glimpse is

entirely up to you.

Use of this guide is at your own risk.

It may alter your perspective.

It may change how you think.

It may make you question things you previously nodded at in meetings.

It may cause you to say, “Hang on, why are we still doing standups like

that?”

The author of this guide accepts absolutely no responsibility for such side

effects, as they are merely operating in the time-honored role of consultant

— that is to say, someone who points at things, asks too many questions, and

then quietly disappears just before the real work starts.

Every effort has been made to provide accurate, experience-informed, and

occasionally inconvenient truths about the many terms and practices that

have emerged across the Agile universe.

The guide is, like all things vaguely Agile, in continuous construction.

Terms will disappear. New ones will emerge. Buzzwords will mutate.

Frameworks will multiply when no one's looking.

We’ll do our best to keep things up to date so that your journey as a

hitchhiker through the Agileverse remains as pleasant, curious, and

relatively safe as possible.

You have been warned. Or welcomed. Possibly both.

	10	

	 11	

Table of content

Introduction:	In	Which	We	Attempt	to	Explain	the	Unexplainable	...	7	

Disclaimer:	No	Worries		(But	Also,	Don’t	Take	This	Too	Seriously)	..	9	

Table	of	content	...	11	

A-CSPO	(Advanced	Certified	Scrum	Product	Owner)	...	21	

Acceptance	Criteria	..	23	

Adaptive	Architecture	...	24	

Agile	..	27	

Agile	Coach	...	29	

Agile	Contracts	...	31	

Agile	Fluency	...	34	

Agile	PRINCE2	..	36	

Agile	Theatre	...	39	

Agile	Transformation	..	41	

Anti-Patterns	...	41	

Architect	(Software)	..	44	

Backlog	..	49	

BI	(Business	Intelligence)	..	51	

Big	Room	Planning	...	53	

Blocked	..	55	

Bug	...	58	

Burndown	...	60	

Cadence	...	65	

Change	Fatigue	...	67	

CI/CD	..	70	

Coach	(Agile,	Not	Football)	...	72	

Commitment	..	74	

Community	of	Practice	...	77	

	12	

Confluence	..	80	

Continuous	Improvement	..	82	

Cross-Functional	Teams	...	84	

CSM	(Certified	ScrumMaster)	...	87	

CSP-PO	(Certified	Scrum	Professional	–	Product	Owner)	..	89	

CSPO	(Certified	Scrum	Product	Owner)	..	92	

Customer	Feedback	..	94	

Cynefin	..	96	

Conway’s	Law	..	99	

Daily	Scrum	...	105	

DEEP	...	107	

Definition	of	Done	...	109	

Definition	of	Fun	..	112	

Definition	of	Ready	...	115	

Deployment	...	117	

Design	Thinking	...	119	

Developer	(Software)	..	122	

Development	Team	..	124	

DevOps	...	126	

Documentation	..	128	

DSDM	..	131	

Dual	Track	Agile	..	133	

Dynamic	Reteaming	...	136	

EduScrum	...	141	

Enablers	..	143	

Elmo	..	145	

Epic	..	148	

Estimation	..	150	

Experimentation	...	153	

	 13	

Facilitation	...	159	

Feature	...	161	

Feedback	Loops	...	163	

Flow	...	166	

Forecasting	...	168	

Gemba	..	173	

Grooming	..	175	

Hero	...	181	

Holistic	...	183	

Holacracy	..	186	

Hypothesis-Driven	Development	...	188	

Impediment	...	193	

Impostor	Syndrome	...	195	

Increment	...	197	

Incremental	Death	March	..	200	

Incremental	Delivery	...	202	

INVEST	...	205	

Iteration	vs	Sprint	...	207	

JIRA	..	213	

Just-In-Time	Decisions	..	215	

Kaizen	...	221	

Kanban	...	223	

Knowledge	Silos	...	225	

Kotter	..	227	

KPI	(Key	Performance	Indicator)	...	230	

Leadership	..	235	

Lean	...	237	

Lean	Six	Sigma	..	240	

Lean	UX	..	242	

	14	

Lencioni	...	244	

LeSS	(Large	Scale	Scrum)	..	247	

Management	3.0	..	253	

Manager	..	255	

Manifesto	..	258	

Metrics	That	Matter	...	260	

Minimal	Viable	...	262	

Mob	Programming	...	265	

MVP	vs	MLP	...	267	

Nexus	..	273	

Obeya	..	279	

OKRs	(Objectives	and	Key	Results)	...	281	

Open	Spaces	..	283	

Organizational	Debt	...	286	

Outcome	..	288	

Output	..	290	

Pair	Programming	..	295	

Personas	..	297	

Planning	(Scrum,	not	Wedding)	...	300	

Poker	(Scrum	Poker,	That	Is)	..	302	

Product	Goal	..	304	

Product	Owner	...	306	

Product	Vision	..	308	

Proof	of	Concept	..	311	

PSM	I	(Professional	Scrum	Master	I)	..	313	

PSM	II	(Professional	Scrum	Master	II)	..	315	

PSM	III	(Professional	Scrum	Master	III)	...	318	

PSPO	I	(Professional	Scrum	Product	Owner	I)	..	320	

PSPO	II	(Professional	Scrum	Product	Owner	II)	...	322	

	 15	

PSPO	III	(Professional	Scrum	Product	Owner	III)	..	325	

Psychological	Contracts	..	327	

Psychological	Safety	...	330	

Quarterly	Planning	...	335	

Refactoring	...	341	

Refinement	...	343	

Release	Planning	...	345	

Remote	Agile	...	348	

Retrospective	..	350	

Review	..	353	

Roadmap	...	355	

Rolling	Wave	Planning	..	357	

SAFe	..	363	

Scaling	..	365	

Scrum	..	367	

Scrumban	..	370	

Scrum	Guide	..	372	

