Managing safety, health and environmental risks in laboratories

Iris van 't Leven

Second edition

Syntax Media – Utrecht, the Netherlands

Table of contents

1 Introduction S

2	Handling risks	11
2.1	Risk assessment	11
2.2	Risk perception in the workplace	13
2.3	Risk acceptance	15
2.4	Standards for hazardous substances	17
2.5	Addressing risks within the organization	19
2.6	References	21

3	Risk management strategy	23
3.1	Estimating risks	23
3.2	Formulating preventive measures	24
	3.2.1 Organizational measures	24
	3.2.2 Technical measures	25
3.3	Emergency procedures	31
3.4	References	33

4	Chemicals	35
4.1	Estimating risks	35
	4.1.1 Flammable, explosive, self-igniting, oxidizing	g 35
	4.1.2 Toxic, corrosive, harmful, irritant, allergenic	39
	4.1.3 Carcinogenic, mutagenic, reprotoxic	43
	4.1.4 Reactivity of substances	45
	4.1.5 Environmental risks	47
	4.1.6 Assessment of the personal work situation	49
4.2	Preventive measures	53
	4.2.1 Organizational measures	53
	4.2.2 Technical measures	56
4.3	Emergency procedures	64
4.4	References	67

5	5 Biological agents and genetically modified		
	organisms	71	
5.1	Estimating risks	73	
	5.1.1 Work-related risks	73	
	5.1.2 Environmental risks	79	
5.2	Preventive measures	81	

Table of contents

	5.2.1	Organizational measures	81
	5.2.2	Technical measures	83
.3	Emerg	gency procedures	93

- 5.3 Emergency procedures5.4 References 94

6	Ionizing radiation	97
6.1	Estimating risks	97
	6.1.1 Work-related risks	97
	6.1.2 Environmental risks	100
6.2	Preventive measures	101
	6.2.1 Organizational measures	101
	6.2.2 Technical measures	102
6.3	Emergency procedures	107
6.4	References	108

7	Equipment	109
7.1	Estimating risks	109
7.2	General preventive measures	113
7.3	Autoclaves	113
7.4	UV lights	117
7.5	Lasers	119
7.6	Magnetic fields	122
7.7	Centrifuges	123
7.8	Experimental set-ups with pumps	124
7.9	Hot plates, burners and ovens	126
7.10	References	129

8	Gas cylinders	131
8.1	Estimating risks	131
8.2	Preventive measures	132
8.3	Emergency procedures	136
8.4	References	137

9	Cryogenic substances	139
9.1	Estimating risks	139
9.2	Preventive measures	141
9.3	Emergency procedures	143
9.4	References	143

10	Glassware	145
10.1	Estimating risks	145
10.2	Preventive measures	146
10.3	Emergency procedures	152
10.4	References	152

Table of contents

11	Physical strain when performing lab work	153
11.1	Estimating risks	153
11.2	Preventive measures	154
	11.2.1 Organizational measures	154
	11.2.2 Workplace and working methods	155
	11.2.3 Working environment	159
11.3	Emergency procedures	159
11.4	References	160

12	Legislation and the workplace	161
12.1	Working Conditions Act	161
12.2	Environmental legislation	162
12.3	Nuclear Energy Act	164
12.4	References	164

A	ppendices	165
1	General instructions for working safely	165
2	Safe transportation of hazardous substances	167
3	Storage of hazardous substances	173
4	Collecting and handling waste	175
5	Use of chemical fume hoods	177
6	Safe Microbiological Techniques	179
7	Use of class II biological safety cabinets	183
8	List of safety signs	185
9	Labelling of hazardous substances	187
10	Self-assessment safety of laboratory setups	189

Inventory of carcinogenic and reprotoxic substances

A cardiological laboratory has made an inventory of the carcinogenic, mutagenic and reprotoxic substances that are used and where they are stored. The information in table 4.3 is incorporated into the company regulations so that all employees know which substances are involved. The assessment has been made on the basis of the H-statements on the label: H350 and H351 for carcinogens, H 340 and H 341 for mutagens and H360, H 361 and H362 for reprotoxic substances.

