Practical Radiation Protection

Jos van den Eijnde Lars Roobol

Fourth, completely revised edition

Syntax Media – Utrecht, the Netherlands

Preface

Like in the preceding editions, in this fourth edition we want to give a systematic insight in the hazards of applying ionising radiation and in the work methods to control these hazards, resulting in an acceptable risk.

In the Chapters 9, 10 and 11, we describe the measures the worker himself can take, for sealed sources and X-ray equipment, for open sources and for medical applications.

The preceding chapters treat successively the physical backgrounds, the measurement apparatuses, the quantities and units used in radiation protection, the hazards of ionising radiation, and the measures that are already taken by the Government and the formulas to assess your own dose.

The appendices give some mathematical background and exercises.

This book is also suitable for two other target groups:

- It also contains the topics necessary for the Radiation Protection Officer dispersible radioactive substances, level D (TMS-VRS-D) and for the Radiation Protection Officer medical applications (TMS-MT).
- Chapters 1 to 8, and where applicable 9 and 10, can be seen as a basis for the other seven training courses for the Radiation protection supervisor.

In this edition the following changes have been made.

In Chapters 1 and 3, we have split the text on half-life and halfthickness into a part without mathematical formulas and part with the precise formulas. It is expected that on one hand, this will clarify the treatment and on the other hand this will ensure that these important items will also be accessible for people without a mathematical background.

Chapter 2, the overview of the applications, now only contains only a brief overview of the medical applications; its extensive description is now included in Chapter 11.

In Chapter 4, on measuring equipment, a Section is added on tips for doing the actual measurements.

In Chapter 5, on quantities and units, the new tissue weighting factors are listed.

Chapter 6, on effects and risks, is virtually unchanged.

Chapter 7 is the most changed chapter. It describes the rules and regulations as from February 2018, when the new radiation protection basic safety standards 'Euratom Directive' is implemented in the Dutch law. An extra section on security is included.

Preface

The regulations on radioactive waste, previously in the separate Chapter 11 on radioactive waste, are now a section in this Chapter 7. Finally, a section on ethical aspects of regulation is added.

Chapters 8 and 9 have changed places. In Chapter 8, about assessing a dose, for external radiation we use for the sections the headings ' time, distance, shielding '. The h(10), the ambient dose rate constant, is introduced and the formulas are described in terms of half-lives and half-thicknesses, so not using the decay constants and the attenuation coefficients.

The rules of thumb for β radiation have changed.

Chapter 9, on sealed sources and X-ray equipment and Chapter 10, on open sources, are virtually unchanged; Chapter 9 focuses on applications outside of the medical setting.

The contents of the former Chapter 11, on radioactive waste, is now included in Chapter 7 on regulations, and in Chapters 10 (laboratories) and 11 (medical applications).

The new Chapter 11 describes the practical radiation hygiene in a medical setting.

The practice questions are all the same. The open questions are mainly intended for the Radiation protection supervisor.

This is a translation into English of the eight edition of the book *Praktische stralingshygiëne*. Small corrections have been carried out, and Section 8.6 was added.

Leiderdorp, Stompetoren, September 2017

Drs. Jos van den Eijnde, Radiation Protection Expert and Safety expert, working at the Arbodienst AMC, in Amsterdam Dr. Lars Roobol, Radiation Protection Expert, working as Head of the Department of measuring and monitoring at the RIVM, Bilthoven

We thank colleagues and former colleagues for delivering substantive input and comments, especially F. Bomert, J. Deeterink, T. van Dillen, R. de Goede, M. Huikeshoven, G. Streekstra, D. Valk and J. Wiersema. We also want to thank M. Twigt for her editorial work.

The content of this book is the responsibility of the authors and not of the institutions where they work or the colleagues that have provided comments.

Where in the book 'he' is used, 'he or she' is meant.