Scrum	of	Scrums	..	375	

Scrum	Police	..	377	

Servant	Ditchdigging	...	380	

Servant	Leadership	..	382	

Shu-Ha-Ri	..	385	

Sketch	Noting	..	387	

Slow	Agile	...	390	

Sociocracy	3.0	...	392	

Spike	...	395	

Sprint	Backlog	...	397	

Sprint	Goal	..	399	

Stakeholders	..	402	

	16	

Stikie	...	404	

Story	Mapping	..	406	

Sustainable	Pace	..	409	

Swarming	...	411	

Systems	Thinking	..	413	

TDD	(Test-Driven	Development)	...	419	

Team	Topologies	...	421	

Technical	Debt	..	423	

Technical	Excellence	...	426	

Tester	(Software)	..	428	

Towel	Day	..	430	

Transformation	(Agile™	Edition)	...	433	

Transition	Team	..	436	

Trunk-Based	Development	...	438	

T-Shape	...	441	

Twelve	Agile	Principles	..	443	

User	Stories	...	449	

User-Centered	Design	...	451	

UX	Debt	..	453	

Value	Stream	Mapping	..	459	

Velocity	..	461	

Vision	..	464	

Walking	Skeleton	..	469	

Waste	..	470	

Waterscrum	...	473	

Waterfall	...	475	

WIP	(Work	in	Progress)	...	478	

XP	(Extreme	Programming)	...	483	

YAGNI	...	489	

	 17	

Zero	Value	Work	..	495	

Zombie	Scrum	...	497	

42	(not	just	a	number)	..	501	

About	the	Author	(Assuming	You	Want	to	Know	Who’s	Responsible)	503	

Sources	...	505	

	18	

	 19	

A is for Alignment

The mythical moment when two teams, a product

owner, and a senior stakeholder all agree on the

same thing. Rare. Fleeting.

Document it if it happens.

	20	

	 21	

A-CSPO (Advanced Certified Scrum Product

Owner)

(Because You’ve Mastered the Basics — Now It’s Time to Navigate the

Real-World Product Jungle Without Getting Mauled)

A-CSPO is the Scrum Alliance’s “level-up” course for Product Owners

who’ve moved beyond simply writing stories and are now expected to:

● Deliver value in complex environments

● Align teams and stakeholders who all want different things

● Make strategic decisions under pressure

● And still smile while saying “no” to a 42-item feature wishlist marked

“urgent”

There’s no exam.

No trick questions.

Just deep reflection, messy learning, and the realization that product

ownership is basically improv with data and diplomacy.

🌀 What is A-CSPO, really?

● A multi-day, hands-on, experience-based course

● Run by certified trainers with battle scars and war stories

● Requires you to already hold a CSPO cert

● Often includes pre-course work, practical exercises, and real case

studies

● Focuses on:

○ Stakeholder alignment

○ User research and validation

○ Product strategy

○ Hypothesis-driven development

○ Advanced backlog management

○ The dark art of prioritization when everyone is yelling

It’s less “what is a Product Owner?” and more “how do I actually survive as

one and still deliver value?”

	22	

🚀 What happens if you complete it?

● You get the A-CSPO badge, which tells the world you didn’t stop

learning after your first cert

● You grow from backlog manager to value maximizer

● You learn how to say “this is the right thing to build” — and defend it

with evidence, not just intuition

● You stop working sprint-to-sprint and start thinking three steps

ahead

Also: you probably start sleeping better, because you stop trying to make

everyone happy.

☄ What happens if you don’t?

● You might stay stuck in the “ticket monkey” zone

● You continue battling vague feature requests with vague roadmaps

● You miss out on structured growth in leadership, strategy, and

communication

● You keep prioritizing based on volume, not value

It’s like driving with the parking brake on — you’re moving, but it’s costing

you more than it should.

🪐 What happens if you do it wrong?

● You treat it like a checkbox instead of a growth experience

● You assume the advanced course means “fancier terms” instead of

deeper thinking

● You try to product-manage your way out of organizational

dysfunction without addressing the humans involved

● You keep confusing “being responsive” with “being available to say

yes all the time”

Also: if your entire product strategy is still “let’s deliver more features,” you

may want to go through the course twice.

	 23	

🌠 How to A-CSPO like a product pro:

● Bring real-world challenges into the course

● Be vulnerable — that’s where the good learning is

● Focus on value, not velocity

● Collaborate with your dev team like they’re your co-founders

● Translate strategy into slices

● Validate before building

● Refuse to be the feature gatekeeper — be the value amplifier

From the Guide:

“A-CSPO isn’t about learning more Agile. It’s about becoming

the Product Owner your users, team, and stakeholders didn’t

even know they needed.”

📡	Transmission	complete.	Scanning	next	signal...

