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V

Preface

Like in the preceding editions, in this fourth edition we want to 
give a systematic insight in the hazards of applying ionising radia-
tion and in the work methods to control these hazards, resulting 
in an acceptable risk.
In the Chapters 9, 10 and 11, we describe the measures the worker 
himself can take, for sealed sources and X-ray equipment, for 
open sources and for medical applications.
The preceding chapters treat successively the physical back-
grounds, the measurement apparatuses, the quantities and units 
used in radiation protection, the hazards of ionising radiation, 
and the measures that are already taken by the Government and 
the formulas to assess your own dose.
The appendices give some mathematical background and exer-
cises.

This book is also suitable for two other target groups:
• It also contains the topics necessary for the Radiation Protec-

tion Officer dispersible radioactive substances, level D (TMS-
VRS-D) and for the Radiation Protection Officer medical ap-
plications (TMS-MT).

• Chapters 1 to 8, and where applicable 9 and 10, can be seen as 
a basis for the other seven training courses for the Radiation 
protection supervisor.

In this edition the following changes have been made.
In Chapters 1 and 3, we have split the text on half-life and half-
thickness into a part without mathematical formulas and part 
with the precise formulas. It is expected that on one hand, this 
will clarify the treatment and on the other hand this will ensure 
that these important items will also be accessible for people with-
out a mathematical background.
Chapter 2, the overview of the applications, now only contains 
only a brief overview of the medical applications; its extensive 
description is now included in Chapter 11.
In Chapter 4, on measuring equipment, a Section is added on tips 
for doing the actual measurements.
In Chapter 5, on quantities and units, the new tissue weighting 
factors are listed.
Chapter 6, on effects and risks, is virtually unchanged.
Chapter 7 is the most changed chapter. It describes the rules 
and regulations as from February 2018, when the new radiation 
protection basic safety standards ‘Euratom Directive’ is imple-
mented in the Dutch law. An extra section on security is included. 

Practical radiation_2018.indb   VPractical radiation_2018.indb   V 06-02-18   12:4806-02-18   12:48



Preface

VI

The regulations on radioactive waste, previously in the separate 
Chapter 11 on radioactive waste, are now a section in this Chap-
ter 7. Finally, a section on ethical aspects of regulation is added.
Chapters 8 and 9 have changed places. In Chapter 8, about as-
sessing a dose, for external radiation we use for the sections the 
headings ‘ time, distance, shielding ‘. The h(10), the ambient dose 
rate constant, is introduced and the formulas are described in 
terms of half-lives and half-thicknesses, so not using the decay 
constants and the attenuation coefficients.
The rules of thumb for β radiation have changed.
Chapter 9, on sealed sources and X-ray equipment and Chapter 
10, on open sources, are virtually unchanged; Chapter 9 focuses 
on applications outside of the medical setting.
The contents of the former Chapter 11, on radioactive waste, is 
now included in Chapter 7 on regulations, and in Chapters 10 
(laboratories) and 11 (medical applications).
The new Chapter 11 describes the practical radiation hygiene in 
a medical setting.

The practice questions are all the same. The open questions are 
mainly intended for the Radiation protection supervisor.

This is a translation into English of the eight edition of the book 
Praktische stralingshygiëne. Small corrections have been carried 
out, and Section 8.6 was added.

Leiderdorp, Stompetoren, September 2017

Drs. Jos van den Eijnde, Radiation Protection Expert and Safety 
expert, working at the Arbodienst AMC, in Amsterdam
Dr. Lars Roobol, Radiation Protection Expert, working as Head 
of the Department of measuring and monitoring at the RIVM, 
Bilthoven

We thank colleagues and former colleagues for delivering sub-
stantive input and comments, especially F. Bomert, J. Deeterink, 
T. van Dillen, R. de Goede, M. Huikeshoven, G. Streekstra, 
D. Valk and J. Wiersema. We also want to thank M. Twigt for her
editorial work.
The content of this book is the responsibility of the authors and 
not of the institutions where they work or the colleagues that 
have provided comments.

Where in the book ‘he’ is used, ‘he or she’ is meant.
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Chapter 4
Radiation Detection

68

difference, the net value, will be relatively large. This error can 
be calculated using the law of propagation of errors. A more ex-
tensive treatment, for those who are interested, can be found in 
appendix B.
The concept of sensitivity can be defined as the minimal amount 
of activity that can be detected. From the text above, it follows 
that the sensitivity depends on the relative error in the measure-
ment. So, a long counting time and the lowering of the back-
ground will improve the sensitivity.

Example 1

A counter has a mean background of 36 pulses per minute. Ac-
cording to the text above, one needs to count at least  √36 = 6 
pulses in 1 minute above that background count rate before one 
may speak of a measurable activity. But when we count for 10 
minutes, then we need to count an excess of √360 = 19 pulses. 
That are less than 2 pulses per minute, and therefore an activi-
ty about thrice as small becomes measurable. That makes sense, 
since the measuring time is ten times larger, making the measure-
ment √10 = 3.2 times more sensitive.