Pre	eface	V	
1	Structure of the atom and decay	1	
1.1	Structure of an atom	1	
1.2	Stability of atomic nuclei		
1.3	Radionuclides		
1.4	The activity of a nuclide	4	
1.5	The activity as a function of time	6	
	1.5.1 The half-life $T_{1/2}$	6	
	1.5.2 Approximate determination of the activit		
	1.5.3 Precise determination with a formula for half-life	the 7	
	1.5.4 Precise determination with a formula for	the	
	decay constant	8	
1.6	The radiation and the particles released during de	ecay 10	
	1.6.1 Introduction	10	
	1.6.2 α decay	12	
	1.6.3 Excess of neutrons: β^{-} decay	12	
	1.6.4 Shortage of neutrons: E. C. and positron emission	13	
	1.6.5 Excess of energy: γ decay and internal	1.4	
	conversion 1.6.6 In the electron cloud: X radiation and Au	14	
	1.6.6 In the electron cloud: X radiation and Au electrons	ger 15	
	1.6.7 Parent-daughter relations	15	
1.7	The sequence of the decay processes	16	
2	Applications and decay products	19	
2.1	Introduction	19	
2.2	Basic concepts 1		
2.3	Sealed sources	20	
	2.3.1 Introduction	20	
	2.3.2 Applications of sealed sources	20	
2.4	Open sources	23	
	2.4.1 Introduction	23	
	2.4.2 Practices with open sources	23	
2.5	X-ray equipment and accelerators	25	
	2.5.1 Introduction	25	
	2.5.2 Applications	25	
	2.5.3 Generation of X-rays	27	

2.6	Neutrons 2.6.1 Occurrence and properties	29 29
	2.6.2 Application of neutron sources	30
	2.6.2 Application of neutron sources 2.6.3 Safety measures	30
2.7	Nuclear installations	31
2.7	2.7.1 Nuclear reactors	31
	2.7.2 Uranium mining and enrichment facilities	32
2.8	Naturally Occurring Radioactive Material (NORM)	33
3	Interaction of radiation with matter and	
	shielding of radiation	35
3.1	Introduction	35
3.2	Interaction of a radiation	35
3.3	Interaction of β radiation	36
3.4	Interaction of X-rays and y radiation	39
3.5	Shielding of β and γ radiation	42
	3.5.1 Rule of thumb for shielding β radiation	42
	3.5.2 Linear and reduced range	43
	3.5.3 More on the shielding of β radiation	44
	3.5.4 Shielding of photon radiation in a narrow	45
	beam	45
	3.5.5 Shielding X-ray equipment	47
2.0	3.5.6 Build-up	47
3.6	Shielding data	48
4	Radiation Detection	51
4.1	Introduction	51
	Introduction Ionisation detectors	51 51
4.1	Introduction Ionisation detectors 4.2.1 Gas-filled detectors	51 51 52
4.1 4.2	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors	51 51 52 54
4.1	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors	51 51 52 54 55
4.1 4.2	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction	51 51 52 54 55 55
4.1 4.2	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors	51 51 52 54 55 55 56
4.1 4.2 4.3	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors	51 51 52 54 55 55
4.1 4.2	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors Application of radiation detection outside the field	51 51 52 54 55 55 56 57
4.1 4.2 4.3 4.4	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection	51 51 52 54 55 55 56
4.1 4.2 4.3	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation	51 51 52 54 55 55 56 57 59
4.1 4.2 4.3 4.4	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection	51 51 52 54 55 55 56 57 59 61
4.1 4.2 4.3 4.4	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source	51 51 52 54 55 55 56 57 59 61 61
4.1 4.2 4.3 4.4	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source 4.5.2 Determination of the activity	51 52 54 55 55 56 57 59 61 61 63
4.1 4.2 4.3 4.4	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source 4.5.2 Determination of the activity 4.5.3 Determination of the radiation level	51 51 52 54 55 55 56 57 59 61 63 63
 4.1 4.2 4.3 4.4 4.5 	IntroductionIonisation detectors4.2.1Gas-filled detectors4.2.2Solid state detectorsScintillation detectors4.3.1Introduction4.3.2Solid state detectors4.3.3Liquid detectors4.3.3Liquid detectorsApplication of radiation detection outside the fieldof radiation protectionApplication of detection equipment in radiationprotection4.5.1Identification of a source4.5.2Determination of the activity4.5.3Determination of the radiation level4.5.4Measurement of radioactive contamination	51 51 52 54 55 55 56 57 59 61 61 63 63 64
4.1 4.2 4.3 4.4 4.5 4.6	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source 4.5.2 Determination of the activity 4.5.3 Determination of the radiation level 4.5.4 Measurement of radioactive contamination Counting error and sensitivity	51 51 52 54 55 55 56 57 59 61 63 63
 4.1 4.2 4.3 4.4 4.5 	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source 4.5.2 Determination of the activity 4.5.3 Determination of the radiation level 4.5.4 Measurement of radioactive contamination Counting error and sensitivity Overview of detectors and their field	51 52 54 55 55 56 57 59 61 61 63 63 64 67
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source 4.5.2 Determination of the activity 4.5.3 Determination of the radiation level 4.5.4 Measurement of radioactive contamination Counting error and sensitivity Overview of detectors and their field of application	51 52 54 55 55 55 55 56 57 59 61 61 63 63 64 67 69
4.1 4.2 4.3 4.4 4.5 4.6	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source 4.5.2 Determination of the activity 4.5.3 Determination of the radiation level 4.5.4 Measurement of radioactive contamination Counting error and sensitivity Overview of detectors and their field of application Recommendation for measurements in practice	51 52 54 55 55 56 57 59 61 61 63 63 64 67 69 69
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Introduction Ionisation detectors 4.2.1 Gas-filled detectors 4.2.2 Solid state detectors Scintillation detectors 4.3.1 Introduction 4.3.2 Solid state detectors 4.3.3 Liquid detectors 4.3.3 Liquid detectors Application of radiation detection outside the field of radiation protection Application of detection equipment in radiation protection 4.5.1 Identification of a source 4.5.2 Determination of the activity 4.5.3 Determination of the radiation level 4.5.4 Measurement of radioactive contamination Counting error and sensitivity Overview of detectors and their field of application	51 52 54 55 55 55 55 56 57 59 61 61 63 63 64 67 69