Acceptance Criteria

(The Definition of Done’s Little Cousin — Bossy, Specific, and Absolutely

Necessary)

Acceptance Criteria are the tiny truth bombs that tell you what it means

for a story to be “done” — not in the vague, philosophical sense, but in the

“did we actually deliver what we promised?” sense.

They are clear, testable, and not up for debate at the demo.

If a user story is a promise, acceptance criteria are the fine print.

Common forms include:

● “Given / When / Then”

● “We’ll know this is done when…”

● “If this breaks, we riot”

They’re not just for testers. They’re shared expectations — for devs, POs,

designers, and that one stakeholder who always says, “That’s not what I

meant.”

	24	

What happens when you use them well?

● The team knows when to stop

● Testers know what to check

● POs stop sending Slack messages like “Can we make this blue?”

● Work is done with confidence, not guesswork

What happens when you don’t?

● Stories linger in limbo

● Rework becomes the sprint’s main theme

● Demos end in awkward silences and passive-aggressive comments

● The team “finishes” the work… and then finishes it again later

From the Guide:

“Acceptance Criteria are not suggestions. They are mini

contracts with reality. Break them, and reality breaks back.”

📡	Transmission	complete.	Scanning	next	signal...

Adaptive Architecture

(Because the Only Constant Is Change — Especially in Production)

Adaptive Architecture is a design approach where your system is built not

to resist change… but to embrace it.

It’s resilient, modular, scalable, and just self-aware enough to not become

legacy within six sprints.

It’s the difference between:

● “How do we make this change without breaking everything?”

vs.

● “This change fits into our system. Let’s go.”

Where traditional architecture says:

	 25	

“Lock it down!”

Adaptive architecture says:

“Design for movement.”

🌀 What is Adaptive Architecture?

A way of designing software that:

● Allows for evolution over time

● Supports incremental delivery

● Enables modular, decoupled systems

● Encourages continuous feedback and improvement

● Embraces the idea that you don’t know the future (and that’s okay)

It’s not about building the perfect system.

It’s about building a system that can evolve as you learn.

Think: Lego, not concrete.

🚀 What happens if you do it well?

● Changes become easier, faster, safer

● Teams can work in parallel with fewer collisions

● Scaling up doesn't mean burning it all down

● You can respond to new product needs without rearchitecting every

time

● Developers stop saying “We can’t do that because of the database

schema from 2014”

Your system becomes an enabler, not a blocker.

Your architecture dances with change, instead of fighting it.

☄ What happens if you don’t?

● You build a Big Ball of Mud™

● Every new feature feels like surgery

● Changes cause regressions… in unrelated parts of the system

● Teams slow down over time, and no one knows why

● You start saying things like:

	26	

“We’d love to do that, but our architecture won’t allow it.”

And worst of all?

You rewrite everything every 3 years and call it “innovation.”

🪐 What happens if you do it wrong?

● You over-engineer everything “just in case”

● You chase every new architecture trend (hello microservices 👋,

goodbye focus)

● You build too generically, and no one knows how it actually works

● You forget to involve actual developers, and design from a

PowerPoint deck

● You pretend complexity equals flexibility (it doesn’t — it just equals

pain)

Also: beware when “adaptive” becomes “chaotic.” Loosely coupled ≠

no rules.

🌠 How to build Adaptive Architecture well?

● Design for change. Expect the unexpected.

● Use modularity. Small, testable, replaceable parts.

● Encapsulate decisions that might change. (Frameworks, APIs,

configs)

● Apply evolutionary design. Don’t try to guess the future — respond

to it.

● Collaborate continuously. Architects, devs, ops, all in one

conversation.

● Balance YAGNI and foresight. Not “build for everything”, but

“don’t block the future.”

And remember: the best architecture isn't the one that wins awards. It's the

one you can still work with six months from now without crying.

📡	Transmission	complete.	Scanning	next	signal...

	 27	

Agile

(Not a Process. Not a Tool. Not a Mood. A Mindset.)

Agile is a way of thinking, working, and surviving in a universe that changes

faster than your roadmap can keep up.

It was born from frustration. Raised in software. Hijacked by consultants.

And now lives somewhere between your dev team’s hearts and a framed

motivational poster in the hallway.

Agile is about responding to change over following a plan, collaboration

over contract negotiation, and delivering real, working stuff over

theoretical progress reports.

But somewhere along the way, Agile became... well... Agile™.

“We’re Agile, so we do daily stand-ups.”

“We’re Agile, but we still need a 12-month Gantt chart.”

“We’re Agile, so nothing is planned.”

“We’re Agile, so we bought SAFe and renamed the

departments.”

🌀 What is Agile?

At its core?

A mindset.

A philosophy.

A way to work with reality instead of pretending it’s something else.

It’s about:

● Delivering value early and often

● Listening to users and adapting

● Empowering teams

● Reducing waste

● Learning continuously

● And not taking yourself too seriously while doing it

	28	

The Agile Manifesto (yes, it still exists) has 4 values, 12 principles, and

about 1,000 misinterpretations.

🚀 What happens if you actually embrace Agile?

● You build better products.

● Teams collaborate instead of compete.

● Plans adapt to learning.

● You focus on outcomes, not outputs.

● You become more resilient — not just faster, but smarter.

And you might even enjoy your work again. Imagine that.

