Practical Radiation Protection

Jos van den Eijnde Klazien Huitema Lars Roobol

Fifth, completely revised edition

Syntax Media – Amersfoort, the Netherlands

Preface

Dear reader,

This revised, fifth edition of *Practical Radiation Protection* provides insight into the hazards of applying ionising radiation and the practical methods to control these hazards. The book is a translation of the ninth edition of *Praktische Stralingshygiëne* (2022), with some corrections to the Dutch text.

The book is intended for anyone who works with open sources, sealed sources or X-ray equipment.

It is aimed at radiation protection officers (RPOs) working with

- industrial radiography equipment
- measurement and control applications
- dispersible radioactive substances at C and D level
- medical applications.

It fulfils the course requirements for the RPOs in these sectors, as laid down in Appendix 5.2 Part A of the *Regulations on basic safety standards for radiation protection*. The necessary depth of knowledge differs per sector; throughout the training the lecturer will guide you on this.

In addition the book may be used for

- radiation workers in these settings
- radiation protection experts
- anyone with an interest in this issue (managers, policy makers, journalists, etc.).

New to the fifth English edition is that - in addition to the basic knowledge - in-depth paragraphs have been included; these are not part of the course requirements. An extensive literature list has also been added. The book is now entirely in full colour.

Content, and changes in content compared to the fourth English edition

Chapter 2 gives an updated overview of the applications of ionising radiation in the Netherlands. New in this chapter is the treatment of the decay chain of uranium and radon.

Chapter 3, on interaction of radiation with matter and shielding of radiation, gives some more information on high-energy electrons and presents and discusses half-value layers in the easy-toapply unit cm.

Preface

Chapter 4, on the relevant quantities and units, was Chapter 5 in the previous edition. New in this chapter are the extensive treatment of the ambient dose equivalents and an update of the RIVM-overview of the various sources of radiation exposure in the Netherlands.

In Chapter 5 (Chapter 4 in the previous edition), on radiation detection, the text is formulated more precisely.

New in Chapter 6, on effects and risks, is a closer look at the nonlethal cancers and at risk assessment.

In Chapter 7, on regulations and ethics, more attention is paid to the division of tasks within the company, and in particular to the tasks of the Radiation Protection Officer.

In Chapter 8 on the dose calculations, the ambient dose equivalent is used in the formulas and in the rules of thumb, and the text on the skin dose has been extended.

Chapter 9, originally called 'Sealed sources and X-ray equipment', is now called 'Industrial Radiography and Measurement and Control Applications'. It has been expanded and completely rewritten to make this book useful for these applications.

In Chapter 10, Section 10.5 on removal of airborne activity, has been rewritten.

Chapter 11 on medical applications is virtually unchanged.

Acknowledgement

We would like to thank colleagues and former colleagues for providing substantive input and comments, and in particular: M. van Bourgondiën, T. van Dillen, B. Godthelp, R. de Goede, M. Huikeshoven, K. van Kammen, E. Luijkx, W. Moerman and T. Meeuwsen.

The content of this book is the responsibility of the authors and not of the institutions where they work or of the colleagues who have commented.

Authors

Drs. Jos van den Eijnde used to work as Radiation Protection Expert level 2, as Certified Safety Expert and as head of a Safety Health and Environment department. He was affiliated to the radiation protection unit of Amsterdam UMC as a guest employee until January 1, 2024. He is now retired.

Dr. Lars Roobol is a Radiation Protection Expert level 2 and works as head of the department 'Radiation research, knowledge and policy' at the Dutch National Institute for Public Health and the Environment (RIVM).

Dr. Klazien Huitema is a Radiation Protection Expert level 2, and works as head of the radiation protection education and training department at TU Delft | Stralingsonderwijs.