5	Quantities and units in radiation protection	73
5.1	Introduction	73
5.2	Definitions of quantities and units	73
	5.2.1 Introduction	73
	5.2.2 Exposure	73
	5.2.3 Absorbed dose	74
	5.2.4 Equivalent dose	74
	5.2.5 Effective dose	75
	5.2.6 Committed dose	77
5.3	Orders of magnitude for the effective dose	77
5.4	Previous terminology in radiation protection	78
6	Biological effects and risks of radiation	79
6.1	Introduction	79
6.2	Effects at a molecular and cellular level	79
6.3	Effects in humans	80
6.4	Harmful tissue reactions	81
6.5	Stochastic effects	82
6.6	Hereditary effects	85
6.7	Effects on the unborn child	85
6.8	Comparison with other risks	86
7	The regulations	89
	The regulations	
7.1	Introduction	89
7.2	Terminology	89
7.3	The system of radiation protection	91
	7.3.1 The general principles	91
	7.3.2 Justification	92
	7.3.3 Optimisation, ALARA	92
7 4	7.3.4 Dose limitation	93
7.4	Organisational aspects of the legislation	95
	7.4.1 International and national legislation	95
	7.4.2 The system of control	96
75	7.4.3 The radiation experts	100
7.5	Regulations at the work place	103
7.6	Regulations regarding security	107
7.7	Transport regulations	108
7.8	Environmental regulations	109
7.9	Rules, perception and ethics	111
8		115
8.1	Introduction	115
8.2	External radiation by a radioactive source	115
	8.2.1 Introduction	115
	8.2.2 Duration	116
	8.2.3 Distance: the inverse square law	116
	8.2.4 Physical properties of the source	117
	8.2.5 Shielding	118
	8.2.6 Formula and rule of thumb for the dose rate	119