☄ What happens if you say Agile but aren’t?

● You have all the rituals but none of the results.

● Stand-ups become status reports.

● Retros become complaint sessions with no follow-up.

● Stakeholders lose trust. Teams burn out.

● People start saying things like:

“Agile doesn’t work for us.”

(Translation: We never actually tried.)

You’ll find yourself Agile in name, waterfall in spirit, sprinting in circles

while wondering why nothing changes.

🪐 What happens if you do it wrong?

● You turn it into a checklist.

● You implement frameworks without purpose.

● You forget the people in favor of the process.

● You try to scale dysfunction instead of solving it.

● You use Agile as a disguise for chaos, or worse — as a cage.

Worst of all: you confuse Agile with being fast instead of being effective.

	 29	

🌠 How to do it well?

● Start with the mindset. Not the ceremonies.

● Learn the principles. Really learn them.

● Ask why. Constantly.

● Trust your teams. They’re not resources. They’re people.

● Focus on value. Not velocity. Not vanity metrics. Real, human value.

● Inspect and adapt. Forever. It never ends. That’s kind of the point.

And maybe — just maybe — let go of the idea that you can control

everything.

Because Agile is about dancing with uncertainty, not defeating it.

📡	Transmission	complete.	Scanning	next	signal...

Agile Coach

(Because Sometimes It Takes a Grown-Up to Help the System Stop

Punching Itself in the Face)

An Agile Coach is someone who helps people, teams, and organizations

become more agile — in mindset, in behavior, and occasionally in actually

delivering working software before the heat death of the universe.

They don't "do Agile."

They help others become Agile — for real.

No cargo cults. No fake frameworks. No “we're Agile now because we use

Jira.”

🌀 What is an Agile Coach, really?

● A servant leader with a radar for dysfunction

● A mirror for teams and leaders

● A translator between delivery teams and upper management

● A coach, yes — but also a facilitator, mentor, trainer, consultant,

and occasional unlicensed therapist

The Agile Coach doesn’t come in with all the answers.

They come in with all the questions you wish they wouldn’t ask.

	30	

🚀 What happens if you have a great Agile Coach?

● Teams feel safe, supported, and empowered

● Leadership actually listens (sometimes for the first time)

● Systems improve — without top-down mandates

● Experiments become normal

● Feedback loops tighten

● Culture shifts from blame to growth

● Agile stops being theater and starts being real

And eventually… you don’t need the coach anymore.

(That’s the goal. Not job security. Growth.)

☄ What happens if you don’t have one (and you probably should)?

● Teams are stuck in Zombie Scrum™

● “Agile” means faster deadlines, not better delivery

● Retros are a ritual, not a feedback engine

● Leadership pushes “transformation” without transformation

● Everyone’s busy. No one’s improving.

You can go Agile without a coach.

But it’s like hiking Everest in flip-flops.

You’ll move. You just might not survive.

🪐 What happens if you do Agile Coaching wrong?

● You tell people what to do

● You fix the team instead of helping them grow

● You focus on frameworks over people

● You become the Scrum Police

● You treat coaching like project management with a nicer tone

Also: if your calendar is filled with "Agile Maturity Assessments" but you’ve

never sat in a team retro, you're not coaching — you’re auditing.

	 31	

🌠 How to Agile Coach like an actual Guide-worthy human:

● Listen first

● Coach the system, not just the symptoms

● Support individuals and teams and leadership

● Lead with humility, not heroism

● Be okay with slow, real change

● Stay curious, stay kind, and stay ready to challenge the unspoken

rules

And above all:

Leave things better than you found them — especially the

people.

From the Guide:

“An Agile Coach doesn’t bring the answers. They help you hear

the answers that were already whispering underneath the noise.”

📡	Transmission	complete.	Scanning	next	signal...	

Agile Contracts

(Because “Individuals and Interactions Over Contracts” Doesn’t Mean

“Just Wing It, Dave”)

Agile Contracts are the valiant, ever-mutating efforts to create agreements

that allow for flexibility, collaboration, and evolution — all while still

satisfying the lawyers who want to know exactly what will happen, when,

and with what liability insurance.

They’re an attempt to write down:

“We’ll figure it out as we go,”

in a way that sounds professional, auditable, and ideally, not terrifying to

procurement.

	32	

🌀 What are Agile Contracts, really?

They’re:

• A way to support iterative delivery without locking everything

down up front

• Tools for aligning expectations on value, not just scope

• Contracts that embrace collaboration, trust, and change — which,

fun fact, are not standard legal categories

• Frameworks for co-creating, not just “delivering to spec”

Common variants include:

• Time and Materials with Flexibility

• Fixed Price per Increment

• Incremental Value Contracts

• And the classic: “Mutual Panic and Trust” agreements

🚀 What happens when you do it well?

• You build in room for discovery and adaptation

• Legal teams and delivery teams talk to each other (wild, right?)

• You avoid the “you didn’t deliver what we didn’t know we wanted”

drama

• The contract supports the relationship, not just protects from it

• You tie success to outcomes, not just features

Also: your contract review meeting doesn’t require snacks, aspirin, and an

emotional support animal.

☄ What happens if you don’t?