Leiderdorp, Stompetoren, Dordrecht, March 2024

1

1.1

V Preface Structure of the atom and decay Structure of an atom 1 Stability of atomic nuclei 2

1.2	Stabili	ty of atomic nuclei	2
1.3	Radio	nuclides	3
1.4	Activit	ty and specific actvity	4
	1.4.1	Activity	4
	1.4.2	Specific activity	5
1.5	Activit	ty as a function of time	6
	1.5.1	The half-life $T_{\frac{1}{2}}$	6
	1.5.2	Approximate determination of the activity	6
	1.5.3	Precise determination with a formula	
		for the half-life	7
	1.5.4	Precise determination with a formula for the	
		decay constant	9
1.6	Electro	omagnetic radiation	10
	1.6.1	The wave nature of electromagnetic radiation	10
	1.6.2	The particle nature of electromagnetic	
		radiation	11
	1.6.3	The energy of electromagnetic radiation	11
1.7	The ra	diation and the particles released during decay	12
	1.7.1	Introduction	12
	1.7.2	Overview of processes	12
	1.7.3	α decay	13
	1.7.4	β ⁻ decay	14
	1.7.5	β^+ decay: positron emission	15
	1.7.6	Electron capture	15
	1.7.7	γdecay	16
	1.7.8	Internal conversion (I.C.)	16
	1.7.9	Follow-up processes: characteristic X-rays	
		and Auger electrons	17
1.8	Parent	-daughter relations	17
1.9	The tir	ne sequence in the decay processes	18
2	Defin	itions and overview of applications	21
2.1	Introd	uction	21
2.2	Defini		21
	2.2.1	Radiation sources	21
	2.2.2	Radioactive substances and radioactive	
		sources	21
		Sealed sources	22
		Unsealed/open sources	22
	2.2.5	X-ray equipment	22

		23
	2.2.7 Sources of natural radiation and artificial	
		23
2.3	J	24
		24
		26
2.4	11	28
2.5	11	28
2.6	1	31
		31
		31
2.7		33
		33
		34
2.8	Nuclear installations 3	36
	2.8.1 Nuclear reactors 3	36
	2.8.2 Uranium mining and enrichment plants 3	36
2.9	Naturally Occurring Radioactive Material (NORM)	38
3	Interaction of radiation with matter and	
	shielding of radiation 4	1
3.1	Introduction 4	11
3.2	Interaction of α radiation 4	12
3.3	Interaction of β radiation 4	13
	3.3.1 Overview of the interactions 4	13
	3.3.2 Range 4	16
3.4	X-rays: repetition of the foregoing 4	16
3.5	Interaction processes of X-rays and γ radiation 4	16
	3.5.1 Overview of interactions 4	16
	3.5.2 Dominance and relevance of effects 5	50
	3.5.3 The electrons produced that cause the damage 5	51
3.6		52
	÷ .	52
		53
		54
3.7	Shielding of a narrow beam of X-rays and of	
		54
		54
	3.7.2 Estimates with half-thicknesses in the narrow-	
		55
	3.7.4 Calculation with the linear attenuation	
		57
	3.7.3 Calculations with half-value layers for the	· •
		56
	e .	58
		59
		59
3.8		59

4	Quantities and units in radiation protection	61
4.1	Introduction	61
4.2	Physical quantities and units	61
	4.2.1 Number of ionisations	61
	4.2.2 Exposure	61
	4.2.3 Absorbed dose	62
4.3	Quantities and units describing the risk	62
	4.3.1 Development of quantities and units	62
	4.3.2 Equivalent dose	62
	4.3.3 Effective dose	63
	4.3.4 Committed dose	65
	4.3.5 Orders of magnitude	66
	4.3.6 Previous terminology in radiation protection	67
4.4	Quantities and units in measurements	67
	4.4.1 Different measurement situations	67
	4.4.2 The ambient dose equivalents $H^*(10)$ and	
	H*(0.07)	68
	4.4.3 The personal dose equivalent $H_p(10)$	69
5	Radiation Detection	71
5.1	Introduction	71
5.2	Detector material	72
	5.2.1 Absorption in the window and the wall	72
	5.2.2 Energy dependence of absorption in the	
	measuring volume	72
5.3	Ionisation detectors	72
	5.3.1 Gas-filled ionisation detectors	73
	5.3.2 Solid-state ionisation detectors;	
	semiconductor detectors	75
5.4	Scintillation detectors	76
	5.4.1 The photomultiplier tube	76
	5.4.2 Solid-state detectors	77
	5.4.3 Liquid detectors	78
5.5	Application of radiation detection outside the field	
	of radiation protection	79
	5.5.1 As amusement	79
	5.5.2 In the medical sector	79
	5.5.3 In scientific research	80
	5.5.4 Access control	80
5.6	Application of detection equipment	
	in radiation protection	81
	5.6.1 Identification of a source	81
	5.6.2 Determination of the activity	83
	5.6.3 Determination of the dose rate	83
	5.6.4 Measurement of radioactive contamination	84
	5.6.5 Overview of detectors and their field of	
	application	87