8.3 8.4 8.5 8.6	 Irradiation of the skin 8.3.1 External radiation 8.3.2 External contamination 8.3.3 Effective dose caused by skin irradiation External radiation by an X-ray apparatus Dose resulting from internal contamination Examples of doses from external exposure and internal contamination 	120 120 121 121 122 122 122
9	Sealed sources and X-ray equipment for non-medical applications	127
9.1	Introduction	127
9.1	Safety measures for sealed sources	127
1.2	9.2.1 Organisational measures	128
	9.2.2 Measures in the workplace	130
	9.2.3 Specific applications: industrial radiography	131
	9.2.4 Specific applications: gas chromatography	
	using a ⁶³ Ni source	132
	9.2.5 Specific applications: high-activity sources	133
9.3	Safety measures with X-ray and radiation devices	134
	9.3.1 Organisational measures	134
	9.3.2 Measures at the workplace	134
	0.2.2 $0.1.1$ $(1.1.1)$ $(1.1.1)$ $(1.1.1)$ $(1.1.1)$ $(1.1.1)$ $(1.1.1)$	
	9.3.3 Specific applications: X-ray diffraction tubes	136
10		136 1 39
10.1	Safety measures for open sources	1 39 139
10.1 10.2	Safety measures for open sources Introduction Organisational measures	1 39 139 140
10.1 10.2 10.3	Safety measures for open sources Introduction Organisational measures Reducing activity	1 39 139 140 140
10.1 10.2 10.3 10.4	Safety measures for open sources Introduction Organisational measures Reducing activity Containment	1 39 139 140 140 140
10.1 10.2 10.3 10.4 10.5	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination	139 140 140 140 140 142
10.1 10.2 10.3 10.4 10.5 10.6	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection	139 140 140 140 140 142 144
10.1 10.2 10.3 10.4 10.5 10.6 10.7	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection Contamination check and decontamination	139 140 140 140 140 142 144 145
10.1 10.2 10.3 10.4 10.5 10.6	Safety measures for open sourcesIntroductionOrganisational measuresReducing activityContainmentRemoval of airborne contaminationIndividual protectionContamination check and decontaminationRadioactive waste	 139 140 140 140 142 144 145 146
10.1 10.2 10.3 10.4 10.5 10.6 10.7	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection Contamination check and decontamination Radioactive waste 10.8.1 Collection of radioactive waste in an institute	139 140 140 140 142 144 145 146 146
10.1 10.2 10.3 10.4 10.5 10.6 10.7	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection Contamination check and decontamination Radioactive waste 10.8.1 Collection of radioactive waste in an institute 10.8.2 Dry waste	139 140 140 140 142 144 145 146 146 146
10.1 10.2 10.3 10.4 10.5 10.6 10.7	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection Contamination check and decontamination Radioactive waste 10.8.1 Collection of radioactive waste in an institute 10.8.2 Dry waste 10.8.3 Liquid waste	139 140 140 140 140 142 144 145 146 146 147
10.1 10.2 10.3 10.4 10.5 10.6 10.7	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection Contamination check and decontamination Radioactive waste 10.8.1 Collection of radioactive waste in an institute 10.8.2 Dry waste 10.8.3 Liquid waste 10.8.4 Counting vials and counting matrices	139 140 140 140 140 142 144 145 146 146 147
10.1 10.2 10.3 10.4 10.5 10.6 10.7	Safety measures for open sourcesIntroductionOrganisational measuresReducing activityContainmentRemoval of airborne contaminationIndividual protectionContamination check and decontaminationRadioactive waste10.8.1Collection of radioactive waste in an institute10.8.2Dry waste10.8.3Liquid waste10.8.4Counting vials and counting matrices10.8.5Reduction of radioactive waste	 139 140 140 140 142 144 145 146 146 146 147 148
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection Contamination check and decontamination Radioactive waste 10.8.1 Collection of radioactive waste in an institute 10.8.2 Dry waste 10.8.3 Liquid waste 10.8.4 Counting vials and counting matrices	139 140 140 140 140 142 144 145 146 146 147
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Safety measures for open sourcesIntroductionOrganisational measuresReducing activityContainmentRemoval of airborne contaminationIndividual protectionContamination check and decontaminationRadioactive waste10.8.1Collection of radioactive waste in an institute10.8.2Dry waste10.8.3Liquid waste10.8.4Counting vials and counting matrices10.8.5Reduction of radioactive wasteTopics	139 140 140 140 140 142 144 145 146 146 146 146 147 148 148
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Safety measures for open sourcesIntroductionOrganisational measuresReducing activityContainmentRemoval of airborne contaminationIndividual protectionContamination check and decontaminationRadioactive waste10.8.1Collection of radioactive waste in an institute10.8.2Dry waste10.8.3Liquid waste10.8.4Counting vials and counting matrices10.8.5Reduction of radioactive wasteTopics10.9.1Radionuclide laboratories	139 139 140 140 140 142 144 145 146 146 146 146 147 148 148 148
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Safety measures for open sources Introduction Organisational measures Reducing activity Containment Removal of airborne contamination Individual protection Contamination check and decontamination Radioactive waste 10.8.1 Collection of radioactive waste in an institute 10.8.2 Dry waste 10.8.3 Liquid waste 10.8.4 Counting vials and counting matrices 10.8.5 Reduction of radioactive waste Topics 10.9.1 10.9.2 Iodine	139 139 140 140 140 142 144 145 146 146 146 147 148 148 150