• You lock in scope before anyone knows what the problem is

• You spend more time negotiating deliverables than discovering them

• Change becomes “out of scope”

• Trust evaporates

• Delivery slows down to match the weight of the paperwork

Eventually someone says:

	 33	

“We’re Agile, but the contract says…”

And someone else whispers:

“Then we’re not Agile.”

🪐 What happens if you do it wrong?

• You call it an Agile contract but copy-paste it from Waterfall ’98

• You agree to deliver increments but write them all in stone upfront

• You penalize change instead of enabling it

• You make velocity a clause and user satisfaction a footnote

• You hide behind the contract when collaboration gets hard

Also: if your “Agile contract” includes a 48-page change request form,

you’ve accidentally invented Waterfall with Post-its™.

🌠 How to Write Agile Contracts Without Selling Your Soul:

• Focus on collaboration over control

• Define principles, not just pages

• Tie payments to outcomes or milestones, not line items

• Include change as a feature, not a risk

• Encourage joint ownership, not blame-shifting

• Keep lawyers close — and the procurement team caffeinated

Because a good Agile contract doesn’t protect you from the client — it

protects the relationship with the client. And that’s where the real magic

happens.

From the Guide:

“An Agile contract is a bit like a prenup for innovation: it won’t stop

things from getting messy, but it might help you survive the retro.”

📡	Transmission	complete.	Scanning	next	signal...	

	34	

Agile Fluency

(Because You Can’t Become Agile Overnight — But You Can Definitely

Fake It That Long)

Agile Fluency is a model created by Diana Larsen and James Shore that

maps how teams evolve in their Agile practice over time.

It recognizes that teams pass through zones of fluency — each one offering

different benefits, trade-offs, and organizational investments.

You start by delivering, then delivering value, then optimizing systems,

and — in rare, mythical cases — reinventing the org itself.

Most teams?

They’re somewhere between “We hold daily standups” and “Our board is a

beautiful lie.”

🌀 What is Agile Fluency, really?

It’s:

• A way to understand how Agile capability grows

• A framework for what you’re fluent in, not just what practices you

follow

• An invitation to ask:

“What kind of agility are we trying to achieve?”

“What are we willing to invest to get there?”

And unlike a maturity model, it doesn’t say more = better.

It says: pick the level that fits your context — then get really good at it.

🚀 What happens when you use it well?

• You set realistic expectations for what Agile looks like at different

stages

• Teams understand their purpose and potential fluency

• You stop comparing everyone to Spotify

	 35	

• Leaders know what kind of investment is required for different

outcomes

• You grow capability, not just ceremony

Also: the question shifts from “Are we Agile yet?” to “Are we getting better

at what we need?”

☄ What happens if you don’t?

• You expect every team to do everything, all at once

• You confuse visible rituals with actual fluency

• Teams plateau in cargo cult territory

• Leaders demand “business agility” without investing in systemic

support

• Transformation becomes a game of Agile bingo, not capability

building

Eventually someone says:

“They’re doing Scrum, but they’re not Agile.”

And someone else says:

“Neither are we, but our velocity graphs are gorgeous.”

🪐 What happens if you do it wrong?

• You treat it like a maturity ladder (spoiler: it’s not)

• You pressure teams into “fluency” levels they don’t need or want

• You use it to evaluate teams without understanding context

• You forget that fluency is a capability, not a certification

• You define success as adopting more practices, not delivering more

value

Also: if your fluency map ends in “Enterprise Synergy Enablement Zone,”

stop. Just… stop.

🌠 How to Actually Use Agile Fluency Without Weaponizing It:

• Understand the zones and their trade-offs

• Work with teams to choose the right zone — together

	36	

• Support teams with the time, coaching, and stability needed to grow

• Don’t judge — invest

• Use the model as a compass, not a scoreboard

Because Agile is not just what you do — it’s what you’re fluent in.

And fluency isn’t about sounding Agile.

It’s about thinking and acting in ways that create value, continuously.

From the Guide:

“Agile Fluency: Because knowing the words ‘sprint’ and ‘backlog’

doesn’t mean you’re speaking the language.”

📡	Transmission	complete.	Scanning	next	signal...	

Agile PRINCE2

(Because If You Absolutely Must Govern, You Might As Well Try to Be

Agile About It)

PRINCE2 (short for PRojects IN Controlled Environments) is a well-

established, highly structured project management methodology — the kind

that has a process for creating processes and a form for requesting more

forms.

Agile, on the other hand, is a flexible, value-driven, people-first way of

working that likes to break rules, learn fast, and ship small.

Agile PRINCE2 is the lovechild of these two worlds:

A formal framework that pretends to be casual,

or an Agile way of working that cosplays as a royal court.

	 37	

🌀 What is Agile PRINCE2, really?

It’s:

• A hybrid project management approach that combines the structure

of PRINCE2 with the flexibility of Agile

• An attempt to bring governance, control, and traceability into an

environment of continuous change

• A solution for organizations that:

o Still want stages

o Still love status reports

o Still have compliance teams

o But also want to say, “We’re Agile now!” on LinkedIn

It has roles like the Executive and Project Manager side-by-side

with Product Owners and Scrum Teams — all trying to agree on whether

this is a phase or a sprint.

🚀 What happens if you do it well?