Through better shielding of the abovementioned counter, the 
background is limited to 9 pulses per minute. The minimal excess 
number of counts, necessary to determine if there is measurable 
activity present (when counting for 10 minutes), then becomes 
√90 = 9.5 pulses. That is about 1 pulse per minute. By reducing 
the background by a factor of 4, the sensitivity has improved by 
a factor of √4) .

In summary: the sensitivity of a measurement can be improved by 
lowering the background. And counting for a longer time reduces 
the counting error as well as it improves the sensitivity.
With a monitor with a dial, the swinging of the needle during the 
background measurement is the determining factor for the sensi-
tivity. Only when the position of the needle, at a place where the 
presence activity is to be expected, is clearly beyond the back-
ground (plus the amount of swinging), we may conclude there 
is some activity present, mostly in the form of a contamination.

Example 2

Above a clean surface, an analogue contamination monitor indi-
cates a mean value of 8 pulses per second (cps = counts per sec-
ond), with the needle swinging back and forth around that value 
by ±3 cps. So, there is a contamination present if the needle indi-
cates at least 11 cps. If, for example, it is indicated on the device 
that for 125I, a reading of 1 cps equals a surface contamination 
of 0.3 Bq/cm2, then the minimum surface contamination we can 
detect is 3·0.3 ≈ 1 Bq/cm2.
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69

4.8 Recommendation for measurements
 in practice

4.7 Overview of detectors and their field 
of application

One should always use monitors only after consulting a radiation 
expert. Choosing the wrong type may lead to a false feeling of 
safety, because using the wrong detector may (wrongly) lead you 
to believe that there is no radioactivity present, while a suitable 
detector would have indicated otherwise.

Table 4.1
Detectors and their applications

Measurement of β radiation Measurement of photon radiation

Ionisation detectors
GM tube (thin window) contamination* dose rate
GM tube (thick window) dose rate dose rate
Proportional counter
(thin window, xenon filled)

contamination* contamination with low-energy γ’s
like 125I

(HP)Ge, Ge(Li) – spectrum (complex)
identification of nuclide

Scintillation detectors
NaI(Tl) – contamination

spectrum (simple)
Anthracene or ZnS contamination* –
TLD personal dose meter personal dose meter

Scintillation liquid contamination soft γ-radiation

*) also α radiation

4.8 Recommendation for measurements 
in practice

4.8.1 Before starting to work at a new department
1. At the introduction to the work place, inquire about the dif-

ferent monitors present there, and for what use they are in-
tended.

2. Also, inquire for what use they are not intended. In particular, 
ask if the monitors can also measure low-energy radiation, for 
example of 20 keV, sensitively. Some monitors only can mea-
sure with a sensitivity of only a few per cent in that area. Since 
the secondary radiation of a 40 kV X-ray diffraction tube will 
largely consist of radiation with an energy around 20 keV, 
and since some radionuclides are emitting their most import-
ant radiation around this energy, you will be unable to detect 
the most important component of this type of radiation.
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Chapter 8
Dosimetry in practice

116

For weakly penetrating radiation one takes the equivalent dose 
on 0.07 mm depth in that phantom. In the literature, these quan-
tities with the symbols are specified with H*(10) and H*(0.07) 
respectively.
These quantities are called  ambient dose equivalent.
In this book we use a simplified notation for the ambient dose 
equivalent H*(10); we will in short write H, for the effective dose,
The unit for the ambient dose equivalent is the sievert.

The effective dose caused by external radiation of a radioactive 
source (so the equivalent dose at 10 mm depth) is determined by 
the activity A of the source and
• the duration of exposure
• the distance to the source
• the physical properties of the source
• the shielding.

In the following Sections these aspects are worked out, and sum-
marised in Formula 8.5.

8.2.2 Duration
The duration of the application, t, determines the effective dose H:

H =  
∙

H ∙ t (8.1)

The point on top of the H specifies that a rate (i.c. the dose rate) 
is involved.
In the formulas in the following Sections, this time aspect is not 
further elaborated; those formulas relate to the dose rate and not 
the dose.

8.2.3 Distance: the inverse square law
A beam of ionising radiation spreads in space in such a way that 
the intensity of the radiation becomes less as the beam is further 
away from the source. The dose rate is lower when you are on 
larger distance from the source. However, the dose rate is not in-
versely proportional to the distance. As long as the source is small 
in size (point source), the  inverse square law holds. This law states 
that the dose rate is inversely proportional to the square of the 
distance (r). That this proportionality is quadratic, can be made 
plausible by imagining a sphere with a radius of 3 cm around 
the point source and a sphere with a radius of 10 cm. Through 
the sphere with the radius of 3 cm all radiation passes through a 
surface area of the sphere of 4π · 32 cm2, and for the sphere at a 
distance of 10 cm all radiation passes through a surface area of 
4π · 102 cm2. One can conclude that the ‘amount of radiation’ (the 
fluence) decreases quadratically, see Figure 8.1.
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8.2 External radiation by a radioactive source

For a point source the following formula holds, when there is no 
shielding:

H constant
A
r2

� (8.2)

where:
  
∙

H  = effective dose (Sv · h–1);
A = activity (Bq)
r = distance to the source (m)

r

2r

3r

Figure 8.1

 The number of photons through a unit of surface area decreases quadratically with distance.