11	Radia	ition protection in medical	
	appli	cations	153
Intro	luction		153
А	Genera	al	154
A.1	The pa	tient: effects, doses and risks	154
	A.1.1	Effects: tissue reactions	154
	A.1.2	Stochastic effects and received doses	155
	A.1.3	The risk for the patient	156
A.2	Worke	ers: effects, doses and risks	158
	A.2.1	Effects: harmful tissue reactions	158
	A.2.2	Stochastic effects and received doses	158
	A.2.3	Risks for workers	159
A.3	Law as	nd regulations	160
	A.3.1	Introduction	160
	A.3.2	The dose limitation system	160
	A.3.3		160
		Volunteers in medical or biomedical research	161
		Optimisation and ALARA	161
	A.3.6	1 6	161
		Optimisation: reference levels	162
	A.3.8		162
	A.3.9	e	163
		The experts	164
	A.3.11	Some requirements in the Decree, the	
		Regulations, the Ordinance and the licences	166
В	-	tment of Nuclear Medicine	167
B .1		cations in Nuclear Medicine	167
	B.1.1		167
	B.1.2	Diagnostics	168
	B.1.3	1.2	170
D 0	B.1.4	Supporting applications	171
B.2		application to dose in Nuclear Medicine	171
	B.2.1	Introduction	171
		Internal contamination	171
		Needlestick injuries	172
		External irradiation of the body	173
D 2		Irradiation of the skin	175
B.3		ions and measures in Nuclear Medicine	175
	B.3.1	Structural provisions	175
D 4	B.3.2	Waste management	176
B.4		ures in Nuclear Medicine	1 77
		n take oneself	177
	B.4.1	Introduction	177
	B.4.2	Preparation for new type of work	177
	B.4.3	During the procedures with open sources:	177
		RERI	177