5.7	Counting error, measurement sensitivity and	
	efficiency	87
	5.7.1 Counting error	87
	5.7.2 Measurement sensitivity	88
	5.7.3 Efficiency	89
5.8	Recommendations for measurements in practice	90
	5.8.1 In advance, when you start in the department	90
	5.8.2 Prior to a specific measurement	90
	5.8.3 During the measurement	91
_		
6	Biological effects and risks of radiation	93
6.1	Introduction	93
6.2	Effects at the molecular and cellular level	93
6.3	Effects in humans	94
6.4	Harmful tissue reactions	95
	6.4.1 Effects and threshold dose	95
	6.4.2 Probability of occurrence	96
6.5	Stochastic effects	97
	6.5.1 Epidemiological studies on the effects of	
	radiation	97
	6.5.2 Comments on the ICRP risk assessments	97
	6.5.3 Latent period	99
	6.5.4 The risk of lethal cancer for an average	
	member of the public	100
	6.5.5 The risk of lethal cancer in specific groups	100
	6.5.6 Non-lethal cancers	102
6.6	Effects on the offspring	103
6.7	Effects on the unborn child	104
6.8	Comparison with other risks	105
	6.8.1 Comparison with other occupations	105
	6.8.2 Comparison with risks in society	106
	6.8.3 Comparison with smoking, flying and	
	background radiation	107
	6.8.4 Dealing with risks	107
7	Regulations and ethics	09
7.1	Introduction	109
7.2	Terminology	109
7.3	The system of radiation protection	112
	7.3.1 The general principles	112
	7.3.2 Justification	112
	7.3.3 Optimisation, ALARA	113
	7.3.4 ALARA and cost-benefit approach	115
- ·	7.3.5 Dose limits	115
7.4	Structure of the legislation	117
	7.4.1 International and national legislation	117
	7.4.2 The system of regulatory control	119
	7.4.3 Special group: aircraft personnel	122
	7.4.4 Government agencies involved	122

7.5	Divisi	on of tasks within the undertaking	123
	7.5.1	Highest in command	123
	7.5.2	Demarcation of tasks between the other	
		parties involved	123
	7.5.3	Tasks of the RPO	124
	7.5.4		126
	7.5.5	Radiation Protection Unit	
		(Stralingsbeschermingseenheid)	127
7.6	Regul	ations at the work place	128
7.7	Regul	ations regarding security	131
7.8	Trans	port regulations	132
7.9	Envir	onmental regulations	133
7.10	Ethica	al aspects and dealing with risks	136
8	Dosi	metry in practice	139
8.1	Intro	luction	139
8.2	The a	mbient dose equivalents	139
8.3		nal irradiation by a radioactive source	
		ng X-rays or γ radiation	139
	8.3.1	Duration	140
	8.3.2	Distance: the inverse square law	140
	8.3.3		141
	8.3.4		142
	8.3.5	Formula and rule of thumb for the ambient	
		dose equivalent rate	143
	8.3.6	Determination of the ambient dose	
		equivalent rate when shielding is used	144
8.4	Skin i	rradiation	145
	8.4.1	Need for a special operational quantity	145
	8.4.2	Rule of thumb for external radiation of the	
		skin by β radiation	145
	8.4.3	Rule of thumb for external contamination	
		by β radiation	145
	8.4.4	Effective dose caused by irradiation of the	
		skin	146
8.5	Extern	nal irradiation by X-ray equipment	147
8.6		resulting from internal contamination	147
0		-	
9		strial radiography and measurement control applications	151
9.1		luction	151
9.2	Defin		152
9.3		l sources	152
1.5	9.3.1	Choice of the source	152
	9.3.2	Shielding the source	152
	9.3.3	Leak test	154
9.4	X-ray		154
7.T	9.4.1	Types of X-rays	154
	9.4.2	Factors determining the spectrum of an	1.54
	J. T .2	X-ray tube	155
			155