• You maintain strategic alignment while empowering delivery teams

• Governance exists, but doesn’t crush creativity

• Risks are managed, but not obsessively laminated

• Agile teams can move fast, while the org stays reassured someone’s

steering

• Projects deliver value incrementally, without feeling like a never-

ending stakeholder safari

Also: you get to keep your RACI matrix and your retrospectives. Now that’s

luxury.

☄ What happens if you don’t?

• Agile becomes a thin veneer over a waterfall heart

• You run daily standups and then demand Gantt charts

• Teams are “empowered” but still have to ask for permission to sneeze

• Project Managers become Product Owners in name only

• You plan the entire project up front — and then hold weekly "Agile

ceremonies" to pretend otherwise

	38	

Eventually someone says:

“We’re combining the best of both worlds.”

And someone else quietly replies:

“We’re doing the worst of both... simultaneously.”

🪐 What happens if you do it wrong?

• You build two systems that don’t talk to each other

• You drown delivery teams in status updates

• You treat Agile as a delivery layer, not a mindset

• You rename milestones to “increments” and call it a day

• You confuse “governance” with “constant interference”

Also: if your Agile PRINCE2 initiative has 14 stakeholders, 7 assurance

reviews, and no working software — congratulations, you’ve

recreated Waterfall: The Costume Party Edition™.

🌠 How to Royal-Agile Without Losing Your Crown (or Mind):

• Use PRINCE2 to support strategy, funding, and risk, not to micro-

manage

• Let Agile teams decide how to deliver, not just what to deliver

• Keep governance lightweight, transparent, and outcome-focused

• Be crystal clear about roles: Project Manager is not a ScrumMaster

with a spreadsheet

• Embrace iterative planning — yes, even in stage-based structures

• Talk about value more than variance

Because Agile PRINCE2 can work.

But only if everyone agrees it’s not about pretending to be Agile —

It’s about governing the unknown without killing the flow.

	 39	

From the Guide:

“Agile PRINCE2 is proof that even royal processes can dance — but

only if they remove their capes, let go of the scepter, and maybe skip

a few steering committees.”

📡	Transmission	complete.	Scanning	next	signal...	

Agile Theatre

(Because Sometimes It’s Easier to Look Agile Than to Be Agile)

Agile Theatre is when an organization adopts all the rituals, none of the

mindset, and a healthy dose of post-it-based illusion.

Daily standups? ✅

Sprints? ✅

Jira dashboards with 73 custom fields? ✅

Actual collaboration, empowerment, and value delivery? ❌

Agile Theatre isn’t transformation — it’s cosplay.

It’s the art of performing agility without doing the hard bits.

🌀 What is Agile Theatre, really?

It’s:

• A system of appearances over outcomes

• Frameworks implemented without understanding

• Ceremonies that tick boxes but don’t improve anything

• Teams delivering features nobody asked for, faster than ever before

• Managers calling themselves Scrum Masters because “that’s what

we’re called now”

Agile Theatre happens when the form survives, but the function dies

quietly backstage.

🚀 What happens if you spot it early and shift gears?

	40	

• You start asking better questions like:

“Why are we doing this retro?” instead of “Who’s running it?”

• You move from performing process to solving problems

• Teams feel safe enough to speak up

• Leaders stop treating Agile as a status report delivery mechanism

• Your backlog starts to reflect real customer needs, not just internal

requests

• You focus less on velocity and more on value

The masks come off. The real work begins.

☄ What happens if you don’t?

• Teams burn out from pretending everything’s fine

• Leaders are shocked when “Agile didn’t work”

• Retros become “vent and forget” rituals

• Standups are just status reports with better posture

• Roadmaps remain fixed, but now they’re color-coded

• And eventually… someone says,

“We tried Agile. It didn’t fit our culture.”

Translation:

“We never actually tried it.”

🪐 What happens if you do it wrong?

• You rebrand your Waterfall teams as “Squads”

• You install Jira and call it a mindset shift

• You outsource your transformation to a consultancy with a 400-slide

deck and no curiosity

• You measure “Agile maturity” with a compliance checklist

• You launch an internal Agile newsletter with no readers

• You confuse Agile Theatre with Agile Culture

Also: if your team has a Burndown Chart tattooed on the wall but can’t

explain their customer’s problem… you’re doing Theatre. Badly.

	 41	

🌠 How to Break the Fourth Wall:

• Stop performing. Start reflecting.

• Ask: “Are we getting better at solving problems together?”

• Empower teams. Genuinely. Even when it’s uncomfortable.

• Invite feedback — from customers, not just consultants

• Kill zombie meetings

• Use metrics to learn, not to judge

• Celebrate learning, not just shipping

And remember: Agile is not a performance.

It’s a set of values, principles, and practices designed to help humans work

together in uncertain, fast-moving environments — like... every workplace,

ever.

From the Guide:

“Agile Theatre is the illusion of agility. Real Agile starts when the

show ends and the team gets honest.”

📡	Transmission	complete.	Scanning	next	signal...	

Agile Transformation

(see Transformation)

📡	Transmission	complete.	Scanning	next	signal...

Anti-Patterns

(Because Just Like a Bug, They Keep Coming Back — But in Management

Form)

Anti-Patterns are the things teams do that feel right… until they really,

really aren’t.

They often begin as solutions to yesterday’s problem.

They end as tomorrow’s excuse for why everything feels like pushing a

backlog uphill, in a monsoon, with Jira permissions.