С	The D	epartment of Radiotherapy	179	
C.1	Applic	cations in Radiotherapy	179	
	C.1.1	Applications with sealed sources	179	
	C.1.2	Applications in accelerators	180	
C.2	From	application to dose in Radiotherapy	182	
C.3		ties and measures in Radiotherapy	182	
		Sealed sources	182	
	C.3.2		182	
C.4		ares one can take oneself in Radiotherapy	183	
D	Department of Radiology			
D.1	Department of Radiology 183 Applications in Radiology 183			
D.2		application to dose in Radiology	186	
		The patient	186	
		Personnel	188	
D.3		ties and measures in Radiology	188	
2.10		Dosimetry	188	
		Shielding	188	
D.4		ares one can take oneself in Radiology	189	
D.1		Introduction	189	
		General, by the medical specialist	189	
		In advance, by the referring person and	107	
	D.7.5	the medical specialist	189	
	D.4.4	1	107	
	D.4.4	specialist	190	
	D.4.5	1	190	
	D.4.3	e	190	
		specialist and the bystanders	190	
Арр	endix	A Powers and logarithms	194	
		B Statistics of counting	197	
	bining e		197	
Error	in a dif	ference or sum	198	
Error in a quotient or product 199				
Арр	endix	C Exercises	201	
Ques	tions wi	th open book	201	
	Multiple-choice questions 206			
Answers to Open Questions 212				
			213	

Index	215

difference, the net value, will be relatively large. This error can be calculated using the law of propagation of errors. A more extensive treatment, for those who are interested, can be found in appendix B.

The concept of sensitivity can be defined as the minimal amount of activity that can be detected. From the text above, it follows that the sensitivity depends on the relative error in the measurement. So, a long counting time and the lowering of the background will improve the sensitivity.

Example 1

A counter has a mean background of 36 pulses per minute. According to the text above, one needs to count at least $\sqrt{36} = 6$ pulses in 1 minute above that background count rate before one may speak of a measurable activity. But when we count for 10 minutes, then we need to count an excess of $\sqrt{360} = 19$ pulses. That are less than 2 pulses per minute, and therefore an activity about thrice as small becomes measurable. That makes sense, since the measuring time is ten times larger, making the measurement $\sqrt{10} = 3.2$ times more sensitive.

Through better shielding of the abovementioned counter, the background is limited to 9 pulses per minute. The minimal excess number of counts, necessary to determine if there is measurable activity present (when counting for 10 minutes), then becomes $\sqrt{90} = 9.5$ pulses. That is about 1 pulse per minute. By reducing the background by a factor of 4, the sensitivity has improved by a factor of $\sqrt[3]{4}$.

In summary: the sensitivity of a measurement can be improved by lowering the background. And counting for a longer time reduces the counting error as well as it improves the sensitivity.

With a monitor with a dial, the swinging of the needle during the background measurement is the determining factor for the sensitivity. Only when the position of the needle, at a place where the presence activity is to be expected, is clearly beyond the background (plus the amount of swinging), we may conclude there is some activity present, mostly in the form of a contamination.

Example 2

Above a clean surface, an analogue contamination monitor indicates a mean value of 8 pulses per second (cps = counts per second), with the needle swinging back and forth around that value by ± 3 cps. So, there is a contamination present if the needle indicates at least 11 cps. If, for example, it is indicated on the device that for ¹²⁵I, a reading of 1 cps equals a surface contamination of 0.3 Bq/cm², then the minimum surface contamination we can detect is $3 \cdot 0.3 \approx 1$ Bq/cm².

4.7 Overview of detectors and their field of application

One should always use monitors only after consulting a radiation expert. Choosing the wrong type may lead to a false feeling of safety, because using the wrong detector may (wrongly) lead you to believe that there is no radioactivity present, while a suitable detector would have indicated otherwise.

Table 4.1 Detectors and their applications

	Measurement of β radiation	Measurement of photon radiation
Ionisation detectors		
GM tube (thin window)	contamination*	dose rate
GM tube (thick window)	dose rate	dose rate
Proportional counter (thin window, xenon filled)	contamination*	contamination with low-energy $\gamma {}^{\prime}s$ like ${}^{125}I$
(HP)Ge, Ge(Li)	_	spectrum (complex) identification of nuclide
Scintillation detectors		
NaI(Tl)	-	contamination spectrum (simple)
Anthracene or ZnS	contamination*	_
TLD	personal dose meter	personal dose meter
Scintillation liquid	contamination	soft γ-radiation
*) also a radiation		