	9.4.3	Dose resulting from X-rays	157
	9.4.4	Shielding of X-radiation	159
9.5	Regula	ations for IR and MCA	159
	9.5.1	Organisational regulations for IR and MCA	160
	9.5.2	The legally prescribed regulations for the	
		workplace for both IR and MCA	160
	9.5.3	Workplace measures for both IR and MCA	161
9.6	Workp	place measures for IR applications	163
	9.6.1	HAS sources	163
	9.6.2	Security measures for HAS sources	164
	9.6.3	Application of HAS sources: photographs	
		of welds	164
	9.6.4	Special applications of HAS sources	167
	9.6.5	IR applications with X-ray equipment	167
9.7	Workp	place measures for MCA	168
	9.7.1	Neutron radiation	168
	9.7.2	Nuclear moisture content and density meter	169
	9.7.3	X-ray-fluorescence scanner (XRF scanner)	171
	9.7.4	Fixed X-ray diffraction tubes	174
	9.7.5	Applications using a ⁶³ Ni source	175
	9.7.6	Ionisation smoke detectors	176
	9.7.7	X-ray equipment	176
10	Safet	y measures for open sources	177
10.1	Introd	-	177
10.2		ration on the legal framework	178
10.3		ing activity	180
10.4		inment	180
10.5		val of airborne contamination	183
		Fume hood	183
	10.5.2	Biosafety cabinet	184
		Glove box	185
		Inadequate local exhaust systems	186
10.6		lual protection	186
10.7		mination check and decontamination	188
10.8		active waste	189
		Collection of radioactive waste in an institute	
		Dry waste	189
		Liquid waste	190

	10.8.2 Dry waste	189
	10.8.3 Liquid waste	190
	10.8.4 Counting vials and counting matrices	190
	10.8.5 Reduction of radioactive waste	190
10.9	Topics	191
	10.9.1 Radionuclide laboratories	191
	10.9.2 Iodine	194
	10.9.3 Tritium	194
	10.9.4 Labelled compounds	195
	10.9.5 Measures against external exposure	195

11	Radiation protection in medica	
	applications	197
Intro	oduction	197
A.1	The patient: effects and doses	198
	A.1.1 Harmful tissue reactions for th	ne patient 198
	A.1.2 Stochastic effects	200
A.2	Workers and members of the public: e	effects and
	doses	201
	A.2.1 Harmful tissue reactions for w	orkers 201
	A.2.2 Stochastic effects for workers	202
	A.2.3 Doses for a member of the pub	olic 203
A.3	Regulations	204
	A.3.1 The System of Radiation Prote	ection 204
	A.3.2 Justification	204
	A.3.3 Justification for volunteers par	rticipating
	in medical or biomedical resear	rch 205
	A.3.4 Optimisation and ALARA	205
	A.3.5 Optimisation: diagnostic refere	
	A.3.6 Optimisation/ALARA: dose c	
	A.3.7 Dose limits	200
	A.3.8 Laws and professional guidance	
	A.3.9 The experts	208
	A.3.10 Some requirements in the Decr	
	Regulations and the licences	210
B .1	Applications in Nuclear Medicine	21
	B.1.1 High activity and short half-lif	
	B.1.2 Diagnostics	21
	B.1.3 Therapy	213
	B.1.4 Supporting applications	214
B.2	From application to dose in Nuclear M	
	B.2.1 Dose received	21:
	B.2.2 Internal contamination of the	
	B.2.3 Needle stick injuries	210
	B.2.4 External irradiation of the bod	•
	B.2.5 Irradiation of the skin	218
B.3	Provisions and measures in Nuclear M	
	B.3.1 Structural provisions	219
	B.3.2 Waste management	220
B.4	Measures in Nuclear Medicine one can	
	B.4.1 Introduction	220
	B.4.2 Preparation for new type of wo	
C 1	B.4.3 The source oriented strategy	221
C.1	Applications in Radiotherapy	222
	C.1.1 Applications with sealed source	
	C.1.2 Applications in accelerators	223
C.2	From application to dose in Radiothe	
C.3	Facilities and measures in Radiothera	1 *
	C.3.1 Sealed sources	225
	C.3.2 Accelerators	225