8.2.4 Physical properties of the source
The constant in Formula 8.2 is defined by the physical prop-
erties of the source; the constant for a nuclide that emits low-
energy radiation is different from the constant for a nuclide that 
emits high-energy radiation: each nuclide has its own constant. 
It is called the ambient  dose rate constant and is written as h(10). 
The number 10 in h(10) indicates that it holds for a depth in the 
phantom of 10 mm.
The formula for the effective dose is, still for a situation in which 
there is no shielding:

( )= ⋅H h
A
r

10 2
� (8.3)

In Table 8.1 the ambient dose rate constant is given for some 
radionuclides. When using values for this constant, pay atten-
tion to the dimensions. Using the h(10) values from Table 8.1 the 
activity must be inserted in MBq and the distance in metres: the 
result is then in μSv ∙ h−1.
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Chapter 11
Radiation protection in medical applications
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For the risk calculation, it is assumed that the administration takes place in 
liquid form (giving a ‘sip’), that in the event of an incident 10% of the activity 
is released and that 0.1% of this is released into the air. Nowadays, instead 
of giving a ‘sip’, a capsule is given, so that the chance of a dose caused by 
spilling of the sip is zero. The calculation indicates an upper limit for the risk 
of inhalation in the event of possible incidents in Nuclear Medicine.
Finally one can assume that the ventilation is such that one breathes in a 
fraction of 10−3 of the activity spread in the air, the inhalation fraction. This 
fraction of 10−3 can be substantiated by calculating how many litres of air a 
person inhales during the incident based on the fact that a person inhales 1.2 
litres per minute; however, this calculation is beyond the purpose in this con-
text.
An inhalation fraction of 10−3, an incident fraction of 10% and a release frac-
tion of 0.1% results in a total fraction of 10−7 of the applied activity in the 
body. Thus 10−7∙ 5500 MBq = 5.5 ∙ 10−4 MBq is being inhaled. Because e(50) 
= 11 mSv per MBq (see Table 8.2), the inhalation dose is 6.1∙ 10−3 mSv 
(6 μSv).

With two administrations per week, i.e. about one hundred ad-
ministrations per year, the expected collective annual dose, i.e. 
the dose of all those involved during this application, is around 
half a millisievert.
In applications with other nuclides, much less activity is used; 
they are also less radiotoxic (except, for example,223Ra; but this is 
used much less often), so the contribution to the collective annual 
dose will be lower.

Finally, it is useful to point out that when using the Amax formula 
10.1 (assuming that p = −2, q = 1, r = 0 and e(50) = 11 mSv/MBq) 
the maximum activity allowed in the syringe is 0.2 MBq; that is 
a factor 28,000 times less than the 5500 MBq that is actually ap-
plied. According to the pqr-formula this procedure (syringe ap-
plication) must take place in a B-laboratory in a fume hood. The 
Amax-formula must therefore only be applied in laboratories and 
their supplementary spaces. The big difference is due to the fact 
that in 1985 the Health Council when deriving the Amax-formula 
10.1 assumed a much larger fraction that enters the air, and after 
that a safety margin has been applied on the calculations of the 
Health Council.

B.2.3 Needlestick injuries
To determine the dose as a result of a  needlestick injury it is 
generally assumed that the worker receives a fraction of 10−3 of 
the administered activity. However, an estimate of the dose by 
that intake is not possible with the data in Table 8.2, because 
the e(50)-values   of Table 8.2 are not applicable here; these val-
ues concern a pure radioisotope and when administered to a pa-
tient it usually concerns a labeled protein that spreads differently 
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B.2 From application to dose in Nuclear 
 Medicine

through the body than the pure radioisotope. However, the dose 
for the worker is 10−3 of the dose for the patient. This means that 
in the case of a needlestick injury with a syringe intended for a 
patient, the dose for this worker as a result of internal contamina-
tion will be in the order of millisieverts.

B.2.4  External irradiation of the body
To assess the importance of the measures to control external ra-
diation, one should focus on the administration of 18F, due to its 
relatively high h(10) of 0.17 μSv/h per MBq at 1 metre distance 
(see Table 8.1), the relatively high activity that is administered 
each time (400 MBq) and the many administrations that are per-
formed annually (in the example below we assume a thousand 
administrations per year) .

Figure 11.4

Preparing the 18F-syringe.

We assume that a syringe fill station is used to safely fill the sy-
ringe with 18F . This system is shown in Figure 11.4. The syringe is 
originally empty in the lead cylinder, the radioactive supply under 
the table in a lead-shielded container. The liquid is drawn into the 
syringe and the operator is only exposed without shielding during 
the short moment that the liquid passes through the visible plastic 
tube. Afterwards, that tube is flushed clean with non-radioactive 
fluid that is in the visible vertical syringe.

The calculation (see below) shows that the collective effective 
dose from external radiation in regular applications for a depart-
ment can be around 13 millisieverts per year. This amounts to the 
collective dose as registered on the TLD badges in a Department 
of Nuclear Medicine.
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