Table 4.3

List of carcinogens H350/H351, Mutagens H340/H341 and reprotoxic substances H360/H361/H362

Substance	CAS number	H- statements	Storage
Benzene	71-43-2	May cause genetic defects May cause cancer	A1 Safety cabinet
Bichromate sulphuric acid	65272-70-0	May cause genetic defects May cause cancer Suspected of damaging fertility	A2 Safety cabinet
Cobalt chloride	7791-13-1	May cause cancer by inhalation May damage fertility Suspected of causing genetic defects	A3 Toxics cabinet
Hydrazine hydrate	7803-57-8	May cause cancer	A4 Safety cabinet, (ventilated at floor level, cooled)

Continuously operating experimental set-ups

Experimental set-ups that operate more than a day may be left unattended part of the time. By analysing the risks it should become clear whether this is sensible. There is a greater chance of an incident if the owner of the setup is not present. Practical examples: a beaker suddenly boils dry, a faulty heating element creates an overly high temperature, due to evaporation a temperature sensor hangs above a fluid, a cleaning person unplugs a cooling system. If there is no one present at the setup, no one can correct these hazardous situations, resulting in fume hood fires or worse. Appendix 10 includes a questionnaire for assessing the safety of a laboratory setup before it is used. For the sake of safety but also with a view to continuity of the experiment, it is advisable to attach an information card to the equipment stating the name and telephone number of the owner, the substances used in the experimental set-up and their attendant risks, and the measures to be taken in case of an emergency.

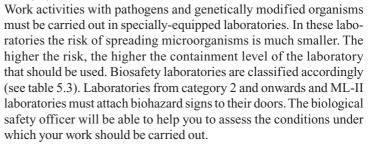
After the setup has been commissioned, it is important to inspect it periodically in order to prevent reduction in the safety of a properly designed setup due to aging, wear and tear or breakage. A brief checklist is included in the box.

Checklist for periodical inspection of continuous setups

- Check the quality of glassware and lines, and replace them when they are damaged or cracked.
- Check whether connections are leak-proof. Gas pipelines can be checked with some soapy water or a gas leak spray.
- Check visually whether electrical cables are in good order.
- Check whether chemicals that are released are absorbed and cleared properly.
- Ensure that periodical maintenance of equipment has been arranged and verify that it is actually performed (see also Chapter 7).

Glassware and tubing of setups are particularly subject to wear. Connections may loosen over time and start to leak.

Working alone or beyond normal operating hours


Because working with chemicals involves specific risks, staff run additional risks when working alone. After all, there will be nobody around to provide help. Experiments can start to become uncontrolled, hazardous vapours may be released and many other things are imaginable as a result of which an experiment could go wrong. Working alone is not advisable and many laboratories apply strict rules in this respect. Generally, working beyond normal operating hours is not permitted if no emergency services are available or no precautionary measures have been taken.

A horizontal laminar flow cabinet blows air into your face; it is only suitable for work with harmless materials and microorganisms.

Biosafety labs and other rooms

Transgenic animals, plants and microorganisms are also handled in other rooms, for example laboratory animal rooms, greenhouses, and growth chambers. Depending on the risk, specific equipping criteria also apply in this respect¹. In most laboratories slight underpressure is applied to prevent the spreading of agents into the environment. Underpressure can only be maintained if access doors are kept closed! Specific criteria are included in the license for operations that cannot be carried out in these special rooms, such as field tests with genetically modified organisms.

Table 5.3

Containment levels for work activities with biological agents and genetically modified organisms

Containment level	Corresponding biosafety laboratory	GMOs
low	_	ML-I
moderate	containment level 2	ML-II
high	containment level 3	ML-III
extra high	containment level 4	ML-IV

UV-decontamination is less effective than usually thought

In some laboratories, UV lights are used to keep work areas free of living microorganisms. Research has shown that using UV light for this purpose has many disadvantages⁶:

- Not all microorganisms are UV sensitive
- Only direct radiation is effective, even dust particles may protect microorganisms sufficiently against UV
- Dirty and old lights radiate less effectively.
- Material ages rapidly under the influence of UV.
- Dead microorganisms are not removed and form a nutrient medium for growth of microorganisms.
- UV is harmful for skin and eyes (see section 7.4).

Using UV light to decontaminate large areas is not effective. UV lights can be used in biological safety cabinets in combination with other decontamination methods. Avoid exposure to the eyes. Leave UV lights on only if nobody is at work, not even in the close environment. Be aware of and ensure you make appropriate use of the warning signals available to draw laboratory workers' attention to UV light.

Equipment maintenance

All equipment that is used when working with biological agents or GMOs can be contaminated. These include centrifuges in which the centrifuge tubing has leaked, as well as a vortex that was contaminated because of a liquid overspill. This equipment must be decontaminated after a spill, during regular maintenance or major overhaul, or prior to removal. The Infection Prevention Working Party has developed a sample regulation for microbiological safety during maintenance of medical and laboratory equipment¹⁸. The HEPA filters in biological safety cabinets must be considered to be contaminated. The people who replace them must be properly informed about potential risks.