	42	

Agile Anti-Patterns are particularly sneaky, because they wear Agile™

clothing.

They say “collaboration,” but they mean “micromanagement.”

They say “velocity,” but they mean “please deliver more without

complaining.”

🌀 What are Anti-Patterns, really?

They’re:

• Common traps that feel like progress but block actual agility

• Repeatable behaviors that look productive but drain morale and

value

• The Agile equivalent of trying to fix your spaceship with duct tape

and hope

• Familiar comfort zones wrapped in post-it notes and process slides

And worst of all — they’re often rewarded.

Because to the untrained eye, Anti-Patterns look like:

• Planning

• Accountability

• Leadership

• “Best practices”

• Productivity

• Initiative

But what they actually are is:

“The reason your team can’t get anything done without muting Slack.”

🚀 What happens when you recognize and remove them?

• Team health improves

• Communication gets real

• Your processes actually support your outcomes

• People stop gaming metrics and start solving problems

• You build trust instead of paperwork

	 43	

• Retrospectives surface insights, not just complaints

• You create a culture of learning, not blaming

Suddenly, things flow. And nobody’s quite sure why it felt so hard before.

☄ What happens if you ignore them?

• Your Agile transformation becomes Agile Taxidermy: it looks alive,

but it’s not moving

• Standups turn into status meetings

• Velocity becomes a goal instead of a signal

• Product Owners become Project Managers with more meetings

• Technical debt piles up while roadmaps remain blissfully ignorant

• People burn out while the burndown chart looks “fine”

Anti-patterns ignored long enough become culture.

And culture ignored long enough becomes turnover.

🪐 What happens if you do it wrong?

• You identify anti-patterns… and do nothing

• You rename them as “edge cases”

• You shame teams for falling into them

• You make a poster titled “Things Not to Do” and stick it next to the

ping-pong table

• You fix one anti-pattern by creating another

• You try to standardize your way out of complexity

Also: if your answer to every anti-pattern is “let’s add a checklist,” you may

be the anti-pattern.

🌠 How to Handle Anti-Patterns Like an Intergalactic Diagnostician:

• Notice them without judgment

• Talk about them openly

• Make space in retros for “patterns we keep repeating”

• Share stories, not blame

• Involve the team in naming and resolving them

• Celebrate breaking free — even if it’s messy

	44	

And always remember: an anti-pattern is a learning opportunity wearing a

fake mustache.

From the Guide:

“An anti-pattern is a dead end disguised as a shortcut. Follow it often

enough, and you’ll map the scenic route to dysfunction.”

📡	Transmission	complete.	Scanning	next	signal...

Architect (Software)

(Designer of Systems, Slayer of Tech Debt, Keeper of the Whiteboard

Markers)

A Software Architect is someone who thinks in structure.

While developers code the trees, the architect maps the forest — trying to

make sure the forest doesn’t catch fire every time you plant a new feature.

They’re part visionary, part guide, part historian, and part therapist for teams

overwhelmed by their own legacy code.

They ask:

● “What are we building?”

● “How will it evolve?”

● “What will this look like when it’s 10x bigger?”

● “Are we reinventing the wheel again?”

And sometimes:

● “What did we do in 2017… and why is it still here?”

🌀 What is a Software Architect?

A person who:

● Designs system structure

● Makes long-term technical decisions

● Balances scalability, maintainability, and deliverability

● Aligns tech with business needs (without crying)

	 45	

● Guides, not controls — the team is still the team

They don’t just draw boxes.

They define the relationships between the boxes, the rules that govern the

flow, and the tradeoffs no one else wants to make.

Also: Good architects code. Or at least stay close enough to understand the

pain they’re causing.

🚀 What happens if you have a great one?

● Systems evolve gracefully instead of chaotically

● Teams understand the “why” behind the “what”

● Tech debt is reduced before it becomes a black hole

● Architecture enables agility, not restricts it

● You scale without starting over every 12 months

Great architects listen. They mentor. They simplify.

And they say “no” with love.

☄ What happens if you don’t have one (and you need one)?

● Every team builds their own empire — and none of them talk

● System boundaries get blurry, weird, and eventually haunted

● Architecture “just happens” — badly

● Tech debt becomes invisible until it explodes

● You keep reinventing the same thing... slightly worse each time

Eventually, someone says:

“We need a rewrite.”

And someone else whispers:

“Again?”

🪐 What happens if you do it wrong?

● You create PowerPoint architecture — looks great, never

implemented

● You design everything up front, then blame the team when reality

disagrees

	46	

● You impose ivory tower rules no one follows

● You optimize for tech, not value

● You spend six weeks debating message queues while the product

burns

Worst of all: you become the Chief Bottleneck Officer, where every

decision needs your blessing. You’re not an architect — you’re a traffic jam.

🌠 How to be a great architect in an Agile world?

● Collaborate. You’re not above the team. You’re with them.

● Think in trade-offs. There’s no perfect — only “good enough for

now.”

● Architect for change. Adaptive > rigid.

● Explain clearly. If no one understands it, it’s not good architecture.

● Balance simplicity and vision. Keep it clean, but purposeful.

● Code or stay close to the code. Always.

And above all: listen more than you draw.

From the Guide:

“The best architecture isn’t the one you notice. It’s the one that

helps you go fast without crashing.”

📡	Transmission	complete.	Scanning	next	signal...