C.4	Measu	res one can take oneself in Radiotherapy	226
D.1	Applic	cations in Radiology	226
D.2	From	application to dose in Radiology	229
	D.2.1	Received doses	229
	D.2.2	The parameters influencing the dose for an	
		individual patient	229
	D.2.3	Personnel	231
D.3	Facilit	ies and measures in Radiology	231
	D.3.1	Dosimetry	231
	D.3.2	Shielding	232
D.4	Measu	ires one can take oneself in Radiology	232
	D.4.1	Introduction	232
	D.4.2	General, by the medical specialist	233
	D.4.3	In advance, by the referring person and	
		the medical specialist	233
	D.4.4	During the examination, by the medical	
		specialist	233
	D.4.5	During the examination, by the medical	
		specialist and the bystanders	234
Lite	rature		235
Exe	rcises	and answers	237
Inde	ex 🛛		251

Chapter 2 Definitions and overview of applications

Some of these products might end up in by-products from industrial processes that use raw materials coming from the Earth's crust. This is called naturally occurring radioactive material (NORM). This is briefly discussed in Section 2.9.

For these natural sources, less strict regulations apply. However, if a natural radiation source is used for its radioactive properties, the Dutch law regards it as a 'source', and the regulations for 'sources' apply. For workers exposed to natural radiation during their work, the dose is seen as an occupational dose.

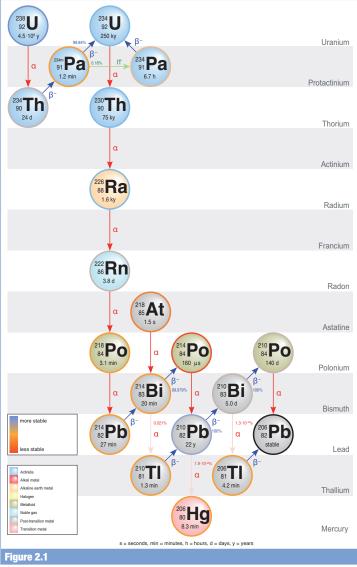
When the natural radiation source is used for its fissile or fertile properties, the regulations for fissile or fertile materials are also applicable.

• The radiation coming from the sun and outer space is called cosmic radiation. It consists of high-energy protons and heavy ions, and their resulting decay products. They expose astronauts and air crew (section 7.4.3) and reach ground level, resulting in a dose to everyone.

Close to the earth, high in the atmosphere, the cosmic radiation forms tritium ³H (tritium), ⁷Be and ¹⁴C (carbon 14); these radionuclides also reach ground level resulting in a dose to all persons.

The resulting dose from 'natural radiation' is treated in Section 4.3.5.

Sources with radioactive substances which are man-made are called artificial sources.