Collection and disposal of biological waste

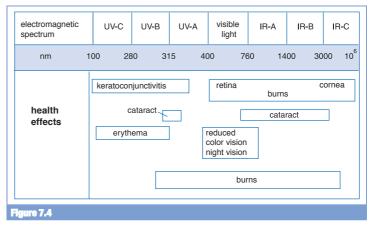
Biological waste should be collected separately. Depending on its composition and the pre-treatment method, this waste should be either disposed of: as infectious waste; as chemical waste; as radioactive waste (RA-afval); as waste containing animal by-products (dierlijke bijproducten); or as domestic waste (restafval). A waste stream scheme is set out in Figure 5.8.

The disposal and transport requirements in part depend on the pathogenicity and the risk of spreading in the environment once escaped. Waste that may have been contaminated with unknown or not very harmful pathogens is disposed of as Specific Hospital Waste (*specifiek ziekenhuisafval* or *SZA-afval* for short) or clinical waste.

A researcher switches on a light box that he just repaired in order to check whether it works. Exposure lasts about 30 seconds¹.

• Cleaners are working in a laboratory unaware of the fact that the UV light is on. After a while they call on the company medical officer with skin and eye problems.

These examples show that even short-term exposure of the eyes to UV lights might cause damage. The eye reflex makes eyes adapt to the intensity of visible light, but not to that of UV light.


Another example from practice

Chapter 7 Equipmen

Two workers in the same laboratory contracted cataracts at a young age. The specialists who treated them expressed their surprise about this phenomenon and UV exposure in the workplace was therefore further evaluated. While working with the UV transilluminator, the laboratory workers only used their face shields when looking directly into the UV source. The face shield was very dirty and therefore less clear, so that they took them off whenever they could. To offer adequate protection, face shields should be worn tight to the face, which will soon give a closed-in feeling. Laboratory workers were inclined to put their face shields further away from their faces which considerably reduced the protection provided.

Immersion lights, photochemical reactors, grow lights, and UV transilluminators all transmit high-intensity UV radiation. With some of these lights, the level of harmful exposure is already reached after a relatively short period. UV light in laboratories is mostly used for decontamination purposes. Lights that are most effective for decontamination purposes are also the most harmful ones for the eyes. Some laboratories use UV lights for detection, in chromatography, for example. This could also result in exposure.

Mercury-vapor lamps, xenon lamps and neon lights transmit UV of a lower intensity. When the work is carried out at a normal distance from these lights, exposure will not be higher than in the outside air.

Biological effects of extensive exposure to UV light, visible light and infrared light (source: International Commission on Illumination)

Transilluminator with face shield.

7.5 Lasers

Preventive measures

Determine whether using UV actually has added value in your case. The following key points apply if you still need to work with UV:

- Opt for UV lights whereby radiation is shielded as far as possible.
- Shield the UV radiation in experimental set-ups in order to limit the amount of scattered radiation.
- Inform your colleagues if you need to work with UV. This can be done by switching on the warning signs present in the laboratory.

In the event of potential UV exposure, UV goggles should definitely be worn. These goggles should also be worn when not looking directly into the radiation source. From a viewpoint of availability and hygiene, the use of personal UV goggles is preferred. It is also advisable to wear protective clothing and a UV-resistant face shield. Of course, UV goggles do not prevent exposure of the skin. Properly maintain goggles and face shields so that they remain pleasant to use.

Blue Light Hazard⁶

Sources of light and radiation with other wavelengths may also be harmful (figure 7.4). Intensely radiating blue LEDs, for instance, may cause photochemical aging of the retina (Blue Light Hazard). Blue LEDs are also close to UV and sometimes inadvertently radiate UV. When using intense radiation sources, check whether screening of the light source or the use of laser goggles is necessary.

7.5 Lasers

The light transmitted by lasers carries particular risks⁷. A laser is characterized by an electromagnetic beam with a small diameter but with a high power density. As a result of the high power density, lasers may damage the skin and eyes. The eye usually projects incoming light at a single point (see figure 7.6).

Because of this projection, the laser beam as such is concentrated even more on a small surface. All the heat is released at this point and, with high-power lasers, it cannot be discharged quickly enough to avoid retinal damage. With normal light, the eye reflex protects the eye if exposure is too high. However, the laser beam may have such a high intensity that the eye reflex no longer responds in time. Furthermore, lasers are generally used in darkened rooms so that the pupil's diameter is particularly large, which, in turn, increases the risk of eye damage. The eye reflex does not respond at all with UV and infrared lasers and therefore offers no protection whatsoever. Far infrared lasers (FIR) and far ultraviolet lasers (FUV) do not penetrate deep into the eye but could still damage the cornea and/or lens.