4.8 Recommendation for measurements in practice

4.8.1 Before starting to work at a new department

- 1. At the introduction to the work place, inquire about the different monitors present there, and for what use they are intended.
- 2. Also, inquire for what use they are *not* intended. In particular, ask if the monitors can also measure low-energy radiation, for example of 20 keV, sensitively. Some monitors only can measure with a sensitivity of only a few per cent in that area. Since the secondary radiation of a 40 kV X-ray diffraction tube will largely consist of radiation with an energy around 20 keV, and since some radionuclides are emitting their most important radiation around this energy, you will be unable to detect the most important component of this type of radiation.

For weakly penetrating radiation one takes the equivalent dose on 0.07 mm depth in that phantom. In the literature, these quantities with the symbols are specified with $H^*(10)$ and $H^*(0.07)$ respectively.

These quantities are called ambient dose equivalent.

In this book we use a simplified notation for the ambient dose equivalent $H^*(10)$; we will in short write H, for the effective dose, The unit for the ambient dose equivalent is the sievert.

The effective dose caused by external radiation of a radioactive source (so the equivalent dose at 10 mm depth) is determined by the activity A of the source and

- the duration of exposure
- the distance to the source
- the physical properties of the source
- the shielding.

In the following Sections these aspects are worked out, and summarised in Formula 8.5.

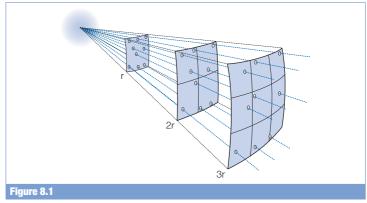
8.2.2 Duration

The duration of the application, *t*, determines the effective dose *H*:

$$H = \dot{H} \cdot t \tag{8.1}$$

The point on top of the *H* specifies that a rate (i.c. the dose rate) is involved.

In the formulas in the following Sections, this time aspect is not further elaborated; those formulas relate to the dose rate and not the dose.


8.2.3 Distance: the inverse square law

A beam of ionising radiation spreads in space in such a way that the intensity of the radiation becomes less as the beam is further away from the source. The dose rate is lower when you are on larger distance from the source. However, the dose rate is not inversely proportional to the distance. As long as the source is small in size (point source), the *inverse square law* holds. This law states that the dose rate is inversely proportional to the square of the distance (r). That this proportionality is quadratic, can be made plausible by imagining a sphere with a radius of 3 cm around the point source and a sphere with a radius of 10 cm. Through the sphere with the radius of 3 cm all radiation passes through a surface area of the sphere of $4\pi \cdot 3^2$ cm², and for the sphere at a distance of 10 cm all radiation passes through a surface area of $4\pi \cdot 10^2$ cm². One can conclude that the 'amount of radiation' (the fluence) decreases quadratically, see Figure 8.1. 8.2 External radiation by a radioactive source

For a point source the following formula holds, when there is no shielding:

$$\dot{H}$$
 constant $\frac{A}{r^2}$ (8.2)

where: \dot{H} = effective dose (Sv · h⁻¹); A = activity (Bq) r = distance to the source (m)

The number of photons through a unit of surface area decreases quadratically with distance.

8.2.4 Physical properties of the source

The constant in Formula 8.2 is defined by the physical properties of the source; the constant for a nuclide that emits lowenergy radiation is different from the constant for a nuclide that emits high-energy radiation: each nuclide has its own constant. It is called the *ambient dose rate constant* and is written as h(10). The number 10 in h(10) indicates that it holds for a depth in the phantom of 10 mm.

The formula for the effective dose is, still for a situation in which there is no shielding:

$$\dot{H} = h(10) \cdot \frac{A}{r^2} \tag{8.3}$$

In Table 8.1 the ambient dose rate constant is given for some radionuclides. When using values for this constant, pay attention to the dimensions. Using the h(10) values from Table 8.1 the activity must be inserted in MBq and the distance in metres: the result is then in μ Sv \cdot h⁻¹.