2.3 Decay chains and natural radiation sources

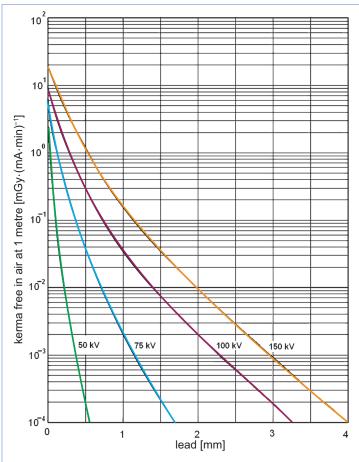
2.3.1 Decay chains

¹⁴C has the simplest form of decay. It forms ¹⁴N in one step, and ¹⁴N is stable (not radioactive). A little more complicated is the decay of ⁹⁹Mo. This nuclide can decay to ⁹⁹mTc, which decays to ⁹⁹Tc. But ⁹⁹Mo can also decay to ⁹⁹Tc directly, in one step. The ⁹⁹Tc eventually decays to ⁹⁹Ru, which is a stable nuclide. So ⁹⁹Mo decays after 2 or 3 steps into a stable nuclide.

In Figure 1.12, we have seen various forms of decay. The successive steps that are needed to finally arrive at a stable nuclide are called a decay chain. It turns out that the naturally occurring ²³²Th, ²³⁵U and ²³⁸U have long decay chains. For example, the decay chain of ²³⁸U has fourteen decay steps; it ends at the stable ²⁰⁶Pb.

2.3 Decay chains and natural radiation sources

The decay chain of ²³⁸U.


In the decay chain of ²³⁸U (Figure 2.1), you can find some well-known nuclides:

- ²²⁶Ra, known from the research of Marie Curie, and from the 'luminous paint' that was used to make the hands of watches light up green in the dark;
- ²²²Rn, a noble gas and therefore volatile, in contrast to the other, mostly metallic nuclides in the decay chain. See Section 2.3.2 for more information on radon.

Chapter 9 Industrial radiography and measurement

Scattering also depends on:

- the size of the irradiated surface;
- the distance from the irradiated surface to the worker;
- the angle at which the surface is irradiated;
- the type of material. If the irradiated material has a high Z, then the photoelectric effect is dominant (Figure 3.5), and much less scattering will occur than for material with a low Z.

kerma free in air per unit of charge (mGy·mA⁻¹·min⁻¹) at 1 metre of the focus of broad beam X-radiation traversing lead, density 11.35 g/cm³, multipulse generator, tungsten anode

tube voltage	50 kV	75 kV	100 kV	150 kV
filtration	2 mm Al	2 mm Al	2 mm Al	2 mm Al
intersection with y-axis	2.6	6.1	9.6	18.3

Figure 9.3

Dependence of the dose on the high voltage and the shielding [4].

9.5 Regulations for IR and MCA

The foregoing clarifies why Section 8.5 stated that there are no rules of thumb for the dose rate for workers due to scattered X-rays. In practice, first one will use the data provided by the manufacturer, and additional measurements will have to be carried out for the specific application.

In Section 8.5, a scattering percentage of 0.05% was assumed for the discussed application. It will be clear that for other applications a different value will apply.

9.4.4 Shielding of X-radiation

Chapter 8 indicates that for photon radiation determining the reduction of the radiation field caused by shielding is difficult. Often Formulas 3.7 and 8.5 cannot be used, because the value of B (the build-up factor) in these formulas is often unknown. It was stated that then graphs are used to determine the effect of shielding.

For X-ray equipment too, the build-up factor is often unknown. But there is also another problem. X-rays have an energy spectrum. This means that for X-radiation there is not one single halfvalue layer that can be used in a formula.

Low-energy radiation will be much better absorbed than highenergy radiation. This means that the energy spectrum of the beam changes when passing through matter: the beam becomes 'harder'. The average energy of the photons in the beam increases. As a result the value of the half-value layers changes. It is therefore customary to number the half-value layers. The first half-value layer will be smaller than the second, the second will be smaller than the third, and so on.

So even more by X-rays as by γ emitters, graphs are used to determine the effectiveness of a shielding. Figure 9.3 is such a graph. More graphs can be found in Chapter 6 of the *CZO table book* [5].