	 47	

B is for Backlog

A bottomless pit of ideas, features, and forgotten

sticky notes that were once urgent. Estimated with

optimism. Groomed with dread.

	48	

	 49	

Backlog

(Scrum’s Sacred Scroll of Stories, Tasks, and Miscellaneous Mayhem)

The Scrum Backlog (also known as "The Place Where Work Goes to Wait.

Forever.") is the ever-evolving list of all the things the team might do, should

do, or promised to do during a very optimistic meeting three months ago.

It’s like a spaceship’s cargo bay: it should contain only what’s needed for the

journey — but somehow also has three broken engines, a bag of space

bananas, and an unexploded request from the CFO.

🌀 What is it?

The Product Backlog is a dynamic, ordered list of valuable work for the

product. It’s owned by the Product Owner, curated like a galactic museum

exhibit, and refined by the team in small rituals known as "Backlog

Refinement Sessions" — or “Meetings of Eternal Debate.”

It’s not a dump. It’s not a wishlist. It’s not a graveyard of old ideas. (Okay, it

can be all three, but it shouldn’t be.)

🚀 What happens if you use it well?

You get clarity. Focus. Direction. The backlog becomes a powerful tool for:

● Prioritising work based on value.

● Enabling the team to plan effectively.

● Helping stakeholders understand what’s coming and why.

● Preventing the dreaded “But I thought we were building a unicorn

farm?” conversation.

A healthy backlog = a healthy team. Think of it as the oxygen filter of your

Agile spaceship.

☄ What happens if you ignore it?

Disaster. The backlog becomes bloated, stale, confusing — and downright

hostile.

	50	

● Stories from 2022 reappear like vengeful space ghosts.

● Priorities change randomly depending on the phase of the moon.

● No one knows what’s next, what’s important, or who added that thing

about "gamifying the invoice process."

You’ll spend more time arguing about what to do than doing it.

🪐 What happens if you do it wrong?

● Every idea gets added. Nothing gets removed.

● Vague titles like “Fix thingy” or “Button gooder.”

● No acceptance criteria. No estimates. No clue.

● Developers pick random stories like it’s a bingo night.

● Stakeholders assume the backlog is a contract instead of a

conversation.

And worst of all: no one trusts it anymore. Once that happens, you’re just

drifting through space, pretending to navigate.

🌠 How to do it well?

● Keep it small. Don’t backlog the entire universe. Just what’s next.

● Groom it regularly. Think of it like a garden. Or a cat.

● Order it by value. Not politics, ego, or “who shouted loudest.”

● Be clear. Descriptions, acceptance criteria, maybe even a sketch or

two.

● Collaborate. The team should understand what’s in there — ideally

before sprint planning.

Pro Tip from the Guide:

“A backlog is not a grave. It’s a garden. If you don’t prune it, it

becomes a jungle. And then the jungle eats your roadmap.”

📡	Transmission	complete.	Scanning	next	signal...

	 51	

BI (Business Intelligence)

(Turning Data Into Insight, Insight Into Action, and Action Into “Maybe

We Should’ve Measured That”)

Business Intelligence is all about collecting, organizing, analyzing, and

presenting data so teams and leaders can make smarter decisions.

It connects:

● Strategy to reality

● Ideas to evidence

● Questions to answers

● Gut feelings to actual numbers (gasp)

Without BI, you’re just guessing really well.

With BI, you’re still guessing — but now your guess has a nice pie chart

behind it.

🌀 What is BI?

A set of tools, practices, and mindsets that help you:

● Gather the right data

● Analyze trends and anomalies

● Visualize KPIs and patterns

● Track product performance, customer behavior, team metrics

● Ask:

“Are we actually improving, or just moving pixels?”

It’s not just dashboards.

It’s data-driven storytelling, with a heavy side of SQL and just a dash of

"Why are there three definitions of 'active user'?"

🚀 What happens if you do it well?

● You make informed, evidence-based decisions

● You identify value early, risk sooner

● You stop building things no one uses

	52	

● You celebrate impact, not just delivery

● You get to say fun things like:

“Let’s A/B test that instead of arguing for 3 weeks”

BI becomes your feedback radar, showing you where you are, not just

where you think you're going.

☄ What happens if you don’t have BI?

● You rely on HiPPOs (Highest Paid Person’s Opinion)

● You celebrate output instead of outcome

● Teams build “successful” features that nobody uses

● You react too late — or never

● You track nothing, or worse: track everything but act on nothing

It’s like flying blind, but with more meetings.

🪐 What happens if you do it wrong?

● You measure vanity metrics instead of value

● You drown in dashboards that no one checks

● You build custom BI tools because “we’re special”

● You hand metrics to stakeholders without context and wonder why no

one trusts the numbers

● You track what’s easy, not what’s important

And worst of all: your BI becomes a performance tool, not a learning tool.

Now everyone's gaming the data, and insight dies quietly.

🌠 How to do BI well?

● Start with questions. “What do we need to know to make better

decisions?”

● Collaborate across roles. Product, dev, design, marketing — all

bring different lenses.

● Use consistent definitions. “Conversion” should mean the same

thing on Monday and Thursday.

● Visualize clearly. Clarity beats complexity every time.

● Make it actionable. If the data doesn’t drive a decision, do you need

it?