For the risk calculation, it is assumed that the administration takes place in liquid form (giving a 'sip'), that in the event of an incident 10% of the activity is released and that 0.1% of this is released into the air. Nowadays, instead of giving a 'sip', a capsule is given, so that the chance of a dose caused by spilling of the sip is zero. The calculation indicates an upper limit for the risk of inhalation in the event of possible incidents in Nuclear Medicine.

Finally one can assume that the ventilation is such that one breathes in a fraction of 10^{-3} of the activity spread in the air, the inhalation fraction. This fraction of 10^{-3} can be substantiated by calculating how many litres of air a person inhales during the incident based on the fact that a person inhales 1.2 litres per minute; however, this calculation is beyond the purpose in this context.

An inhalation fraction of 10^{-3} , an incident fraction of 10% and a release fraction of 0.1% results in a total fraction of 10^{-7} of the applied activity in the body. Thus $10^{-7} \cdot 5500 \text{ MBq} = 5.5 \cdot 10^{-4} \text{ MBq}$ is being inhaled. Because e(50) = 11 mSv per MBq (see Table 8.2), the inhalation dose is $6.1 \cdot 10^{-3} \text{ mSv}$ (6 μ Sv).

With two administrations per week, i.e. about one hundred administrations per year, the expected collective annual dose, i.e. the dose of all those involved during this application, is around half a millisievert.

In applications with other nuclides, much less activity is used; they are also less radiotoxic (except, for example,²²³Ra; but this is used much less often), so the contribution to the collective annual dose will be lower.

Finally, it is useful to point out that when using the A_{max} formula 10.1 (assuming that p = -2, q = 1, r = 0 and e(50) = 11 mSv/MBq) the maximum activity allowed in the syringe is 0.2 MBq; that is a factor 28,000 times less than the 5500 MBq that is actually applied. According to the *pqr-formula* this procedure (syringe application) must take place in a B-laboratory in a fume hood. The A_{max} -formula must therefore only be applied in laboratories and their supplementary spaces. The big difference is due to the fact that in 1985 the Health Council when deriving the A_{max} -formula 10.1 assumed a much larger fraction that enters the air, and after that a safety margin has been applied on the calculations of the Health Council.

B.2.3 Needlestick injuries

To determine the dose as a result of a *needlestick injury* it is generally assumed that the worker receives a fraction of 10^{-3} of the administered activity. However, an estimate of the dose by that intake is not possible with the data in Table 8.2, because the e(50)-values of Table 8.2 are not applicable here; these values concern a pure radioisotope and when administered to a patient it usually concerns a labeled protein that spreads differently

through the body than the pure radioisotope. However, the dose for the worker is 10^{-3} of the dose for the patient. This means that in the case of a needlestick injury with a syringe intended for a patient, the dose for this worker as a result of internal contamination will be in the order of millisieverts.

B.2.4 External irradiation of the body

To assess the importance of the measures to control external radiation, one should focus on the administration of ¹⁸F, due to its relatively high h(10) of 0.17 µSv/h per MBq at 1 metre distance (see Table 8.1), the relatively high activity that is administered each time (400 MBq) and the many administrations that are performed annually (in the example below we assume a thousand administrations per year).

Preparing the ¹⁸F-syringe.

We assume that a syringe fill station is used to safely fill the syringe with ¹⁸F. This system is shown in Figure 11.4. The syringe is originally empty in the lead cylinder, the radioactive supply under the table in a lead-shielded container. The liquid is drawn into the syringe and the operator is only exposed without shielding during the short moment that the liquid passes through the visible plastic tube. Afterwards, that tube is flushed clean with non-radioactive fluid that is in the visible vertical syringe.

The calculation (see below) shows that the collective effective dose from external radiation in regular applications for a department can be around 13 millisieverts per year. This amounts to the collective dose as registered on the TLD badges in a Department of Nuclear Medicine.