9.5 Regulations for IR and MCA

In this section the regulations are discussed in the following order:

- Organisational regulations (as discussed in Chapter 7), relevant for both IR and MCA, in Section 9.5.1.
- Legally prescribed regulations for the workplace (as discussed in Section 7.6), relevant for both IR and MCA, in Section 9.5.2.
- Workplace measures for both IR and MCA that are not specifically legally prescribed, but that the RPO and the radiation worker can and often must take themselves, as an elaboration on the optimisation/ALARA obligation, in Section 9.5.3.

The elaboration of workplace regulations and measures for specifically IR follows in Section 9.6 and for MCA in Section 9.7.

Chapter 9 Industrial radiography and measurement

Measures

An overview of measures is included in the *Praktijkrichtlijn Stralingsbescherming Niet-Destructief Onderzoek* (Practice Guide on Radiation Protection Non-Destructive Testing) [19]. It is made by a committee of the trade association, KINT: the four Dutch NDT companies worked together in this committee. The Practice Guide is an elaboration of the *IAEA Specific Safety Guide SSG-11* [20].

When the source is applied 'in the field' (and not in the bunker), many additional measures are needed, in addition to the measures mentioned in Section 9.5. Some important measures are presented below. (Please note that the measures for high-activity sealed sources must also be taken, in particular security measures and measures to control incidents/calamities.)

• A comprehensive management system.

Given the complexity of the work and the relatively high hazards, high demands are placed on the management system. Routine inspections, audits and controls are part of this. Close consultation with the client is also necessary, about the measures to be taken at the location.

• Measures to control conventional risks.

The practices often have to be carried out in hard-to-reach and hazardous places, for example in roadside gullies (Figure 9.5), in basements and at height in a structure. It is also often necessary to work outside normal working hours, so as not to disrupt the progress of normal production caused by the enclosure requirements.

This results in additional non-radiation related risks, which must be assessed in advance, for which appropriate measures are required and which are described in the radiation RI&E and/or in the general RI&E.

- Additional requirements for supervision. At the workplace, the work must be done by a worker who has completed the RPO training. This person is called the radiographer. An assistant radiographer must also be present. So the work is never done alone! Often, the assistant has followed an RPO training too.
- Regular checks and measurements.

Routine checks must be performed in order to detect abnormal conditions in good time. An overview of these checks can be found in the aforementioned *Practice Guide* [19].

A real-time dosimeter is used, worn by anyone entering a controlled area and during the transport of the sources. This dosimeter is worn in addition to the mandatory personal dosimeter (with monthly, or biweekly readings). An alarm monitor with an audible signal and a survey meter must also be used, to check the exposure rate at the perimeter of the enclosure and to check at the end of the procedure whether the source is returned to a safe position in its source container.

Welding seam check in hard-to-reach areas.

9.6.4 Special applications of HAS sources

The ionisation capability of ionising radiation is used to kill germs by irradiating food with a ⁶⁰Co or ¹³⁷Cs source with an activity up to 400,000,000 GBq. Irradiation sources are also used in scientific research, e.g. with a ¹³⁷Cs activity of 100,000 GBq. In the food irradiation facility, the irradiation space is only accessible through a labyrinth. In scientific research, the sources are kept in a highly-shielded casing. The irradiation space and the shielded casing are secured with interlocks that immediately provide the necessary measures if a person would open a door, and would risk exposure.

9.6.5 IR applications with X-ray equipment

Welding seams

If possible, the material to be examined is taken to an X-ray equipment in a bunker. This bunker is equipped with all safeguards to keep the dose, and in particular the risk of a calamity dose, as low as reasonably achievable.

When it is necessary to take photos of welds in the field with Xray equipment, a directional tube or a panoramic tube is used. They can have a high voltage of 350 kV, a tube current of up to 6 mA and a dose rate of 6 to $20 \text{ Sv} \cdot \text{h}^{-1}$ at 1 m. This dose rate is even higher than with the application with sealed sources, as described in Section 9.6.3. The risk and measures described in that Section 9.6.3 also apply when using the X-ray equipment.

Other applications

At airports and at postal and courier companies, different types of 'small', fixed X-ray baggage scanners are used to check passengers' suitcases and hand luggage. The maximum high voltage of these systems is 160 kV.